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MATHTOOLS Chapter 1 – Introduction

1 Introduction

MATHTOOLS is an educational tool for the visualization of several nice mathematical things.

License

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see https://www.gnu.org/licenses.
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1.1. Linux Installation MATHTOOLS

MATHTOOLS is built on the base of Tcl/TK version 8.6 and Gnu-C version 7.5 . It is developed
and tested on OpenSuSE Linux Version 15.4 and is ported to run also on Microsoft Windows
and MacOS platforms, were 64-bit architectures are assumed.

1.1 Linux Installation

1.1.1 Requirements

Make sure that at least gcc, make, tcl and tk are installed on your system.

1. Copy the file mathtools.tgz to the directory where the software should be installed.
Extract the data from the .tgz-file by
tar -zxvf mathtools.tgz
The archive is unpacked to the directory MATHTOOLS.

2. Compiling
The MathTools are running on 32-bit and 64-bit sytems. Thus, the binaries need to be
built after unpacking. Go to the directory MATHTOOLS/srcby f.e.

cd MATHTOOLS/src

and execute the script install_all from the commandline

./install_all

All the Makefiles in the subdirectories will be executed.

1.1.2 Starting

Go to the directory MATHTOOLS. The main script mft.tcl is executable from the command-
line and can be referenced by any application starter.

1.2 Windows Installation

Execute the file mathtools-setup.exe and follow the instructions. The program can be
started from the menu in the execution group TigerGraphics or from the desktop if the option for
a desktop icon was selected.

1.3 Mac OS Installation

Download the appropriate application for your architecture (x86 or arm). Finally, copy the ap-
plication container MFT.app either to the systems application folder Programs or to any other
desired location and simply start the application like any other one.
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MATHTOOLS Chapter 2 – MATHTOOLS Main Widget

2 MATHTOOLS Main Widget

The MATHTOOLS main widget serves to switch to the different groups of tools described in the
following sections.

2.1 Custom

The default editor and the default browser for the MATHTOOLS Help can be set.
Remark: There are some defaults set. Such it should not be necessary to customize the
settings. If an error message occurs while trying to edit or browse, please select the executables
according to your systems installation!

2.2 Fractals

Several self similar fractals can be constructed:

• Highway dragon
• Koch Curve
• Cantor Set
• Weierstrass Monster
• Sierpinski triangle
• Pythagoras Tree
• Sunflower

The number of iteration steps can be set by the slider. The construction laws are self-explanatory
if a low number of iteration steps is selected.

2.2.1 [Calculate]

The number of selected iterations is calculated and displayed.

Parameter settings

Highway dragon The direction of the construction can be selected. The effect can be seen if
only a few iterations are selected.

Weierstrass monster The limit object of the Weierstrass Monster is a function which is contin-
uous in R, but not differentiable at any point in R. It is defined by

f(x) =
N∑

k=0

λk(s–1) · sin(λkt)

where N is the number of iterations. The values for λ and s can be selected.

Note: not every parameter combination leads to nice monsters.

The fractal dimension of the monster is estimated and displayed. This is only a very rough
estimation, because the calculation is done on the base of the Nth iteration by the curve length.
Sunflower The configuration of seeds in a sunflower is simulated. Starting from a central point
the radius of every step is increased by s while the angle is increased by ϕ given in degree.

2.2.2 PS Print

A Postscript output is generated and stored in
<Path to Mathtools>/mftfiles/plots. The PS-files are named automatically.
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2.3. Mandelbrot Set MATHTOOLS

2.3 Mandelbrot Set

The Mandelbrot set is constructed and displayed. The Mandelbrot set is defined as the following
subset of the complex plane:

M = {c ∈ C | (xn) remains bounded, xn+1 = x2
n + c, x0 = c}

Such, in the picture, the black object is the Mandelbrot set. The nice colors are determined by
the speed of divergence.
Within the picture a rectangle can be defined by clicking the left mouse button and dragging the
mouse while the button is pressed. [Calculate] starts the calculation of the new cut-out. The
number of iterations must be set as higher the more you go into detail.
The Julia set of a point is calculated if clicked with the right mouse button. The Julia set of a
given point c is defined as the following set of points in the complex plane:

Jc = {x ∈ C | (xn) remains bounded, xn+1 = x2
n + c, x0 = x}

2.3.1 [Calculate]

The part of the Mandelbrot Set is calculated depending on the cut-out. The number of iterations
determines the accuracy.

