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Angle Trisection, the Heptagon, and the Triskaidecagon 
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To David Vernon Widder on his 90th birthday 

In 1796, Gauss discovered how to construct a regular 17-gon using only ruler and 
compass. Gauss also showed that regular polygons with 257 or 65537 sides can be 
constructed. He published these results in his famous Disquisitiones Arithmeticae [3, 
section VIII] in 1801. There he gave an analysis of the fields O( n where ~ is a 
complex pth root of unity, P an odd prime, and from this analysis he deduced that 
a regular n-gon can be constructed if n has the form 2mPIP2 ... Pk, where 
PI' P2"'" Pk are distinct Fermat primes, that is, odd primes that are one greater 
than a power of two. He did not give explicit geometric constructions. Gauss also 
stated [3, p. 459] very emphatically that no other regular polygons are constructible, 
but he never published a proof of this fact. A proof was eventually published by 
Wantzel [10] in 1837. Since no Fermat primes larger than 65537 have been 
discovered, the list of constructible regular polygons remains as Gauss left it. 2 

If we enlarge our kit of construction tools, other regular polygons may become 
constructible.3 For example, given an Archimedean spiral, we can divide any angle 
into any number of equal parts, and hence draw any regular polygon. Suppose we 
allow ourselves to trisect angles in addition to the standard ruler and compass 
constructions, what do we gain? Obviously, we can construct regular polygons with 
9,27,81, ... sides, but it is certainly not obvious that we can also make a regular 
polygon with seven sides. In what follows We shall explore the relation between 
angle trisections and solving cubic equations and then determine which regular 
polygons can be constructed with the aid of an angle-trisector. We begin by showing 
how to draw a regular heptagon. 

1. The author thanks Ethan BoIker and Persi Diaconis who made valuable suggestions and Lloyd 
Schoenbach who made the figures. 

2. Since 2" + 1, with r odd and greater than 1, has the nontrivial factor 2' + 1, it is clear that 2q + 1 
can be prime only if q itself is a power of 2. Thus all Fermat primes have the form 22k + 1. The known 
Fermat primes 3,5,17,257,65537 correspond to k = 0,1,2,3,4. Euler observed that 22' + 1 = 641 x 
6700417, thus disprovin§ Fermat's conjecture that all values of k would yield primes. More recently, it 
has been shown that 22 + 1 is composite for 6 .;; k .;; 19 and many larger values. In many cases the 
complete factorization has not been found. See [2]. 

3. Both [1] and [6] contain much information about constructions using extraordinary tools. For an 
explanation of the standard "ruler and compass" constructions see [5]. 
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FIG. 1. Construction of a regular heptagon. 

Start with a circle fC of radius 6 centered at the origin of a Cartesian coordinate 
system. Mark A(6,0), Q( -3,0), and R(3,0). Locate K(O, m) and L(O, - m), 
the vertices of the equilateral triangles with base QR. With center P( -1, 0) draw the 
arc from K to L and trisect it at S and T. The points B and G at which the line ST 
meets circle fC are vertices of a regular heptagon ABCDEFG. The remaining 
vertices can be found by laying off the arc AB successively around the circle. 

Alternatively, we may draw the major arc from K to L and trisect it at S2 and 
T2; then S2T2 meets fC at D and E. Finally, if we think of arc KL as going all the 
way around P, back to K, and then on to L, and trisect this arc at S3 and T3 , we 
find C and F. 

