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Folding the Regular Heptagon

Robert Geretschl�ager, Bundesrealgymnasium, Graz, Austria

Introduction

Ever since Greek antiquity, mathematicians have been considering construc-

tions that can be done with straight-edge and compass only, the so-called

Euclidean constructions. A number of famous problems, such as squaring

the circle, trisecting angles and doubling the cube, were unsolvable for the

Greeks, and later shown to be theoretically unsolvable by Euclidean meth-

ods. The reason for this is that only such problems that can be reduced al-

gebraically to combinations of linear and quadratic equations are solvable in

this sense. We now know that these three problems, as well as many others,

cannot be represented by combinations of such equations.

One speci�c problem the Greeks attempted to solve in this way was the

construction of regular n{gons for small n. They were successful in �nding

constructions for n = 3, 4, 5, 6, 8, 10 and 12, but not for n = 7, 9 or 11.

Since 7 is the smallest n for which no construction could be found, it was of

special interest why this particular problem should prove so stubborn. As

it turned out, the construction of the regular heptagon by Euclidean meth-

ods is impossible for the same reason that angle trisection and doubling the

cube are, in that each of these problems requires the graphic solution of an

irreducible cubic equation in its algebraic representation.

As shown in \Euclidean Constructions and the Geometry of Origami"

([1]), all cubic equations can be solved graphically using elementary meth-

ods of origami1. This is especially interesting in light of the fact that regular

n{gons are commonly used in the development of origami folding bases. A

heptagon could conceivably �nd use in developing models of insects for in-

stance, since six legs + one head = seven corners. In this article, I present a

theoretically precise method of folding the regular heptagon from a square,

derived from the results established in the above-mentioned article. The

folding method is presented in standard origami notation, and the mathe-

matical section is cross-referenced to the appropriate diagrams.

The Cubic Equation

The seven corners of a regular heptagon can be thought of as the seven solu-

tions of the equation

z7 � 1 = 0 (1)

1 Origami is, of course, the art of paper folding. For readers not yet familiar with this ancient
art, but interested in becoming so, there is a large amount of introductory literature easily
available. I was personally introduced to origami by the books of Robert Harbin ([2]). A �ne
introduction to the geometry of origami is the classic \Geometric Exercises in Paper Folding" by
T. Sundara Row ([3]).



82

in the complex plane. This implies that the unit circle is the circumcircle of

the heptagon, and that one corner of the heptagon is the point z1 = 1 on the

real axis (Fig. 1.1.). Since one solution of (1) is known, the other six are the

roots of

z7 � 1

z � 1
= z6 + z5 + z4 + z3 + z2 + z1 + 1 = 0: (2)

For any speci�c z satisfying this equation, the conjugate z is also a solution,

since the real axis is an axis of symmetry of the regular heptagon. Also, since

jzj = jzj = 1;

we have z = 1

z
. Therefore we can de�ne

� = z +
1

z
= z + z = 2 � Re z: (3)
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Fig. 1.1.
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Dividing by z3, we see that equation (2) is equivalent to

z3 + z2 + z + 1+
1

z
+

1

z2
+

1

z3
= 0

since 0 is not a root, and since
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�
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3

z
+

1

z3

= z3 +
1

z3
+ 3

�
z +

1

z

�
= z3 +

1

z3
+ 3�

() �3 � 3� = z3 +
1

z3



83

and

�2 =

�
z +

1

z

�2
= z2 + 2+

1

z2

() �2 � 2 = z2 +
1

z2
;

substituting yields�
z3 +

1

z3

�
+

�
z2 +

1

z2

�
+

�
z +

1

z

�
+ 1 = 0

() �3 � 3� + �2 � 2 + � + 1 = 0

() �3 + �2 � 2� � 1 = 0:

From (3) ,we see that each root of the equation

�3 + �2 � 2� � 1 = 0 (4)

is real, and is equal to twice the common real component of two conjugate

complex solutions of (1). It is therefore possible to �nd the six complex roots

of (1) in the complex plane by �nding the roots of (4), taking half their val-

ues, �nding the straight lines parallel to the imaginary axis and at precisely

these distances from it, and �nally �nding the points of intersection of these

parallel lines with the unit circle. We shall now proceed to utilize these steps

in folding the regular heptagon.

