Pairings

Florian Hess (Oldenburg)

Tel Aviv, February 7, 2013

Pairings in General

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves Ordinary Curves

Foundations

Elliptic Curves
Rational Functions Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Pairings in General

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues
Reduced Tate pairing
Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves
Ordinary Curves

Pairings

Let G_{1}, G_{2}, G_{T} be abelian groups.

A pairing is a non-degenerate bilinear map

$$
e: G_{1} \times G_{2} \rightarrow G_{T} .
$$

Bilinearity:

- $e\left(g_{1}+g_{2}, h\right)=e\left(g_{1}, h\right) e\left(g_{2}, h\right)$,
- $e\left(g, h_{1}+h_{2}\right)=e\left(g, h_{1}\right) e\left(g, h_{2}\right)$.

Non-degenerate:

- For all $g \in G_{1} \backslash\{0\}$ exists $h \in G_{2}$ with $e(g, h) \neq 1$.
- For all $h \in G_{2} \backslash\{0\}$ exists $g \in G_{1}$ with $e(g, h) \neq 1$.

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Examples

Pairings
F. Hess

Some Algorithmic Requirements

Efficient representations and algorithms for

- Groups laws, equality test, sampling in G_{1}, G_{2}, G_{T}.
- Computation of $e(g, h)$ given $g \in G_{1}, h \in G_{2}$.

Useful in most cases:

- $G_{1} \cong G_{2} \cong G_{T}$
- Unique bit representation of group elements.

Hardness

What are pairings?

What are pairings?

What are pairings?

Overview over Curve Based Pairings

Curve based pairings:

- Defined in terms of algebraic curves, their Picard groups and Jacobian varieties.
- Always bilinear, groups are cyclic, elements have unique bit representations, various special properties.

Further mathematical background (not important here):

- Arithmetic duality, in particular class field theory.
- Application in descent techniques.

In the following: Focus on the special case of pairings on elliptic curves.

Elliptic Curves
Rational Functions

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational

F. Hess

Pairings in General
Foundations
Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Foundations

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves
Ordinary Curves

Finite Fields

Let \mathbb{F}_{q} denote a finite field with $q=p^{r}$ elements.

- $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$.
- $\mathbb{F}_{q}=\mathbb{F}_{p}[x] / f \mathbb{F}_{p}[x]$ with f irreducible of degree r.
- $\mathbb{F}_{q} \neq \mathbb{Z} / p^{r} \mathbb{Z}$ for $r>1$.

Properties:

- $\mathbb{F}_{q_{1}} \subseteq \mathbb{F}_{q_{2}}$ iff q_{2} is a power of q_{1}.
- The algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q} can be seen as the union of all finite fields containing \mathbb{F}_{q}.
- Every $f \in \overline{\mathbb{F}}_{q}[x]$ decomposes into linear factors.
- The map $\sigma: \overline{\mathbb{F}}_{q} \rightarrow \overline{\mathbb{F}}_{q}, x \mapsto x^{q}$ is additive, multiplicative and bijective.
- If $x \in \overline{\mathbb{F}}_{q}$, then $x \in \mathbb{F}_{q}$ iff $\sigma(x)=x$.

Elliptic Curves
Rational Functions

Elliptic Curves

Pairings
F. Hess

Elliptic curve E over \mathbb{F}_{q} :

- Given by an equation $y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{F}_{q}$ suitable and $p>3$. For $p=2,3$ more lower order terms.
- Have K-rational point sets

$$
E(K)=\left\{(x, y) \in K \times K \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}
$$

for any finite extension field $K \supseteq \mathbb{F}_{q}$.

- Are abelian groups via point addition given by explicit small degree formulae, with neutral element \mathcal{O}.
- Hasse-Weil: $\# E\left(\mathbb{F}_{q^{r}}\right)=q^{r}+1-t$ with $|t| \leq 2 \sqrt{q^{r}}$.

Pairing values are obtained by evaluating "exponentially sized" rational functions on E at points of E.

Rational Functions

There exists a field $K(E)$ of K-rational functions on E :

- $f \in K(E)$ can be represented as

$$
f=\frac{f_{\text {num }}(x, y)}{f_{\text {den }}(x, y)},
$$

where $f_{\text {num }}, f_{\text {den }}$ denote bivariate polynomials with coefficients in K.

- $f \in K(E)$ defines a map

$$
E(\bar{K}) \rightarrow \bar{K} \cup\{\infty\}, P \mapsto f(P)
$$

by substituting the coordinates of P into f, where $a / 0=\infty$ with $a \neq 0$.

- The cases ∞ / ∞ for $P=\mathcal{O}$ and $0 / 0$ can be dealt with using something like L'Hospital's rule, and can be avoided for pairings.

Rational Functions - Example

Pairings
$K=\mathbb{F}_{5}, E: y^{2}=x^{3}+2$.
$E\left(\mathbb{F}_{p}\right)=\{\mathcal{O},(2,0),(-2,2),(-2,-2),(-1,1),(-1,-1)\}$
$P=(2,0), Q=(-1,1)$.
$x(P)=2, x(Q)=-1, y(P)=0, y(Q)=1$.
$f=x / y: \quad f(Q)=-1 / 1=-1, f(P)=\infty$.
$f=y^{2}-x^{3}-2: \quad f(P)=f(Q)=0, \ldots$ thus $f=0$ in $K(E)$.
$f=\left(x^{3}+2\right) / y: \quad f(P)=0 / 0 ?$
But $f=\left(x^{3}+2\right) / y=y\left(x^{3}+2\right) / y^{2}=y: \quad f(P)=0$.

Rational Functions Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing
Standard Setting
Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Rational Functions

Zeros and Poles:

- P is called a zero of f if $f(P)=0$.
- P is called a pole of f if $(P)=\infty$.
- It is possible to attach integral orders to zeros and poles of f, denoted by $\operatorname{ord}_{P}(f)$.

Geometrical interpretation of $\operatorname{ord}_{P}(f)$:

- "ord ${ }_{P}(f)$ is the intersection multiplicity of the curve defined by $f=0$ and E."

Analytical interpretation of $\operatorname{ord}_{P}(f)$:

- " f has a Laurent series expansion at P and $\operatorname{ord}_{P}(f)$ is the exponent of the leading term"
- "The variable of the Laurent series expansion has a zero of order one at P."

Rational Functions

 Divisors
Rational Functions

Formal properties of ord p :

- Have

$$
f(P)=0, \quad f(P) \neq 0, \quad f(P)=\infty
$$

precisely when

$$
\operatorname{ord}_{P}(f)>0, \quad \operatorname{ord}_{P}(f)=0, \quad \operatorname{ord}_{P}(f)<0
$$

- For all $f, g \in K(E)$ have

$$
\begin{aligned}
\operatorname{ord}_{P}(f g) & =\operatorname{ord}_{P}(f) \operatorname{ord}_{P}(g) \\
\operatorname{ord}_{P}(f+g) & \geq \min \left\{\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g)\right\} \\
\operatorname{ord}_{P}(f+g) & =\min \left\{\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g)\right\} \\
& \quad \text { if } \operatorname{ord}_{P}(f) \neq \operatorname{ord}_{P}(g) \\
\operatorname{ord}_{P}(f) & =\infty \text { iff } f=0
\end{aligned}
$$

Rational Functions Divisors
Miller's Algorithm
Weil Pairing
Standard Setting
Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Rational Functions - Example

Let $f=a x+b y+c$ with $a b \neq 0$.
Recall f intersects E in three points $P, Q,-(P+Q)$. Moreover, $b=0$ and f vertical line iff $Q=-P$.

Let $P \neq \mathcal{O}$ arbitrary.