Proof of the construction. Let U be the point where ST meets the x-axis. It is 
evident from the construction that PK = {is, cos LAPK = l/{iS, PU 
= {is cos LAPS = {iScos(l/3)LAPK. The construction is correct if OU= 
6 cos 2",/7; or equivalently, if PU = 1 + 6 cos 2",/7. Thus we need only establish 
the identity {is cos«1/3)arccos(1/ {is)) = 1 + 6cos(2",/7). To do so, let ~ = 
cos 2",/7 + i sin 2",/7 be the principal seventh root of 1. Put 1/ = ~ + ~ -1 = 
2 cos 2",/7. Then 1/3 + 1/2 - 21/ - 1 = e + e + ~ + 1 + ~-1 + ~-2 + ~-3 = O. 
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Thus ." is a root of the equation 

Xl + X 2 - 2X - 1 = O. (1) 

Setting X = (Y - 1)/3, we find that 1 + 6 cos 2.,,/7 (= 1 + 3.,,) is a root of 

yl - 21Y - 7 = O. (2) 

The substitution Y = {is cos (J reduces this to 

whence 

1 
cos 3(J = {is . 

This leads to six determinations of (J moduio 2.", which pair off to give three roots 
of (2). We leave it to the reader to check that 1 + 3." corresponds to the choice 
(J = 1/3 arc cos 1/ {is. The other roots of (2) are, of course, 1 + 6 cos 4.,,/7 and 
1 + 6 cos 6.,,/7; these correspond to different determinations of (J and lead to the 
alternative constructions of the points C, D, E, and F mentioned above. 

Plemelj [6] gave a different construction of the regular heptagl)n A BCDEFG, 
given A and the center 0: 

.-
FIG. 2. Plemelj's construction. 

Draw the circle with center 0 passing through A and on it find M so that 
AM = OA. Bisect and trisect OM at Nand P, respectively, and find Ton NP so 
that LNAT = }LNAP. Then AT equals the side of the required heptagon, which 
can easily be completed by laying off this segment around the circle. 
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Plemelj goes on to note that because the angle to be trisected is so small, the 
simplest approximate trisection will introduce an error too small to be noticeable in 
any practical case. If we take T to be one-third of the way from N to P, then AT 
will be too long by less than one part in 20000. Even if we take T at N, AT will be 
too short by only about one part in 400. Since AN is half of AQ, the side of an 
inscribed equilateral triangle, we have the rule: The side of the inscribed regular 
heptagon is (approximately) half of the side of the inscribed equilateral triangle. 
According to Tropfke [8], this approximation was used by the tenth-century 
Arabian mathematician Abul Wafa Mohamed, and was also known to Heron of 
Alexandria, and perhaps even to earlier mathematicians. 

To validate Plemelj's construction, we must prove that AT = OA(2 sin 'IT/7). 
Since 2 cos 2 'IT /7 = 2 - (2 sin 'IT /7)2, it follows from (1) that 2 sin 'IT /7 is a root of 
the equation 

The other roots are - 2 sin"; /7, ± 2 sin 2 'IT /7, and ± 2 sin 3 'IT /7. 
This equation factors: 

The zeros of the first factor are 2 sin 'IT /7, - 2 sin 2 'IT /7, and - 2 sin 3 'IT /7. If we 
write the corresponding equation in the form 

{Xl)31 1 
- X = ff' (3) 

and make the standard substitution IjX = 211/3 cos 1/;, then (3) becomes cos 31/; = 

127/28. The desired root corresponds to the choice 

I/; = a = tarc cos 127/28 = tarc tan Ij3y3, 

and we have finally 

'IT 1 
2 sin-cos a = -y3. 

7 2 

From FIGURE 2 we see that LNAP = arc tan 1/3y3, so LNAT = a. Hence we have 
ATcos a = AN = (lj2)y3 OA. Comparing these equations, we see that AT = 

OA(2 sin 'IT /7), as required. 

Note that LOKP in FIGURE 1 is the same as LNAP in FIGURE 2. Thus LNAP 
(FIGURE 2) is the complement of LOPK (FIGURE 1), so LOPS = 'IT/6 - a. Thus the 
trisections required in the two constructions are equivalent in the sense that either 
trisector can readily be constructed from the other by ruler and compass. 
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It is interesting to pursue the other two roots of (3). They are given, of course, by 
changing the determination of t{I from a to a + 271'/3 and to a - 271'/3. We have 

( 271') ( 271') ( 371') ( 271') 1 - 2sinT cos a + 3"" = - 2sinT cos a - 3"" = '213 . 