2.3.2 Save & Print

A Postscript output and a gif output is generated and stored in <Path to Mathtools>/mftfiles/plots.
The files are named automatically.

2.3.3 Newton roots

The tool allows also the visualization of the basins of the roots zi of the complex equation x3 = –1
calculated by Newton’s method.
The three basins Bi are defined as the following sets of points:

Bi = {x ∈ C|xn → zi, x0 = x, xn+1 = xn –
f(x)
f′x)

, f(x) = x3 + 1}
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2.4 Slope

This tool allows the visualization of simple one or two dimensional differential equations.

2.4.1 One Dimensional differential equation

Set x′ = 1. This means that x(t) = t (t0 = 0). Set y′ = to the differential equation which should be
considered. [ Slope field] shows the slope field of the differential equation in the t-y plane.

2.4.2 Two Dimensional differential equation

Set x′ = and y′ = to your differential equation system which should be considered. [Slope field]
shows the slope field of the system in the x-y phase plane.

2.4.3 Parameters and Math-Built in functions

Up to five parameters (a, b, c, d, e) can be used within the formulas.
The following math functions can be used within the formulas:

acos asin atan cos cosh exp log log10
pow sin sinh sqrt tan tanh abs

2.4.4 Linear

If the parameters a, b, c, d are set [linear] makes a linear system from these parameters:(
x′

y′

)
=
(

a b
c d

)(
x
y

)
The Eigenvalues und Eigenvectors, the trace and determinant are displayed in the Info window.

Eigenrichtung

The directions of the Eigenvectors are plotted.

2.4.5 Coordinates

The coordinates of the x-y plane can be set by the two cordinate sliders. If these settings are
too small for the actual problem they can be reset by [Reset Coor.] to the interval [–10, 10] ×
[–10, 10]. Larger intervals must be set by editing the function file (See 2.4.8).

2.4.6 Trajectories

Trajectories to given initial values can be plotted in two ways:

1. Setting initial values for x and y in x0 = and y0 = and pressing
[Initial value] or

2. Setting an initial value by a left mouse click within the slope field. In this case it is helpful
to switch on [Show coor.] to see the coordinates of the mouse cursor.

The calculation is done by evaluating the differential equation with a second order method. By
middle mouse click the evaluation is done with Euler’s method. The time step for the evaluation
is ∆t = 0.01.
The simulation stops either at [Endtime] or can be stopped by a right mouse click in the slope
field.
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2.4. Slope MATHTOOLS

Time Plot

In the case of a two dimensional system the time information cannot be seen in the phase
diagram. If [Time Plot] is switched on a second plot window is opened showing the temporal
evolution of the trajectory.

2.4.7 Isoclines

The isoclines of the system (x′ = 0, y′ = 0) can be plotted. This functionality is still under work.
The recent results must be taken with care!!.

2.4.8 [Load] , [Save] & [Edit]

Equations, parameter values, coordinates, resolution and endtime can be saved in a file. These
files get automatically the extension tgf and are stored normally in <Path to Mathtools>/mftfiles.
After loading a file the equations, parameter values and the stored coordinate values, resolution
and endtime are set.
The files can also be edited to set f.e. coordinate values not provided by default. This editing
functionality does not work under windows at the moment. Please use your usual editor to edit
the files manually.