- If f does not intersect E in P then $\operatorname{ord}_{P}(f)=0$, else $\operatorname{ord}_{P}(f) \geq 1$.
- If f intersects E in P but is not tangent to E in P then $\operatorname{ord}_{P}(f)=1$, else $\operatorname{ord} P(f) \geq 2$.
- If f is tangent to E in P and $P \neq-2 P$ then $\operatorname{ord}_{P}(f)=2$, else $\operatorname{ord}_{P}(f)=3$.

Rational Functions - Example

Pairings

Let $f=a x+b y+c$ with $a b \neq 0$.
Let $P=\mathcal{O}$.

- The geometric interpretation of $\operatorname{ord}_{P}(f)$ more complicated than analytic interpretation, we use the latter.
- From $y^{2}=x^{3}+a x+b$ we "see" $\operatorname{ord}_{p}(y)=-3$ and $\operatorname{ord}_{P}(x)=-2$ when " P, x and y tend to infinity".
- Thus ord $P_{P}(f)=-3$ if $b \neq 0$, else $\operatorname{ord}_{P}(f)=-2$.

$$
\begin{aligned}
f=x / y: & \operatorname{ord}_{\mathcal{O}}(f)=-2-(-3)=1 \\
& f(\mathcal{O})=0, \quad(1 / f)(\mathcal{O})=\infty
\end{aligned}
$$

Higher degree rational functions are more complicated to compute ...

F. Hess

Rational Functions

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing Pairing Properties

Divisors

- Similar to an associative array data type with points as keys and integer coefficients as values.
- Divisors are finite formal sums of points with integer coefficients:

$$
D=\sum_{P \in E(\bar{K})} \lambda_{P} \cdot(P)
$$

with $\operatorname{ord}_{P}(D)=\lambda_{P} \in \mathbb{Z}$ and only finitely many $\lambda_{P} \neq 0$.

- Sum of divisors taken coefficientwise.
- Degree

$$
\operatorname{deg}(D)=\sum_{P \in E(\bar{K})} \operatorname{ord}_{P}(D) .
$$

- deg is additive, $\operatorname{deg}\left(D_{1}+D_{2}\right)=\operatorname{deg}\left(D_{1}\right)+\operatorname{deg}\left(D_{2}\right)$.
- D is supported in $E(K)$ if $P \in E(K)$ holds for all P with $\operatorname{ord}_{p}(D) \neq 0$.

Rational Functions and Divisors

- The divisor of $f \in K(E)$ is

$$
\operatorname{div}(f)=\sum_{P \in E(\bar{K})} \operatorname{ord}_{P}(f)(P)
$$

Such divisors are called principal.

- Have $\operatorname{deg}(\operatorname{div}(f))=0$.
- f is determined by $\operatorname{div}(f)$ up to multiplication by a non-zero constant from K.

Rational Functions and Divisors - Example
Let $f=a x+b y+c$ with $a b \neq 0$.
Denote the intersection points of f with E by $P, Q,-(P+Q)$. From the discussion before we have the cases

$$
\operatorname{div}(f)= \begin{cases}(P)+(Q)+(-(P+Q))-3(\mathcal{O}) & Q \neq \pm P \\ (P)+(-P)-2(\mathcal{O}) & Q=-P \\ 2(P)+(-2 P)-3(\mathcal{O}) & Q=P \\ 3(P)-3(\mathcal{O}) & Q=Q, 3 P=\mathcal{O}\end{cases}
$$

The formula

$$
\operatorname{div}(f)=(P)+(Q)+(-(P+Q))-3(\mathcal{O})
$$

is correct for every case.

Rational Functions and Leading Coefficients

It is possible to define a leading coefficient of $f \neq 0$ in K :

- Define $t=x / y$. Then $\operatorname{ord}_{\mathcal{O}}(t)=1$.
- Define $\operatorname{Ic}(f)=\left(f / t^{\text {ord }_{\mathcal{O}}(f)}\right)(\mathcal{O}) \in K^{\times}$.
- f is called monic if $\operatorname{lc}(f)=1$.
- Have $\operatorname{lc}(x)=\operatorname{lc}(y)=1$.

A monic rational function f is uniquely determined by its divisor $\operatorname{div}(f)$.

Picard Groups and Points Groups

- The set $\operatorname{Div}_{K}(E)$ of divisors supported in $E(K)$ is an abelian group.
- $\operatorname{Div}_{K}^{0}(E)$ denotes the subgroup of $\operatorname{Div}_{K}(E)$ of divisors of degree zero.
- $\operatorname{Princ}_{K}(E)$ denotes the subgroup of $\operatorname{Div}_{K}^{0}(E)$ of principal divisors.
- The degree zero Picard group supported in $E(K)$ is

$$
\operatorname{Pic}_{K}^{0}(E)=\operatorname{Div}_{K}^{0}(E) / \operatorname{Princ}_{K}(E)
$$

Embedding Degree
Frobenius Eigenvalues

Picard Groups and Points Groups

The Abel-Jacobi map

$$
\mathrm{AJ}: \operatorname{Pic}_{K}^{0}(E) \rightarrow E(K),\left[\sum_{P \in E(K)} \lambda_{P}(P)\right] \mapsto \sum_{P \in E(K)} \lambda_{P} P
$$

is an isomorphism.

Consequences:

- $\sum_{P \in E(K)} \lambda_{P}(P)$ of degree zero is principal iff

$$
\sum_{P \in E(K)} \lambda_{P} P=\mathcal{O}
$$

- Efficient product representation of rational functions, Miller's algorithm.

Product Representation

Let f be a monic rational function supported in $E(K)$.

Then f can be written in many ways as a product of quotients of linear functions.

$$
f=\prod_{i=0}^{m} \prod_{j=1}^{2 r+1} f_{i, j} 2^{i}
$$

Product Representation

Algorithmic implications:

- The storage requirements of f in this product form are linear in the storage requirements for $\operatorname{div}(f)$.
- Evaluations $f(P)$ can be efficiently computed (provided P does not occur as a pole of one of the $f_{i, j}$, which it usually doesn't).

Miller's algorithm computes product repesentations or directly a function evaluation $f(P)$ for monic f with prescribed $\operatorname{div}(f)$.

Miller's Algorithm

Let D be a divisor of degree zero supported in $E(K)$. We define

$$
\operatorname{red}(D)=(\operatorname{AJ}([D]))-(\mathcal{O})
$$

and f_{D} as the monic function of $K(E)$ with

$$
\operatorname{div}\left(f_{D}\right)=D-\operatorname{red}(D)
$$

If D is principal then $\operatorname{div}\left(f_{D}\right)=D$.
$f_{D_{1}+D_{2}}=f_{D_{1}} \cdot f_{D_{2}} \cdot f_{\text {red }\left(D_{1}\right)+\operatorname{red}\left(D_{2}\right)}$.

$$
\begin{aligned}
& \text { Proof: Since } \operatorname{red}\left(D_{1}+D_{2}\right)=\operatorname{red}\left(\operatorname{red}\left(D_{1}\right)+\operatorname{red}\left(D_{2}\right)\right) \\
& \qquad \begin{aligned}
\operatorname{div}\left(f_{D_{1}+D_{2}}\right)= & D_{1}+D_{2}-\operatorname{red}\left(D_{1}+D_{2}\right) \\
= & D_{1}-\operatorname{red}\left(D_{1}\right)+D_{2}-\operatorname{red}\left(D_{2}\right)+ \\
& \quad \operatorname{red}\left(D_{1}\right)+\operatorname{red}\left(D_{2}\right)-\operatorname{red}\left(D_{1}+D_{2}\right) \\
= & \operatorname{div}\left(f_{D_{1}}\right)+\operatorname{div}\left(f_{D_{2}}\right)+\operatorname{div}\left(f_{\operatorname{red}\left(D_{1}\right)+\operatorname{red}\left(D_{2}\right)}\right) .
\end{aligned}
\end{aligned}
$$

As all functions are monic we obtain the equality.