Absorbing the unwanted minus signs into the cosines, we find 

FIG. 3. Plemelj's construction extended. 0, A, M, Q, R, S are points of an equilateral triangular lattice. 
Line AV is chosen so that LQAV - 1/3LQAR. Then AT, AU, and AV equal, respectively, the side, 
short diagonal, and long diagonal of the regular heptagon inscribed in a circle of radius OA. 

In FIGURE 3 we have AUsin(71'/6 + a) = AK = (1/2)13 OA and AVsin(71'/6 - a) 
= AL = (1/2)13 OA. Hence AU = OA(2sin271'/7) and AV = OA(2 sin 371'/7). This 
shows that A U and A V are equal, respectively, to the short and long diagonals of 
the heptagon. 

Now let us consider the theory underlying these constructions. We begin by 
reviewing the solution of the cubic equation with real coefficients. The term in X2 
can always be removed by tni'nslating the roots and, to avoid fractions later on, we 
write the equation in the form 

X 3 - 3pX + 2q = O. (4) 
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Since this equation has odd degree, it must have at least one real root. The nature of 
the other roots can be found by considering the quantity 4 

D = q2 _ p3. 

If D > 0, there are two conjugate complex roots and one real root; if D < 0, there 
are three distinct real roots; and if D = 0, there is one double root, q/p, and a 
simple root, - 2q/p (unless p = q = 0, in which case 0 is obviously a triple root). 
These facts are easily deduced by examining the critical points of the polynomial 
function in (4). Note that D cannot be negative unless p is positive. 

For positive D, Cardano's formula gives the unique real root 
3 3,-------,=_ 
V-q+1i5 +V-q-li5. 

This root could be constructed from p and q by ruler and compass and the 
extraction of one cube root. (The second cube root can be constructed from the first 
by ruler and compass, since the product of the two cube roots is p.) 

When D < 0, we have what is known as the casus irreducibilis and a seeming 
paradox: although all the roots are real, they cannot be found by radicals without 
leaving the real domain. 5 Cardano's formula remains valid, but it involves the cube 
roots of complex numbers. 

To find the cube root of a complex numberc, we must in general find the cube 
root of the real number Icl and trisect the polar angle of c. In this special situation, 
however, only the trisection requires special tools since the absolute value of either 
cubic radicand is p3/2, for which the cube root can easily be constructed. 

When we know that all the roots are real, we can jump directly to the trisection 
problem by setting X = 2IP cos () in (4), which converts this equation into cos 3() = 
- qp-3/2. Note that the hypothesis D < 0 guarantees that Iqp-3/21 < 1, so there is a 
constructible angle to trisect. As before, the six determinations of () modulo 2'1T lead 
to the three desired roots. After one value of () has been obtained, the others can 
easily be found by adding and subtracting 2'1T/3; hence one angle-trisection will 
suffice to find all three roots. 

Conversely; any cubic equation that can be solved by an angle trisection must 
have all its roots real, since the method will produce three roots if it produces any. 
Thus we have the fundamental result: 

THEOREM 1. A real cubic equation can be solved geometrically using ruler, com­
pass, and angle-trisector if and only if its roots are all real. 

In particular, an angle trisector will not help us to duplicate the cube, because the 
equation to be solved, X 3 = 2, has only one real root. 

4. This discussion is usually given in terms of the discriminant of the equation (i.e., the square of the 
product of all the differences of the roots). The discriminant of (4) is not D, but -108D; consequently 
positive D corresponds to negative discriminant and vice versa. 

S. See [9, p. 1801 for a proof of this fact. See [41 for an extended discussion of the solution of 
equations by real radicals. 
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We are now in position to describe precisely what can be constructed with ruler, 
compass, and angle-trisector. 