2.4.9 PS Print

A Postscript output is generated and stored in
<Path to Mathtools>/mftfiles/plots. The PS-files are named automatically.
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2.5 Celluar Automata

Cellular automata are discrete dynamical systems. Space is represented by a uniform grid, with
each cell containing a value; time advances in discrete steps and the rules of change of each
cell is determined by the states of its closest neighbour cells. Different celluar automata are
implemented an can be simulated

• Conway’s Life
• Wofram Universe
• Disease Spread
• three implementations of Per Bak’s sand piles
• two Circular rooms
• Spreading Bugs
• Diffusion
• three advections automats
• two diffusion based to generate leopard skins

The automat can be selected by the pull down menu. The active one is diplayed.

2.5.1 Life

Life was devised in 1970 by John Horton Conway. The automat knows two states: dead (0, off)
or alive (1, on). The neighbourhood of a cell is defined by the eight surrounding cells.

The rules

• if, for a given cell, the number of neighbours is exactly two, the cell maintains its status quo
into the next generation. If the cell is on, it stays on, if it is off, it stays off.

• if the number of on neighbours is exactly three, the cell will be on in the next generation.
This is regardless of the cell’s current state.

• if the number of on neighbours is smaller or equal 1 or greater or equal 4 the cell will be off
in the next generation.

2.5.2 Universe according to Stephan Wolfram

To understand the principle, we will first look at Stephen Wolfram’s one-dimensional model.
Stephen Wolfram (*1959) is a British physicist. He is the developer of Mathematica and the
search engine Wolfram Alpha. His book ”A New Kind of Science (2002)” describes many appli-
cations of cellular automata.
A simple example is the following automaton: We divide the space into a number of cells (e.g.
150). Each cell can assume the state dead or alive (0 or 1). Now you can start with a live cell in
the centre.
The constellation in the next step results from the following rule

• A cell receives the new state 1 if there were one or two living cells in the block of three
consisting of itself and its two neighbours.

• A cell receives the new state 0 if there were zero or 3 living cells in the block of three
consisting of itself and its two neighbours.

If the last cell is reattached to the first (ring), the border cells also have 2 neighbours. You can
then calculate more generations without getting edge effects.
The rules can be formalised as follows

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 1 1 1 1 1 0
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You can now come up with many rules, each of which is uniquely represented by an eight-digit
binary number if you agree on the order of the triplets. Wolfram used the above sequence
and converted the eight-digit binary number into a decimal number. This allowed him to simply
”name” all possible rules from 0 to 255. There are therefore 256 rule sets in total. The above
rule is then number 126 (binary 01111110).

2.5.3 Disease

This automat simulates the spread of a disease. A cell can either be susceptiple (0), infected
(1), ill (2) or immune (3). The automat is not fully deterministic !!

The rules

• if a cell is susceptible it will be infected with a certain probability depending on the number of
infected neighbours. The cell will be infected if the number of neighbours multiplied with a
random number between 0 and 1 exceeds 0.9.

• infected cells become ill with a probability of 60%
• ill cells stay ill (50% probability), become immune (25% probability) or susceptible (25%

probability)
• immune cell become susceptible with a probability of 5% to represent deaths and births

2.5.4 Per Bak’s sandpile model

Per Bak’s sandpile model is an example of self-organized criticality. It is a cellular automat
whose configuration is determined by the number of sandgrains on a cell.

The rules

• a grain of sand is added at a randomly selected cell
• a cell with more than 3 sand grains becomes unstable and topples by distributing one grain of

sand to each of it’s four neighbours. This may cause unstable cells in the neighbourhood.
An avalanche is born.

• if any avalanche dies out, another grain of sand is added to a randomly selected cell.

There are two models implemented:

• 4 neighbours. A cell with more than 3 sand grains becomes unstable and topples by dis-
tributing one grain of sand to each of it’s eight neighbours.

• the same model but with 8 neighbours. A cell with more than 7 sand grains becomes unsta-
ble and topples by distributing one grain of sand to each of it’s eight neighbours.

2.5.5 Circular Room

The circular room is a nice tool to demonstrate self organization. It is most impressive to start
from a randomized initial state.

The rules

• The N states are circulary arranged: The state N is identified with state 0. Each cell has 4
neighbours.