Miller's Algorithm

Recursive strategy for f_{D} :

- Use $f_{D_{1}+D_{2}}=f_{D_{1}} \cdot f_{D_{2}} \cdot f_{\text {red }\left(D_{1}\right)+\operatorname{red}\left(D_{2}\right)}$ and suitable addition chain.
- Compute f_{D} and $\operatorname{red}(D)$ simultaneously.
- D can be written as sum of divisors of the form $(P)-(\mathcal{O})$ and $(\mathcal{O})-(Q)$.

For example, write

$$
D=\sum_{i=0}^{m} 2^{i} \sum_{j=1}^{r} \lambda_{i, j}\left(\left(P_{j}\right)-(\mathcal{O})\right)
$$

with $\lambda_{i, j} \in\{0, \pm 1\}$. The addition chain is then executed by adding the terms of the inner sum for $i=0$, then multiplying by 2 , then adding the terms of the inner sum for $i=1$, then multiplying by 2 , and so on.

Miller's Algorithm

Terminating functions f_{D} :

- $f_{(P)-(\mathcal{O})}=1$ since $\operatorname{div}\left(f_{(P)-(\mathcal{O})}\right)=0$.
- $f_{(\mathcal{O})-(Q)}=(x-x(Q))^{-1}$ for $Q \neq \mathcal{O}$, since
$\operatorname{div}\left(f_{(\mathcal{O})-(Q)}\right)=(\mathcal{O})-(Q)-((-Q)-(\mathcal{O}))=2(\mathcal{O})-(Q)-(-Q)$.
$f_{(P)+(Q)-2(\mathcal{O})}=\left\{\begin{array}{l}\text { " fraction of the line through } P, Q, \\ -(P+Q) \text { divided by the vertical line } \\ \text { through } P+Q,-(P+Q) "\end{array}\right.$
since

$$
\begin{aligned}
\operatorname{div}\left(f_{(P)+(Q)-2(\mathcal{O})}\right)= & (P)+(Q)-2(\mathcal{O})-((P+Q)-(\mathcal{O})) \\
= & (P)+(Q)+(-(P+Q))-3(\mathcal{O})- \\
& ((P+Q)+(-(P+Q))-2(\mathcal{O}))
\end{aligned}
$$

- The leading coefficient of y, x or 1 need to be one, in this order of occurence.

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Function Evaluation

Let f be a K-rational function and D a divisor supported in $E(K)$ that contains no zero or pole of f. Define

$$
f(D)=\prod_{P \in E(K)} f(P)^{\operatorname{ord} p(D)} \in K^{\times} .
$$

This has a bilinearity property:

- $f\left(D_{1}+D_{2}\right)=f\left(D_{1}\right)+f\left(D_{2}\right)$.
- $(f g)(D)=f(D) g(D)$.

Weil reciprocity:

$$
f(\operatorname{div}(g))=g(\operatorname{div}(f))
$$

Finite Abelian Groups

Let G be a finite abelian group. There are r integers $c_{i} \geq 2$ with $c_{i} \mid c_{i+1}$ and s prime powers $p_{j}^{e_{j}} \geq 2$ such that

$$
\begin{aligned}
G & \cong \mathbb{Z} / c_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / c_{r} \mathbb{Z} \\
& \cong \mathbb{Z} / p_{1}^{e_{1}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s}} \mathbb{Z}
\end{aligned}
$$

The c_{i} and $p_{j}^{e_{j}}$ are uniquely determined (the latter only up to permutation).

Define the subgroup of n-torsion elements

$$
G[n]=\{g \in G \mid n g=0\} .
$$

Have $G[n] \cong G / n G$.

Proof: Reduces to the case $G=\mathbb{Z} / n m \mathbb{Z}$. Then $G[n]=\{[\lambda m] \mid \lambda \in \mathbb{Z}\}$ and $G \rightarrow G[n], x \mapsto m x$ is an epimorphism with kernel $n G$.

Duality

Let G_{1}, G_{2}, G_{T} be finite abelian groups with G_{T} cyclic, and

$$
e: G_{1} \times G_{2} \rightarrow G_{T}
$$

a bilinear map.
Then

- Left kernel $K_{1}=\left\{x \in G_{1} \mid e(x, y)=0\right.$ for all $\left.y \in G_{2}\right\}$.
- Right kernel $K_{2}=\left\{y \in G_{2} \mid e(x, y)=0\right.$ for all $\left.x \in G_{1}\right\}$.
- Obtain bilinear map $e^{\prime}: G_{1} / K_{1} \times G_{2} / K_{2} \rightarrow G_{T}$.
- Left and right kernel of e^{\prime} are 0 , hence e^{\prime} is non-degenerate.

Have $G_{1} / K_{1} \cong G_{2} / K_{2}$.

Tate Pairing

Pairings
F. Hess

Assume $\# K^{\times} /\left(K^{\times}\right)^{n}=\# K^{\times}[n]=n$. Is defined in first stage as

$$
t_{n}: E(K)[n] \times E(K) \rightarrow K^{\times} /\left(K^{\times}\right)^{n}
$$

as follows:
Let $P \in E(K)[n]$ and $Q \in E(K)$.
Choose divisors D_{1}, D_{2} in $\operatorname{Div}_{K}^{0}(E)$ with

$$
\operatorname{AJ}\left(\left[D_{1}\right]\right)=P \text { and } \operatorname{AJ}\left(\left[D_{2}\right]\right)=Q
$$

such that D_{1} and D_{2} have no points in common.
Choose a K-rational function f such that $\operatorname{div}(f)=n D_{1}$.
Then

$$
t_{n}(P, Q)=f\left(D_{2}\right) \cdot\left(K^{\times}\right)^{n}
$$

Choice of divisors

Pairings

A possible choice of divisors is as follows:
Take $D_{2}=(Q)-(\mathcal{O})$.
Then $\operatorname{AJ}\left(\left[D_{2}\right]\right)=Q-\mathcal{O}=Q$, as required.
Now we cannot take $D_{1}=(P)-(\mathcal{O})$ because it has points in common with D_{2}.

Choose $T \in E(K)$ such that $\mathcal{O}, Q, P+T, T$ are all distinct.
Then take $D_{1}=(P+T)-(T)$.
We have $\mathrm{AJ}\left(\left[D_{1}\right]\right)=P+T-T=P$, as required.
F. Hess

Well Definedness

Pairings
F. Hess

Well defined in first argument:

- Choose D_{1}^{\prime} with $\operatorname{AJ}\left(\left[D_{1}^{\prime}\right]\right)=P$. Then $D_{1}^{\prime}-D_{1}$ is principal.
- Thus there is g with $D_{1}^{\prime}=D_{1}+\operatorname{div}(g)$ and $n D_{1}^{\prime}=n D_{1}+\operatorname{div}\left(g^{n}\right)$.
- Choose f^{\prime} with $\operatorname{div}\left(f^{\prime}\right)=n D_{1}^{\prime}$. Then there is $c \in K^{\times}$ with $f^{\prime}=c g^{n} f$.
- Since $\operatorname{deg}\left(D_{2}\right)=0$ we have

$$
\begin{aligned}
f^{\prime}\left(D_{2}\right) & =\left(c g^{n} f\right)\left(D_{2}\right)=c\left(D_{2}\right) g\left(D_{2}\right)^{n} f\left(D_{2}\right) \\
& =c^{\operatorname{deg}\left(D_{2}\right)} g\left(D_{2}\right)^{n} f\left(D_{2}\right) \\
& \equiv f\left(D_{2}\right) \bmod \left(K^{\times}\right)^{n} .
\end{aligned}
$$

Well Definedness

Well defined in second argument:

- Choose D_{2}^{\prime} with $\operatorname{AJ}\left(\left[D_{2}^{\prime}\right]\right)=Q$. Then $D_{2}^{\prime}-D_{2}$ is principal.
- Thus there is g with $D_{2}^{\prime}=D_{2}+\operatorname{div}(g)$.
- Using Weil reciprocity we get

$$
\begin{aligned}
f\left(D_{2}^{\prime}\right) & =f\left(D_{2}+\operatorname{div}(g)\right)=f\left(D_{2}\right) f(\operatorname{div}(g)) \\
& =f\left(D_{2}\right) g(\operatorname{div}(f))=f\left(D_{2}\right) g\left(n D_{1}\right)=f\left(D_{2}\right) g\left(D_{1}\right)^{n} \\
& \equiv f\left(D_{2}\right) \bmod \left(K^{\times}\right)^{n} .
\end{aligned}
$$

Elliptic Curves

Rational Functions

Bilinearity

Pairings
F. Hess

Bilinear in first argument:

- Given P, P^{\prime} and D_{1}, D_{1}^{\prime} with

$$
\operatorname{AJ}\left(\left[D_{1}\right]\right)=P \text { and } \operatorname{AJ}\left(\left[D_{1}^{\prime}\right]\right)=P^{\prime}
$$

we have

$$
\begin{aligned}
\operatorname{AJ}\left(\left[D_{1}+D_{1}^{\prime}\right]\right) & =\operatorname{AJ}\left(\left[D_{1}\right]+\left[D_{2}\right]\right) \\
& =\operatorname{AJ}\left(\left[D_{1}\right]\right)+\operatorname{AJ}\left(\left[D_{2}\right]\right)=P+P^{\prime} .
\end{aligned}
$$

- Choose f, f^{\prime} with $\operatorname{div}(f)=n D$ and $\operatorname{div}\left(f^{\prime}\right)=n D_{1}^{\prime}$. Then

$$
\operatorname{div}\left(f f^{\prime}\right)=n D_{1}+n D_{1}^{\prime}=n\left(D_{1}+D_{1}^{\prime}\right)
$$

- Thus

$$
\begin{aligned}
t_{n}\left(P+P^{\prime}, Q\right) & =\left(f f^{\prime}\right)\left(D_{2}\right) \cdot\left(K^{\times}\right)^{n} \\
& =f\left(D_{2}\right) f^{\prime}\left(D_{2}\right) \cdot\left(K^{\times}\right)^{n}=t_{n}(P, Q) t_{n}\left(P^{\prime}, Q\right)
\end{aligned}
$$

Bilinearity

Bilinear in second argument:

- Given Q, Q^{\prime} and D_{2}, D_{2}^{\prime} with

$$
\mathrm{AJ}\left(\left[D_{2}\right]\right)=Q \text { and } \mathrm{AJ}\left(\left[D_{2}^{\prime}\right]\right)=Q^{\prime}
$$

we have similarly

$$
\mathrm{AJ}\left(\left[D_{2}+D_{2}^{\prime}\right]\right)=P+P^{\prime}
$$

- Then

$$
\begin{aligned}
t_{n}\left(P, Q+Q^{\prime}\right) & =f\left(D_{2}+D_{2}^{\prime}\right) \cdot\left(K^{\times}\right)^{n} \\
& =f\left(D_{2}\right) f\left(D_{2}^{\prime}\right) \cdot\left(K^{\times}\right)^{n}=t_{n}(P, Q) t_{n}\left(P, Q^{\prime}\right)
\end{aligned}
$$

Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Non-degenerate

Tricky part (without proof here): The left kernel of t_{n} is 0 .
Non-degenerate:

- We have $t_{n}(P, n Q)=t_{n}(P, Q)^{n}=1$.
- So right kernel K_{2} of t_{n} contains $n E(K)$ and we get pairing

$$
t_{n}: E(K)[n] \times E / K_{2} \rightarrow K^{\times} /\left(K^{\times}\right)^{n} .
$$

- Since $E(K) / n E(K) \cong E(K)[n] \cong E / K_{2}$ we have

$$
K_{2}=n E(K) .
$$

Weil Pairing

Assume $\# K^{\times} /\left(K^{\times}\right)^{n}=\# K^{\times}[n]=n$. Is defined as

$$
e_{n}: E(K)[n] \times E(K)[n] \rightarrow K^{\times}[n]
$$

as follows:
Let $P \in E(K)[n]$ and $Q \in E(K)[n]$.
Choose divisors D_{1}, D_{2} in $\operatorname{Div}_{K}^{0}(E)$ with

$$
\mathrm{AJ}\left(\left[D_{1}\right]\right)=P \text { and } \mathrm{AJ}\left(\left[D_{2}\right]\right)=Q
$$

not necessarily coprime.
Choose K-rational functions f_{1}, f_{2} such that $\operatorname{div}\left(f_{1}\right)=n D_{1}$ and $\operatorname{div}\left(f_{2}\right)=n D_{2}$.

Then

$$
e_{n}(P, Q)=\prod_{P \in E(K)}(-1)^{n \operatorname{ord} p\left(D_{1}\right) \operatorname{ord}_{P}\left(D_{2}\right)} \frac{f_{2}^{\operatorname{ord}_{P}\left(D_{1}\right)}}{f_{1}^{\operatorname{ord}_{P}\left(D_{2}\right)}}(P)
$$

Weil Pairing

Remarks:

- Definition given here more general than usually seen in cryptography.
- There is a mathematical background of the Tate- and Weil pairings connecting the two. Apparently no specific use in cryptography though.

Properties:

- e_{n} is bilinear and alternating: $e_{n}(P, P)=1$ for all P.
- e_{n} is non-degenerate if and only if $E(K)[n] \cong(\mathbb{Z} / n \mathbb{Z})^{2}$.
- Proofs are similar to the Tate pairing case.
- There are special cases where t_{n} is non-degenerate and e_{n} is degenerate. Usually not considered in cryptography.

Elliptic Curves

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing
Standard Setting

Standard Setting

Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Embedding Degree

Let $\operatorname{gcd}(q, n)=1$.
The embedding degree k is the minimal number $k \geq 1$ such that

$$
q^{k} \equiv 1 \bmod n
$$

Let $K=\mathbb{F}_{q^{k}}$. Then $k \mid \phi(n)$ and

$$
K^{\times} /\left(K^{\times}\right)^{n} \cong K^{\times}[n] \cong \mathbb{Z} / n \mathbb{Z}
$$

Here $\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Embedding Degree

Let E be an elliptic curve over \mathbb{F}_{q} with

$$
E\left(\mathbb{F}_{q}\right)[n] \cong \mathbb{Z} / n \mathbb{Z}
$$

and $\operatorname{gcd}(k(q-1), n)=1$.

The embedding degree satisfies $k \geq 2$. Moreover,

$$
E(K)[n] \cong E(K) / n E(K) \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
$$

and we get pairings

$$
\begin{aligned}
t_{n}: E(K)[n] \times E(K) / n E(K) & \rightarrow K^{\times} /\left(K^{\times}\right)^{n}, \\
e_{n}: E(K)[n] \times E(K)[n] & \rightarrow K^{\times}[n] .
\end{aligned}
$$

Frobenius Eigenvalues

Pairings

Let

- π the Frobenius endomorphism of $E,(x, y) \mapsto\left(x^{q}, y^{q}\right)$,
- $\chi=x^{2}-t x+q \in \mathbb{Z}[x]$ its characteristic polynomial,
- Have $\chi(1)=\# E\left(\mathbb{F}_{q}\right) \equiv 0 \bmod n$ thus $\chi(q) \equiv 0 \bmod n$.
- Thus π has eigenvalues 1 and q.

Then $E(K)[n]=\left\langle P_{0}\right\rangle \times\left\langle Q_{0}\right\rangle$ with

$$
\pi\left(P_{0}\right)=P_{0} \text { and } \pi\left(Q_{0}\right)=q Q_{0}
$$

Therefore $P_{0} \in E\left(\mathbb{F}_{q}\right)$ and $Q_{0} \in E(K) \backslash \cup_{\mathbb{F}_{q} \subseteq L \subseteq K} E(L)$.