Associated with any geometric figure (i.e., a finite collection of points, lines, and 
circles) in a Cartesian coordinate plane6 is a certain subfield of the real numbers, 
namely, the field generated by the coordinates of all the points and the coefficients 
of the equations of all the lines and circles when written in the standard forms 
y = mx + b (or x = a) and x 2 + y2 = ax + by + c. Suppose the data of a con­
struction problem7 are associated with the field Fo and the figure to be constructed 
is associated with the field G. The construction can be carried out with ruler and 
compass alone if and only if there is a tower of fields Fo ~ Fl ~ F2 ~ ... ~ Fk 
such that G ~ Fk and each F'; (i = 1, ... , k) is obtained from F';-l by adjoining the 
square root of some positive element of F';.l' (See [9, p. 183ff.] for the proof of this 
standard result.) The intermediate fields F'; correspond to the original figure 
augmented by the successive points, lines, and circles used in the construction. 
When we allow the use of the trisector, the result is the same except that we now 
also allow ourselves to build F'; from F';-l by adjoining a root of a cubic polynomial 
having coefficients in F';-l and all real roots. The proof of this new theorem is 
virtually identical to the proof of the standard theorem, once Theorem 1 has been 
established. 

It is convenient to describe the above situation by saying that the field Fk can be 
constructed from Fo. 

For regular polygons we have the following theorem: 

THEOREM 2. A regular polygon of n sides can be constructed by ruler, compass, and 
angle-trisector if and only if the prime factorization of n is 2r3sPlP2 ... P k' where 
Pl' h,···, Pk are distinct primes (> 3) each of the formS 213U + 1. (We include the 
possibility k = 0; i.e., n = 2r3s.) 

The proof uses the following lemma. 

LEMMA. Suppose K is a real field and L is a normal extension of K of degree 3. 
Then L can be constructed from K by ruler, compass, and angle-trisector. 

Proof We know that L = K[P], where P is a zero of some irreducible cubic 
polynomial p(X) with coefficients in K. Since L is a normal extension of K, all of 

6. We assume that the points (0,0) and (1,0) are points of the figure. 
7. If a coordinate system is not given in the plane of the data, first construct one, choosing two given 

points as (0,0) and (1,0). The data must include two points, or at least two points of intersection must be 
immediately at hand, else no constructions can be carried out. (We do not accept the instruction "choose 
a point at random" because that complicates the analysis of constructions considerably. See [5).) 

8. Altogether there are 41 primes of this form less than one million; namely, 2, 3, 5, 7, 13, 17, 19, 37, 
73,97, 109, 163, 193,257,433,487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 
17497,18433,39367,52489,65537,139969,147457,209953,331777,472393,629857, 746497, 839809, and 
995329. It is reasonable to conjecture that there are infinitely many; probably about 9t of them less than 
10. 
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the zeros of p( X) lie in L, and anyone of them generates L. But one of the zeros, 
say y, is real and L = K [ y]. Thus, L is a real field, and the zeros of p ( X) are all 
real. Hence the lemma follows from Theorem l. 

Proof of The01:em 2. Since the proof is very similar to the well known proof for 
ruler and compass alone, we give only the most important steps. 

Suppose n is an integer, at least 3. Let g = e 2wi / n = cos 217/n + isin217/n, and 
7J = g + g-1 = 2 cos 217 In. The Galois group over 0 of the cyclotomic field O( 0 is 
abelian with 'P( n) elements, where 'P is Euler's phi function. Consequently, every 
field between 0 and O( g) is normal over 0 with abelian Galois group. In 
particular, the real field O( 7J) is normal over O. Since g has degree 2 over O( 7J), the 
degree of 0(7J) over 0 is (1/2)'P(n). 