• The state of a cell is increased by one if at least one neighbour has the state of the cell plus
1.

The Circular Room is implemented for 6 and 20 states.

10



MATHTOOLS Chapter 2 – MATHTOOLS Main Widget

2.5.6 Bug Spread

This is an example of an automat combined with a differential equation model. The are two
state variables, the number of bugs B within the part of the forest (cell) and the mean age A of
the trees in this part of the forest. The differential equations for the bug growth, the aging of the
forest and the bug spread are given by

∂B
∂t

= r · A ·
(

1 –
B
K

)
· B – µ · B2

B2 + M2 + Da
∂2B
∂x2

∂A
∂t

= α · (1 – A) – β ·
(

B
K

)3
· A

The diffusive spread is realized by an automat scheme with an additional wind direction from
west to east.

∆B(i, j) = –4 ε0 · B(i, j) ·∆t

∆B(i – 1, j) = ε0 · (1 – εr) · B(i, j) ·∆t

∆B(i + 1, j) = ε0 · (1 + εr) · B(i, j) ·∆t

∆B(i, j – 1) = ε0 · B(i, j) ·∆t

∆B(i, j + 1) = ε0 · B(i, j) ·∆t

(i, j) denotes the cell in the i-th row and j-th column.

The differential equations are solved with Euler’s scheme. The time step for the calculations is
∆t = 0.01.

Parameters

Par. value unit meaning
r 54.75 1/y growth in old forest
K 5000 bugs/cell capacity of bugs
µ 36500 bugs/cell/y predation by birds
M 500 bugs/cell bug density controlling predation
α 0.15 1/y aging factor of forest
β 1.7 1/y damage of forest
ε0 1.0 1/y maximum part of bugs to diffuse
εr 0.9 - parameter for direction (wind force)

The simulation shows the number of bugs per cell. It takes several hundred generations until
the dynamical state of the system appears. Unfortunately this example is very slow due to the
numerical solver of the differential equations.

2.5.7 Diffusion

Demonstration of diffusion. The simulation should be started with a random filling or a small
filled area (circle or square). The colortable is fixed to white black. Filling can be done by a left
mouse click

2.5.8 Advection

Demonstration of advective transport. The simulation should be started with a small filled area
(circle or square). The colortable is fixed to white black. Filling can be done by a left mouse
click. Three scenarios are implemented:
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2.5. Celluar Automata MATHTOOLS

1. 1D advection (1 cell per time step): simulation of advection without numerical diffusion.
The advection velocity is set to one cell per time step in x direction

2. 1D advection (0.1 cell per time step): simulation of advection demonstrating the effect
of numerical diffusion. The advection velocity is set to 0.1 cell per time step in x direction.

3. 2D advection (0.1 cell per time step): simulation of advection demonstrating the effect
of numerical diffusion. The advection velocity is set to 0.1 cell per time step in north-east
direction.

2.5.9 Leopard

The model describes a mechanism that can describe how the coat pattern of a leopard can
develop through diffusion processes. The model considers two substances with different proper-
ties.

The Activator: Substance that produces the expression of a characteristic (pigment production)
with the following characteristics:

• autocatalytic (self-reinforcing)

• generates inhibitor

• diffuses slowly (localized)

The Inhibitor: Substance that suppresses expression of the characteristic

• suppresses activator production

• diffuses quickly (long-range)

∂a
∂t

=
a2

b
– µa · a + εa + Da

∂2a
∂x2 Activator

∂b
∂t

= a2 – µb · b + εb + Db
∂2b
∂x2 Inhibitor

µa = 1.0 Decay rate of the Activator

µb = 1.0 Decay rate of the Inhibitor

εa = 0.01 Basic production rate of the Activator

εb = 0.01 Basic production rate of the Inhibitor

Da = Db/8.0 Diffusion constant of the Activator (fixed ratio)

Db = 4.0 or 8.0 Diffusion constant of the Inhibitor

There are two models selectable with Db = 4.0 and Db = 8.0.