Frobenius Eigenvalues - Remarks

From $\chi(1) \equiv 0 \bmod n$ we know

$$
(x-1)(x-a)=x^{2}-t x+q \bmod n
$$

for some $a \in \mathbb{Z}$. Comparing absolute coefficients shows

$$
a \equiv q \bmod n
$$

The general equality $\chi(1)=\# E\left(\mathbb{F}_{q}\right)$ is out of the scope of these slides.

One usually argues using properties of dual isogenies roughly as follows: First we have $\widehat{\chi(\pi)}=\chi(\hat{\pi})=0$ and $\hat{\pi} \neq \pi$, so $\chi(t)=(t-\pi)(t-\hat{\pi})$
 isogeny, hence

$$
\# E\left(\mathbb{F}_{q}\right)=\# \operatorname{ker}(\pi-1)=\operatorname{deg}(\pi-1)=(\pi-1)(\hat{\pi}-1)=\chi(1) .
$$

See for example the book by Silverman.

Frobenius Eigenvalues

The following conditions are equivalent:

1. $\operatorname{gcd}\left(\# E(K) / n^{2}, n\right)=1$.
2. $E(K) \cong \mathbb{Z} / d \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ with $\operatorname{gcd}(d, n)=1$.
3. $E(K)[n] \cap E(K) / n E(K)=0$.
4. $\operatorname{gcd}\left(\left(u^{k}-1\right) / n, n\right)=1$ and $\operatorname{gcd}\left(\left(v^{k}-1\right) / n, n\right)=1$.

Here let

- $\chi(u) \equiv 0 \bmod n^{2}$ for $u \in \mathbb{Z}$ with $u \equiv 1 \bmod n$.
- $\chi(v) \equiv 0 \bmod n^{2}$ for $v \in \mathbb{Z}$ with $u \equiv q \bmod n$.

We assume that (any one of) these conditions holds true in the following.

Reduced Tate Pairing

So far have $t_{n}: E(K)[n] \times E(K) / n E(K) \rightarrow K^{\times} /\left(K^{\times}\right)^{n}$.
Have isomorphisms:

- $K^{\times} /\left(K^{\times}\right)^{n} \rightarrow K^{\times}[n], x \mapsto x^{(\# K-1) / n}$
- $\phi: E(K)[n] \rightarrow E(K) / n E(K), P \mapsto P+n E(K)$ due to the condition $E(K)[n] \cap n E(K)=0$.
- Elements of $K^{\times}[n]$ and $E(K)[n]$ have unique bit representation thus these groups are more convenient.

Obtain reduced Tate pairing

$$
\begin{aligned}
t_{n}^{\mathrm{red}}: E(K)[n] & \times E(K)[n] \rightarrow K^{\times}[n] \\
& t_{n}^{\mathrm{red}}(P, Q)=t_{n}(P, \phi(Q))^{(\# K-1) / n}
\end{aligned}
$$

Weil Pairing and Reduced Tate Pairing

If D_{1} and D_{2} are coprime then the Weil pairing simplifies to

$$
e_{n}(P, Q)=f_{2}\left(D_{1}\right) / f_{1}\left(D_{2}\right)
$$

Thus we obtain the following computational relation:
1.

$$
e_{n}(P, Q)^{(\# K-1) / n}=\frac{t_{n}^{\text {red }}(Q, P)}{t_{n}^{\text {red }}(P, Q)}
$$

2.

$$
t_{n}^{\mathrm{red}}(P, Q)=t_{n}^{\text {red }}(Q, P) \text { for all } P, Q \in E(K)[n]
$$

if and only if $n \mid(\# K-1) / n$.

F. Hess

Pairings in General

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Pairing Properties

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves
Ordinary Curves

Action of Galois

Recall σ is the q-power Frobenius automorphism of K. Operates on the objects related to E by coefficientwise application:

- For $x \in K$ write $x^{\sigma}=\sigma(x)=x^{q}$.
- Write $E^{\sigma}: y^{2}=x^{3}+a^{\sigma} x+b^{\sigma}$. Since E is defined over \mathbb{F}_{q} we have $E^{\sigma}=E$.
- For $P \in E(K)$ write $P^{\sigma}=\left(x(P)^{\sigma}, y(P)^{\sigma}\right)$. Have $P^{\sigma} \in E^{\sigma}(K)=E(K)$. Also define $\mathcal{O}^{\sigma}=\mathcal{O}$.
- For $f \in K(E)$ write f^{σ} for the fctn in $K(E)$ obtained from f by application of σ to the coefficients of f.
- E.g. $(a x)^{\sigma}=a^{\sigma} x^{\sigma}=a^{\sigma} x$.
- Similarly for divisors and other objects.

Note $P^{\sigma}=\pi(P)$ and $f^{\sigma}\left(P^{\sigma}\right)=f(P)^{\sigma}$.

Orthogonality

Let p_{n} denote $t_{n}^{\text {red }}$ or e_{n}.
The points P_{0} and Q_{0} are a "orthogonal" basis of $E(K)[n]$:

$$
\begin{aligned}
& \text { 1. } p_{n}\left(P_{0}, P_{0}\right)=p_{n}\left(Q_{0}, Q_{0}\right)=1 . \\
& \text { 2. }\left\langle p_{n}\left(P_{0}, Q_{0}\right)\right\rangle=\left\langle p_{n}\left(Q_{0}, P_{0}\right)\right\rangle=K^{\times}[n] .
\end{aligned}
$$

Proof: We have $p_{n}\left(P_{0}, P_{0}\right)=1$ since $\mathbb{F}_{q} \cap K^{\times}[n]=1$. Now in general $\left(f_{D}\right)^{\sigma}=f_{D^{\sigma}}$. This implies the Galois invariance

$$
p_{n}(P, Q)^{\sigma}=p_{n}\left(P^{\sigma}, Q^{\sigma}\right)
$$

for all $P, Q \in E(K)[n]$. We obtain
$p_{n}\left(Q_{0}, Q_{0}\right)^{\sigma}=p_{n}\left(Q_{0}^{\sigma}, Q_{0}^{\sigma}\right)=p_{n}\left(q Q_{0}, q Q_{0}\right)=p_{n}\left(Q_{0}, Q_{0}\right)^{q^{2}}=p_{n}\left(Q_{0}, Q_{0}\right)^{\sigma^{2}}$, hence $p_{n}\left(Q_{0}, Q_{0}\right)=p_{n}\left(Q_{0}, Q_{0}\right)^{\sigma}$ and $p_{n}\left(Q_{0}, Q_{0}\right) \in \mathbb{F}_{q} \cap K^{\times}[n]=1$. The second assertion follows from the first and the non-degeneracy.

F. Hess

Trace Map

Let $T \in E(K)[n]$ and define the trace map

$$
\phi_{0}(T)=c \sum_{i=0}^{k-1} T^{\sigma}
$$

with $c k \equiv 1 \bmod n$ and $\phi_{1}(T)=T-\phi_{0}(T)$.
Then

- $\phi_{0}(T)^{\sigma}=\phi_{0}(T)$, hence $\phi_{0}(T) \in E\left(\mathbb{F}_{q}\right)[n]$.
- $\phi_{0}(T)=c k T=T$ for $T \in\left\langle P_{0}\right\rangle$.
- $\phi_{0}(T)=\left(c \sum_{i=0}^{k-1} q^{i}\right) T=c \frac{\# K-1}{q-1} T=0$ for $T \in\left\langle Q_{0}\right\rangle$.
- $\phi_{0}\left(\lambda P_{0}+\mu Q_{0}\right)=\lambda P_{0}$.
- $\phi_{1}\left(\lambda P_{0}+\mu Q_{0}\right)=\mu Q_{0}$.