Now suppose n has the form stated in Theorem 2. Then 'P(n) = 2v3w for some 
integers v and w, so the Galois group of O( 7J) has 2v - 13w elements. This group will, 
therefore, have a composition series of length v + w - 1 with all quotients isomor­
phic either to 7L. 2 or 7L. 3' Co~respondingly, there is a tower 

Fo = 0 ~ Fl ~ ... ~ Fv + w - 1 = 0 ( 7J ) 

of real fields, each normal over its predecessor of degree 2 or 3. Applying the 
lemma, we see that the field O( 7J) can be constructed using ruler, compass, and 
angle-trisector. This means we can construct a segment of length cos 217 In, and 
from this we can easily construct a regular n-gon. Looking back, we see that we will 
have to use the angle-trisector exactly w times. 

Conversely, suppose a regular n-gon can be constructed with ruler, compass and 
trisector. Then 7J can be constructed, so it must lie in some field of degree 2u3b over 
O. Hence 7J itself has degree 2c3d, and 'P(n) = 2c+13d• But this implies that n has 
the form given in the theorem. 

As an application of our theory, consider the next new prime, 13 = 22 . 3 + l. 
Theorem 2 tells us that the regular triskaidecagon can be constructed using one 
angle trisection. There are many ways to proceed; none seem geometrically per­
spicuous. 

The numbers 2 cos 217k/13, k = 1, ... ,6 are the zeros of the polynomial 

X 6 + X 5 - 5X4 - 4X3 + 6X2 + 3X - 1, 

which factors over the field O( m) to 

(X3 - X-I + A(X2 - 1))(X3 - X-I + X(X2 - 1)), 

where A = (1 - m )/2 and X = (1 + m )/2. The first factor has the zero 
2 cos 2w/13. Then 2A + 12 cos 217/13 is a iero of a cubic polynomial having no 
quadratic term which we can find as above. After considerable computation we 
obtain 

217 1 13(m+1) 
12cos- = m - 1 + /104 - 8m cos-arctan m 

13 3 7- 13 ' 
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which leads to the following construction, quite similar to the first one for the 
heptagon: 

FIG. 4. Construction of a regular triskaidecagon. 

Let ~ be the circle of radius 12 with center at the ongm. Mark A(12,O), 
P(IIT - 1,0), Q(5 - v'IT,0), and R(7 + v'IT,0). Locate K(6, If (v'IT + 1» and 
L(6, - If (lIT + 1», the vertices of the equilateral triangles having base QR. With 
center P draw the arc KL and trisect it at Sand T. The line ST meets ~ at Al and 
A l2 , vertices of the regular triskaidecagon AAIA2 .. , A l2 . 

Note that a segment of length v'IT is.easily found as the hypotenuse of a right 
triangle with sides 2 and 3. 

The figure suggests two approximate constructions. The point R appears to be 
very near the line ST. Indeed, the line through R perpendicular to the x-axis meets 
~ at a point about twelve minutes of arc from AI' Even closer, the line PK meets ~ 
at a point within three minutes of A 2 . 

The next new prime, 19, requires two trisections. The details are left to the 
reader! 
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Possible generalizations of Theorem 2 immediately suggest themselves. To con­
struct a regular ll-gon, we must solve the fifth-degree equation having the root 
2 cos 2 'IT /11. Can this be done by quinsecting some angle? Gauss answered all such 
questions. Here is his final statement on the subject [3, p. 450]9: 

As a result the division of the whole circle into n [a prime] parts requires, first, 
the division of the whole circle into n - 1 parts; second, the division into 
n - 1 parts of another arc which can be constructed as soon as the first 
division is accomplished; third, the extraction of one square root, and it can 
be shown that this is always Iii. 

It follows easily from this that a regular n-gon (n need no longer be prime) can be 
constructed if, in addition to ruler and compass, equipment is available to p-sect 
any angle for every prime p that divides cp( n). Thus, ruler, compass, and angle 
quinsector will suffice to construct a regular ll-gon, 4l-gon, or 101-gon. 
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