A Step-by-step Description of the Folding Process

As is usually the case in origami, we assume a square of paper to be given. We

consider the edge-to-edge folds in step 1 as the x{ and y{axes of a system of

cartesian coordinates, and the edge-length of the given square as four units.

The mid-point of the square is then the origin M(0;0), and the end-points

of the folds have the coordinates (�2; 0) and (2;0), and (0;�2) and (0;2)

respectively. For readers not familiar with origami notation, it should be

mentioned that dashed lines represent so-called \valley" folds (folding up),

and dot-dashed lines represent so-called \mountain" folds (folding down).

Thin lines represent visible creases in the paper generated by previous folds.

As shown in [1], the solutions of the cubic equation

x3 + px2 + qx+ r = 0

are the slopes of the common tangents of the parabolas p1 and p2 de�ned by

the foci
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respectively.

The solutions of (4) can therefore be obtained by �nding the common

tangents of the parabolas with foci

F1(�1;�1) and F2

�
0;

1

2

�

and directrices

l1 : x = 0 and l2 : y = �
1

2

respectively. Since the slope of the common tangents is not altered by trans-

lating the parabolas parallel to the y{axis we can, for convenience, use

F1

�
�1;�

1

2

�
and F2(0; 1)

and

l1 : x = 0 and l2 : y = 0:

This is precisely what is done in steps 2 to 5. F1 is the point A, and F2 is the

point B. The fold in step 4 is then the only common tangent of the parabolas

with positive slope, and thus twice the real component of the solutions of (1)

which lie to the right of the imaginary axis and are not equal to 1. In other

words, the slope of this fold is 2 � cos 2�

7
. Step 4, by the way, is the only step

that cannot be replaced by a straight-edge and compass construction.

In steps 6 to 8, the unit-length is then transferred in such a way that

point E in step 8 has y{coordinate �2 � cos 2�

7
. Since the distance from M

to point 1 in step 9 is 2 units, the distances from M to points 2 and 7 are

also 2 units, and so points 7, 1 and 2 are three consecutive corners of the

regular heptagon. (We assume that point 1 with coordinates (0;�2) is the

�rst corner, and continue from there.)

Step 10 thus yields two sides of the heptagon, and steps 11 to 13 yield

the remaining sides of the heptagon by making use of its radial symmetry,

until �nally step 14 shows us the completed regular heptagon. The folding

process is shown at the end of the article.

Conclusion

Unlike other regular n{gons with small n, the regular heptagon is not very

common in popular culture or graphics. Apart from the seven-sided star one

comes across in astrology, the heptagon does not seem to show up much in

public, unlike its close relatives. We come across the octagon at many a street

corner, and the pentagon and hexagon can be seen on most soccer balls, just

to name a few. I do not know if this (relatively) easy generation of the regular

heptagon will lead to its mass popularization, but an ardent Heptagonist can

certainly dream.

It should be mentioned that a similar folding method for the regular

heptagon is described in the article \Draw of a Regular Heptagon by the
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Folding" by Benedetto Scimemi ([4]) in the relatively hard to �nd Proceed-

ings of the First International Meeting of Origami Science and Technology.

(I have only recently gained access to a copy myself.) This volume o�ers a

great many ideas for further research for anyone interested in the geometry

of origami, and is certainly worth searching for.
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The Folding Process

1.

Fold and unfold twice.

2.

Fold back twice.
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3.

q
A

Fold and unfold, making a

crease mark at point A

(bisecting the side).

4.

q

q

A

B

Fold such that A and B

come to lie on the creases.

5.

q

q

A

B

Unfold everything.

6.

q qC

D

Fold C to D.
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7.

Fold and unfold both layers at

crease, then unfold everything.

8.

q

E

Fold horizontally through E,

then unfold.

9.

q

q q

q

7 2

1

M

Fold throughM , such that 1

lies on crease, resulting in 2

and 7 (M is the mid-point of the

heptagon, 1, 2 and 7 are corners).

10.

q

q qq q

q q

Fold back twice, so that the

marked points come to lie on

one another; resulting folds are

�rst two sides of the heptagon.
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11.

q

q

2

M

Fold throughM and 2.

12.

Fold back lower layers using edges

of upper layer as guidelines;

resulting folds are two

more sides of the heptagon;

open up fold from step 12 and

repeat 11 and 12 on left side.

13.

q

q5 q 4

Fold back �nal edge of the

heptagon through 4 and 5.

14.

The �nished heptagon.