There are efficiently computable "orthogonal" projections ϕ_{0}, ϕ_{1} of $E(K)[n]$ onto $\left\langle P_{0}\right\rangle$ with kernel $\left\langle Q_{0}\right\rangle$ and onto $\left\langle Q_{0}\right\rangle$ with kernel $\left\langle P_{0}\right\rangle$ respectively.
F. Hess

Orthogonal decomposition

The isomorphism

$$
\left\langle P_{0}\right\rangle \times\left\langle Q_{0}\right\rangle \rightarrow E(K)[n], \quad(P, Q) \mapsto P+Q
$$

can be efficiently computed in both directions.

Proof: The direction $(P, Q) \mapsto P+Q$ is obvious. For the other direction let $T \in E(K)[n]$. Define $P=\phi_{0}(T)$ and $Q=\phi_{1}(T)$. Then $P+Q=\phi_{0}(T)+\phi_{1}(T)=\phi_{0}(T)+T-\phi_{0}(T)=T$, as required .

Orthogonality Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Pairings on Cyclic Subgroups

We obtain

Efficiently computable pairings

$$
E\left(\mathbb{F}_{q}\right)[n] \times G^{\prime} \rightarrow K^{\times}[n]
$$

for any cyclic subgroup $G^{\prime} \subseteq E(K)[n]$ of order n with $G^{\prime} \neq E\left(\mathbb{F}_{q}\right)[n]$ are possible.

Elliptic Curves
Rational Functions

Miller's Algorithm
Tate Pairing
Weil Pairing
Standard Setting
Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Dairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves Ordinary Curves

Rational Pairings

Pairings
F. Hess

Rational Pairings - Main Theorem

Efficiently computable pairings

$$
E\left(\mathbb{F}_{q}\right)[n] \times E^{\prime}\left(\mathbb{F}_{q^{k / g \operatorname{cd}(k, d)}}\right)[n] \rightarrow K^{\times}[n]
$$

with an auxiliary E^{\prime} defined over $\mathbb{F}_{q^{k / g c d}(k, d)}$ are possible under the following conditions:

1. E is supersingular. Then also $E=E^{\prime}$ and $d=k$ possible.
2. E is ordinary, $\operatorname{char}(K) \neq 2,3$ and

$$
d= \begin{cases}2 & a b \neq 0 \\ 4 & b=0 \\ 6 & a=0\end{cases}
$$

For supersingular curves we also have $k=2,3,4,6$ only. In the following outline why this works.

$$
m=\operatorname{gcd}(k, d)
$$

$$
E\left(\mathbb{F}_{q^{k}}\right)[n] \cong E^{\prime}\left(\mathbb{F}_{q^{k}}\right)[n] \cong E\left(\mathbb{F}_{q}\right)[n] \oplus E^{\prime}\left(\mathbb{F}_{q^{k / m}}\right)[n]
$$

Isogenies and Isomorphisms

Let E_{1}, E_{2} be elliptic curves defined over \mathbb{F}_{q}. An isogeny $\psi: E_{1} \rightarrow E_{2}$ is a map

$$
\psi: E_{1}\left(\overline{\mathbb{F}}_{q}\right) \rightarrow E_{2}\left(\overline{\mathbb{F}}_{q}\right)
$$

with the following properties:

1. ψ is defined by rational functions $x_{\psi}, y_{\psi} \in K(E)$ such that $\psi(P)=\left(x_{\psi}(P), y_{\psi}(P)\right)$.
2. ψ is a homomorphism with finite kernel.

If $\operatorname{gcd}(\operatorname{deg}(\psi), q)=1$ then

$$
\operatorname{deg}(\psi)=\# \operatorname{ker}(\psi) \approx \max \text { degrees in } x_{\psi}, y_{\psi} .
$$

The isogeny ψ is called an isomorphism if $\operatorname{ker}(\psi)=0$. Then

- exists isomorphism ψ^{-1} such that $\psi \circ \psi^{-1}=$ id and $\psi^{-1} \circ \psi=\mathrm{id}$.
- $x_{\psi} \in K[x]$ and $y_{\psi} \in K[x, y]$ are linear in x and y.
F. Hess

Isogenies and Isomorphisms - Example

$E_{1}: y^{2}=x^{3}+a_{1} x+b_{1}, E_{2}: y^{2}=x^{3}+a_{2} x+b_{2}$ over \mathbb{F}_{p} with $p \neq 2,3$.

All isomorphisms $\phi: E_{1} \rightarrow E_{2}$ are of the form

$$
\phi=\left(u^{2} x, u^{3} y\right)
$$

with $u \in \overline{\mathbb{F}}_{p}$ and $u^{4} a_{1}=a_{2}$ and $u^{6} b_{1}=b_{2}$.
There can be $0,2,3,4,6$ solutions u.

The Frobenius endomorphism $\pi=\left(x^{p}, y^{p}\right)$ is also an isogeny. Here incidentally $\operatorname{ker}(\pi)=0$ but $\operatorname{deg}(\pi)=p$.

Isogenies - Application

Let E^{\prime} be an elliptic curve over \mathbb{F}_{q} with $E^{\prime}\left(\mathbb{F}_{q}\right)[n] \cong \mathbb{Z} / n \mathbb{Z}$ and

$$
\psi: E^{\prime} \rightarrow E
$$

an isogeny defined over \bar{K} of degree coprime to $q n$.

Then ψ is defined over K and yields an isomorphism

$$
E^{\prime}(K)[n] \rightarrow E(K)[n] .
$$

Proof: Firstly E^{\prime} has the same embedding degree like E and $E^{\prime}(K)[n] \cong(\mathbb{Z} / n \mathbb{Z})^{2}$. Since $E^{\prime}(K)[n]=E^{\prime}(\bar{K})[n], E(\bar{K})[n]=E(K)[n]$ and ψ has coprime degree we have an injective homomorphism $E^{\prime}(K)[n] \rightarrow E(K)[n]$, whence an isomorphism. Furthermore

$$
\left(\psi^{\sigma^{k}}-\psi\right)(P)=\psi^{\sigma^{k}}(P)-\psi(P)=\psi(P)^{\sigma^{k}}-\psi(P)=\mathcal{O}
$$

for all $P \in E^{\prime}\left(\mathbb{F}_{q}\right)[n]$, thus $\psi^{\sigma^{k}}-\psi=0$.

Isogenies - Application

Pairings
E^{\prime} is "pairing-equivalent" to E :

- Same embedding degree
- $E\left(\mathbb{F}_{q}\right)[n] \cong E^{\prime}\left(\mathbb{F}_{q}\right)[n]$ and $E(K)[n] \cong E^{\prime}(K)[n]$
- $E^{\prime}(K)[n] \cap n E^{\prime}(K)=0$

Proof: Tate implies $\# E^{\prime}(K)=\# E(K)$. So π^{k} has the same characteristic polynomial on E and E^{\prime} and the same eigenvalues as in a condition on slide 48.

- Write

$$
E^{\prime}(K) \cong\left\langle P_{0}^{\prime}\right\rangle \times\left\langle Q_{0}^{\prime}\right\rangle
$$

with $\pi\left(P_{0}^{\prime}\right)=P_{0}^{\prime}$ and $\pi\left(Q_{0}^{\prime}\right)=q Q_{0}^{\prime}$.
F. Hess

Modified Pairings

Consider now modified pairings

$$
G \times G^{\prime} \rightarrow K^{\times}[n], \quad(P, Q) \mapsto p_{n}(P, \psi(Q))
$$

for $G \subseteq E(K)[n], G^{\prime} \subseteq E^{\prime}(K)[n]$ and $\psi: E^{\prime} \rightarrow E$.
Usually G and G^{\prime} chosen as cyclic groups.

Need to know $\psi\left(P_{0}^{\prime}\right)$ and $\psi\left(Q_{0}^{\prime}\right)$.