2.5.10 [Color Table]

The different automata look nicest with their default color table, but the colortable can be changed
for some automata and is displayed in the color bar. The automata with discrete states are best
visualized by the discrete color table. The number of colors displayed in the color bar corre-
sponds to the number of states of the active automat.
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2.5.11 Cells per row

The number of cells per row can be selected. The automat field is then built quadratic. The
higher the number the slower the simulation runs.

2.5.12 View of the world

The world can either be assumed as closed (Torus) in this case the first row is neighbour of the
last one and the first column is neighbour of the last column.
If the case of a plain world boundary cells have less neighbours.

2.5.13 [Show]

If [Show] is switched on, every generation is shown, if switched off the picture is not actualized
until [Show] is switched on again. This is useful if only higher generation numbers are of
interest because the simulation becomes quite faster without displaying.

2.5.14 [Run]

[Run] starts the simulation. The generation is displayed in the info window. The simulation can
be stopped by [Interrupt] .

2.5.15 [Step]

[Step] calculates the next generation

2.5.16 [Interrupt]

[Interrupt] stops the simulation.

2.5.17 [Clear]

[Clear] sets all cells to zero.

2.5.18 Setting the initial states

The initial state of the automat can either be set by mouse within the automat field. Depending
on the number of states the following settings are possible

• left mouse click sets cell to 1
• <Shift>+ left mouse click sets the cell to 2
• <Strg>+ left mouse click resp. <ctrl>+ left mouse click sets the cell to 3
• middle or right mouse click resets the cell to 0

It is possible to save a configuration by [Save] in a file. These files get automatically the
extension lif and are stored normally in <Path to Mathtools>/mftfiles.
The configuration can be loaded by [Load]

[Randomfill]

[Randomfill] fills the field at random depending on the number of possible states.

[Fill]

All cells are filled with the selected fill value.
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2.5.19 PS Print

A Postscript output is generated and stored in
<Path to Mathtools>/mftfiles/plots. The PS-files are named automatically.
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2.6 Plotter

This tool allows the visualization of functions. In the [1D] mode up to three one dimensional
functions of the form
f(x) = ...
can be plotted. The function is only plotted if the checkbutton on the left of the defintion is
switched on.

In the [2D] mode a parametrized two dimensional function of the form
x(t) = · · ·
y(t) = · · ·
can pe plotted.

The following math functions can be used within the formulas:

acos asin atan cos cosh exp log log10
pow sin sinh sqrt tan tanh abs
The formulas can be defined with up to 5 parameters (a, b, c, d, e).

2.6.1 [Plot]

The defined function is plotted according to the settings of the independent variable x [1D] or t
[2D] . The axes can either be set by the sliders or set by [Scale] or [AutoScale]

2.6.2 [Scale]

The dimension of the t, x and y values can be set. This values will modify the sliders and are
treated as boundary values for the sliders. [Scale] refreshes the plot.

2.6.3 [Autoscale]

The maximum values of y [1D] resp. x and y [2D] are evalutaed and the plot is adapted to that
values according to the settings of the independent variable.

2.6.4 [Clear]

[Clear] clears the output window.

2.6.5 Coordinates

If [Show coor.] is switched on, the coordinates at the mouse pointer are shown.
A left mouse click in the output windows shows a horizontal line within the output window at
the actual y-coordinate and its value, a right mouse clickshows a vertical line within the output
window at the actual x-coordinate and its value.

2.6.6 [Load] , [Save] & [Edit]

Equations, parameter values and coordinates can be saved in a file. These files get automati-
cally the extension tgp [1D] or tgt [2D] and are stored normally in <Path to Mathtools>/fracfiles.
Before loading a file the mode ( [1D] or [2D] ) must be selected. After loading the file the equa-
tions, parameter values and the stored coordinate values are set.
The files can also be edited to set f.e. coordinate values not provided by default. The editor
must be set in [Custom] (2.1.
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2.6.7 PS Print

A Postscript output is generated and stored in
<Path to Mathtools>/mftfiles/plots. The PS-files are named automatically.
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2.7 Bifurcation Tool

The parabola equation

xn+1 = r · xn · (1 – xn)

converges, shows cycles or chaos depending on the parameter r.