Foundations

Elliptic Curves
Rational Functions

Distortion Maps

Need to know $\psi\left(P_{0}^{\prime}\right)$ and $\psi\left(Q_{0}^{\prime}\right)$.
Write

$$
\left(\psi\left(P_{0}^{\prime}\right), \psi\left(Q_{0}^{\prime}\right)\right)=\left(P_{0}, Q_{0}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Observe $\pi \psi=\psi^{\sigma} \pi$. Then
$\psi^{\sigma}\left(P_{0}^{\prime}\right)=\psi^{\sigma}\left(\pi\left(P_{0}^{\prime}\right)\right)=\pi\left(\psi\left(P_{0}\right)\right)=a P_{0}+q b Q_{0}$
$\psi^{\sigma}\left(Q_{0}^{\prime}\right)=q^{-1} \psi^{\sigma}\left(\pi\left(Q_{0}^{\prime}\right)\right)=q^{-1} \pi\left(\psi\left(Q_{0}\right)\right)=q^{-1}\left(c P_{0}+q d Q_{0}\right)$

Elliptic Curves

Distortion Maps

From this we get

$$
\left(\psi^{\sigma}\left(P_{0}^{\prime}\right), \psi^{\sigma}\left(Q_{0}^{\prime}\right)\right)=\left(P_{0}, Q_{0}\right)\left(\begin{array}{cc}
a & q^{-1} c \\
q b & d
\end{array}\right)
$$

Case $\psi^{\sigma}=\psi$: Then $c \equiv b \equiv 0 \bmod n$ and

$$
\psi\left(P_{0}^{\prime}\right) \in\left\langle P_{0}\right\rangle \text { and } \psi\left(Q_{0}^{\prime}\right) \in\left\langle Q_{0}\right\rangle
$$

Case $\psi^{\sigma} \neq \psi$ "distortion maps":

Then $\left(\psi^{\sigma}-\psi\right)\left(P_{0}^{\prime}\right)$ and $\left(\psi^{\sigma}-\psi\right)\left(Q_{0}^{\prime}\right)$ generate $\left\langle Q_{0}\right\rangle$ and $\left\langle P_{0}\right\rangle$ respectively.

Practice: Usually ψ already satisfies these conditions in place of $\psi^{\sigma}-\psi$ and moreover $\operatorname{deg}(\psi)=1$.

Distortion Maps

Consequences for supersingular elliptic curves:

- E supersingular with embedding degree >1 iff exists $\psi \in \operatorname{End}(E)$ st. $\psi^{\sigma} \neq \psi$.
- Thus have $E^{\prime}=E, P_{0}^{\prime}=P_{0}$ and $Q_{0}^{\prime}=Q_{0}$.
- Have efficiently computable $\psi \in \operatorname{End}(E)$ with $\psi\left(P_{0}\right)=Q_{0}$ and $\psi\left(Q_{0}\right)=P_{0}$.
- Can obtain modified pairings for any cyclic subgroups of $E(K)$ using ϕ_{0}, ϕ_{1} or ψ.

Symmetric pairings on $G=E\left(\mathbb{F}_{q}\right)[n]$ for supersingular elliptic curves possible!

Distortion Maps

First consequences for ordinary elliptic curves:

- E ordinary iff $\psi^{\sigma}=\psi$ for all $\psi \in \operatorname{End}(E)$.
- Consider first $E^{\prime}=E, P_{0}^{\prime}=P_{0}$ and $Q_{0}^{\prime}=Q_{0}$.
- There is no ψ with $\psi\left(P_{0}^{\prime}\right) \in\left\langle Q_{0}\right\rangle$ or $\psi\left(Q_{0}^{\prime}\right) \in\left\langle P_{0}\right\rangle$.
- No symmetric pairings on $G=E\left(\mathbb{F}_{q}\right)[n]$.

Distortion maps do not exist for ordinary elliptic curves.

Then try $E^{\prime} \neq E$.
Need to construct E^{\prime} over a subfield L of K such that $E^{\prime}(L)[n] \cong \mathbb{Z} / n \mathbb{Z}$ and there is $\psi: E^{\prime} \rightarrow E \ldots$

Twists

An elliptic curve E^{\prime} over \mathbb{F}_{q} is called a twist of E over \mathbb{F}_{q} of degree d if there is an isomorphism $\psi: E^{\prime} \rightarrow E$ such that $\psi^{\sigma^{d}}=\psi$ and d is minimal with this property.

Assume E ordinary, $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$.

- Then $\operatorname{Aut}(E)$ is cyclic of order $d=\left\{\begin{array}{ll}2 & a b \neq 0 \\ 4 & b=0 \\ 6 & a=0\end{array}\right.$.
- $q \equiv 1 \bmod d$.
- For every $u \in \operatorname{Aut}(E)$ there is a twist E_{u} of E of degree ord(u).
- The corresponding $\psi_{u}: E_{u} \rightarrow E$ satisfies $u \psi_{u}^{\sigma}=\psi_{u}$.
- Every twist E^{\prime} of E is obtained this way up to twists of degree one.
- There are explicit formulae for E_{u}, ψ_{u} and $\# E_{u}\left(\mathbb{F}_{q}\right)$.

Twists - Example

$E: y^{2}=x^{3}+b, E^{\prime}: y^{2}=x^{3}+b^{\prime}$ over \mathbb{F}_{p} with $p \neq 2,3$.
All automorphisms $u: E \rightarrow E$ are of the form

$$
\phi=\left(z^{2} x, z^{3} y\right)
$$

with $u \in \overline{\mathbb{F}}_{p}$ and $z^{6}=1 . E$ ordinary means $p \equiv 1 \bmod 6$. Then six automorphisms defined over \mathbb{F}_{p}.

All isomorphisms $\psi: E^{\prime} \rightarrow E$ are of the form

$$
\psi=\left(w^{2} x, w^{3} y\right)
$$

with $w \in \overline{\mathbb{F}}_{p}$ and $w^{6}=b / b^{\prime}$. So for twist of degree 6 take w as a 6 -th root generating the Kummer extension $\mathbb{F}_{p^{6}} / \mathbb{F}_{p}$.

Then ψ / ψ^{σ} is the automorphism corresponding to the 6-th root of unity w / w^{σ}.

Twists

- Let $u \in \operatorname{Aut}(E)$ with $m=\operatorname{ord}(u)=\operatorname{gcd}(k, d)$ and let E^{\prime} denote the corresponding twist of E over $\mathbb{F}_{q^{k / m}}$ of degree m.
- Write $P_{0, u}=\psi_{u}^{-1}\left(P_{0}\right)$ and $Q_{0, u}=\psi_{u}^{-1}\left(Q_{0}\right)$.
- We have $\psi_{u}^{-1} u \pi^{k / m} \psi_{u}=\psi_{u}^{-1} u \psi_{u}^{\sigma^{k / m}} \pi^{k / m}=\pi^{k / m}$ and

$$
u\left(P_{0}\right)=\lambda P_{0}, \quad u\left(Q_{0}\right)=\lambda^{-1} Q_{0}
$$

für $\lambda^{m} \equiv 1 \bmod n$ with same order as u.

- Thus

$$
\pi^{k / m}\left(P_{0, u}\right)=\lambda P_{0, u}, \quad \pi^{k / m}\left(Q_{0, u}\right)=\lambda^{-1} q^{k / m} Q_{0, u}
$$

- There is a unique choice of u such that $\lambda \equiv q^{k / m} \bmod n$. Then

$$
\pi^{k / m}\left(P_{0, u}\right)=q^{k / m} P_{0, u}, \quad \pi^{k / m}\left(Q_{0, u}\right)=Q_{0, u}
$$

Twists

Final consequences for ordinary elliptic curves:

- Let E^{\prime} be such a twist of degree $m=\operatorname{gcd}(k, d)$ over $\mathbb{F}_{q^{k / m}}$ and $\psi: E^{\prime} \rightarrow E$ the corresponding isomorphism.
- Then $\psi^{\sigma^{k / m}} \neq \psi$ and

$$
\pi^{k / m}\left(Q_{0}^{\prime}\right)=q^{k / m} Q_{0}^{\prime}, \quad \pi^{k / m}\left(P_{0}^{\prime}\right)=P_{0}^{\prime}
$$

for $Q_{0}^{\prime}=\psi^{-1}\left(P_{0}\right)$ and $P_{0}^{\prime}=\psi^{-1}\left(Q_{0}\right)$.