2.7.1 [Calculate]

Shows the location of the limit points depending on the parameter r. Clicking with the left mouse
button into the picture shows the parabola of the selected value of r:

f(x) = r · x · (1 – x)

A left mouse click starts the iteration within the parabola (initial value). With middle mouse clicks
the iteration can be continued step by step until the selected number of iterations is reached.
A right mouse click shows all iteration steps at once depending on the selected number of
iterations.
If [cut first values] is switched on the initialization is cut off: only the limit point resp. cycle
resp. chaos is shown.

If [time plot] is switched on the development of the iteration is shown in a separate window.

Remark: If the parametrization leads to a limit point switching [cut first values] on is not
senseful because the limit point cannot be seen.

2.7.2 PS Print

A Postscript output is generated and stored in
<Path to Mathtools>/mftfiles/plots. The PS-files are named automatically.

2.7.3 Misc

The tool allows also the visualization of

xn+1 = xn + r · xn · (1 – xn)

which is the discretization of the logistic differential equation

ẋ = x · (1 – x)

17



2.8. IFS - Iterative function systems MATHTOOLS

2.8 IFS - Iterative function systems

Iterative function systems are generators for self similar images. Further information on IFS can
be found in Barnsley (2000). This tool allows to define up to 4 affine maps per image. Predefined
sets of maps are available for

• Fern leaf
• Highway dragon
• Maple leaf
• Simple tree
• Phytagoras tree
• Sierpinski’s triangle
• Chess board 1

2.8.1 [Calculate]

[Copy machine] switched off

Starting from an initial point the chaos game is started. The number of points to be drawn can
be selected. Due to the accuracy in the random function the algorithm runs into a cycle. Such
only a few number of points can be distinguished.

[Copy machine] switched on

A quadrangle is mapped by the given affine maps. Pressing calculate gain maps the new
created quadrangles again and so on. Because of the increasing number of quadrangles this
process become slower and slower. Such only 8 iterations are possible by the machine. [Reset]
resets this process. If [Color] is selected each step is plotted in a different color. If [Clear
between] is selected only the quadrangles of the last step are printed.

2.8.2 [Reset]

Resets the iteration of the copy machine (see 2.8.1)

2.8.3 [Clear screen]

All printed stuff is deleted. The maps still exist.

2.8.4 PS Print

A Postscript output is generated and stored in
<Path to Mathtools>/mftfiles/plots. The PS-files are named automatically.

2.8.5 [Set IFS]

A reference rectangle occurs in the picture window. By left mouse click up to four affine maps
can be defined. The first click defines the image point of the upper left corner, the second of the
lower left corner and the third the image point of the lower right corner. The resulting quadrangle
is plotted. This process can be repeated three times.
The last map is additionally stored as fourth map. It is only evaluated if

• four different maps are defined, or

• [Condensation] is switched on
1The Chessboard is defined by 5 affine maps. The last one is treated as condensation!
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2.8.6 [Set Parameters]

The parameters of the actual IFS are shown and can be modified by

• selecting another predefined IFS, or

• loading an IFS which has been saved further, or

• defining a new IFS by [Set IFS]

Every row represent a map. The parameters are defined as follows:

fi

(
x
y

)
=
(

ai bi
ci di

)(
x
y

)
+
(

ei
fi

)
, i = 1, .., 4

The values wi in the last column give the probabilities for selecting this map by the chaos
game. If the sum of the first probabilities exceed 1, the following maps are not evaluated.
If [Condensation is active] , the last map is evaluated as condensation independent of the
probabilities. The probability of the predefined maps are defined by the determinant of the
matrix. If an IFS is defined by [Set IFS] the probabilities are equally distributed. The values
can be saved in a file. The files holding IFS-data get the extension .ifs and are stored in
<Path to Mathtools>/mftfiles by default.
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