- Thus ψ is a distortion map.

Efficiently computable pairings

$$
E\left(\mathbb{F}_{q}\right)[n] \times E^{\prime}\left(\mathbb{F}_{q^{k / m}}\right)[n] \rightarrow K^{\times}[n]
$$

are possible.
F. Hess

F. Hess

Pairings in General

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Pairing Functions

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Minimize Function Evaluations

Minimize number of function evaluations:

- Given $P, Q \in E(K)[n]$.
- Take $D_{2}=(Q)-(\mathcal{O})$ and $D_{1}=(P+T)-(T)$ where T can be chosen arbitrarily in $E(K)$ such that all points $\mathcal{O}, Q, T, P+T$ are distinct.
- There is g such that $f_{n D_{1}}=f_{n((P)-(\mathcal{O}))} g^{n}$.
- Then

$$
\begin{aligned}
t_{n}(P, Q) & =f_{n D_{1}}\left(D_{2}\right)^{(\# K-1) / n} \\
& =f_{n D_{1}}(Q)^{(\# K-1) / n} \cdot f_{n D_{1}}(\mathcal{O})^{-(\# K-1) / n} \\
& =f_{n D_{1}}(Q)^{(\# K-1) / n}=f_{n((P)-(\mathcal{O}))} g^{n}(Q)^{(\# K-1) / n} \\
& =f_{n((P)-(\mathcal{O}))}(Q)^{(\# K-1) / n} .
\end{aligned}
$$

- For the last we have to and may assume $Q \neq P, \mathcal{O}$.

Denominator Elimination

Use notation from above.
Consider $\psi: E^{\prime} \rightarrow E$ with $\psi\left(P_{0}^{\prime}\right)=Q_{0}, \psi\left(Q_{0}^{\prime}\right)=P_{0}$ and $\psi^{\sigma} \neq \psi, \psi^{\sigma^{2}}=\psi$.

Let $x: E \rightarrow \mathbb{P}^{1}$ and $x^{\prime}: E^{\prime} \rightarrow \mathbb{P}^{1}$ denote the x-coordinate functions.

We have $x\left(Q_{0}\right)=x\left(\psi\left(P_{0}^{\prime}\right)\right) \in \mathbb{F}_{q}$.
By symmetry, $x\left(Q_{0}^{\prime}\right)=x\left(\psi^{-1}\left(P_{0}\right)\right) \in \mathbb{F}_{q}$.
Implication: If embedding degree even then the $h_{i, j}$ in Miller's algorithm can be discarded.

Proof: $\psi^{\sigma} \psi^{-1} \in \operatorname{Aut}(E)$ has order 2, hence $\psi^{\sigma} \psi^{-1}=[-1]$. Then
$x \circ \psi^{\sigma} \psi^{-1}=x \circ[-1]=x$, and $x \circ \psi^{\sigma}=x \circ \psi$. So
$x\left(\psi\left(P_{0}^{\prime}\right)\right)=x\left(\psi^{\sigma}\left(P_{0}^{\prime}\right)\right)=x\left(\psi\left(P_{0}^{\prime}\right)^{\sigma}\right)=x\left(\psi\left(P_{0}^{\prime}\right)\right)^{\sigma}$. Finally,
$h_{i, j}(x)^{(\# K-1) / n}=1$.

Final Exponentiation

We wish to compute $z^{\left(q^{k}-1\right) / n}$ in $K=\mathbb{F}_{q^{k}}$ for k even.
We have the following factorisation of $\left(q^{k}-1\right) / n$:

$$
\left(q^{k}-1\right) / n=\left(q^{k / 2}-1\right) \cdot \frac{q^{k / 2}+1}{\Phi_{k}(q)} \cdot \frac{\Phi_{k}(q)}{n}
$$

where Φ_{k} is the k-th cyclotomic polynomial.
Here the second factor is a polynomial in q with small coefficients and $\Phi_{k}(q)$ is divisible by n.

Thus raise z to the power of the first two factors, using q-powering tricks, and finally raise to the power $\Phi_{k}(q) / n$.

Reduction of exponent bit length by roughly $\phi(k) / k$. Expansion of last factor to base q leads to further speed-up.

Weil Pairing

Similar reductions can be done for the Weil pairing.
Let $P, Q \in E(K)[n]$ and $D_{1}=(P)-(\mathcal{O}), D_{2}=(Q)-(\mathcal{O})$.
From the general definition we obtain however directly

$$
e_{n}(P, Q)=(-1)^{n} \frac{f_{n((Q)-(\mathcal{O}))}(P)}{f_{n((P)-(\mathcal{O}))}(Q)} .
$$

If the embedding degree k is even and $P \in\left\langle P_{0}\right\rangle, Q \in\left\langle Q_{0}\right\rangle$, denominator elimination can be bought for a cheap final exponentiation by $q^{k / 2}-1$. Reductions

Further Techniques

Pairings

F. Hess

Elliptic Curves

General Pairing Functions

Pairings
F. Hess

- Have used pairing functions of the form $f_{n((P)-(\mathcal{O}))}$ only so far.
- Are there other suitable functions of smaller degree, possibly with supported on more points?
- Complete overview of functions that define pairings?
- Pairing functions have worked for pairings defined on all of $E(K)[n]$ so far.
- Denominator elimination technique can be seen as simplification of pairings when restricted to special inputs.
- "Interpolation" becomes easier when restricted to smaller point sets.

General Pairing Functions

Let $s \in \mathbb{Z}$ with $s \equiv q \bmod n$ and $s^{k} \equiv 1 \bmod n^{2}$.
Exists since $\operatorname{gcd}(k, n)=1$.
Let $h=\sum_{j=0}^{d} h_{i} x^{i} \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \bmod n$.
Let $R \in E(K)[n]$.
Define $f_{h, R} \in K(E)$ monic such that

$$
\operatorname{div}\left(f_{h, R}\right)=\sum_{i=0}^{d} h_{i}\left(\left(s^{i} R\right)-(\mathcal{O})\right)
$$

Exists since

$$
\operatorname{AJ}\left(\sum_{i=0}^{d} h_{i}\left(\left(s^{i} R\right)-(\mathcal{O})\right)\right)=\left(\left(\sum_{i=0}^{d} h_{i} s^{i}\right) R\right)-(\mathcal{O})=\mathcal{O} .
$$

Main Theorem on Pairing Functions

Let $h \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \bmod n^{2}$. Then
$a_{h}:\left\langle Q_{0}\right\rangle \times\left\langle P_{0}\right\rangle \rightarrow K^{\times}[n], \quad a_{h}(Q, P)=f_{h, Q}(P)^{(\# K-1) / n}$
is a bilinear map with

$$
a_{h}(Q, P)=t_{n}^{\text {red }}(Q, P)^{h(s) / n} .
$$

Thus a_{h} is non degenerate iff $\operatorname{gcd}(h(s) / n, n)=1$.

- Any function supported on $s^{i} Q$ for $0 \leq i \leq k-1$ is of the form $f=f_{h, Q}$ (see AJ map). Thus have exhaustive classification of such pairing functions.

Main Theorem - Variants

Assume E has an automorphism defined over \mathbb{F}_{q} of order equal to embedding degree k and n odd.

Let $h \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \bmod n^{2}$. There is $z_{h} \in \mathbb{F}_{q}^{\times}[k]$ such that
$b_{h}:\left\langle P_{0}\right\rangle \times\left\langle Q_{0}\right\rangle \rightarrow K^{\times}[n], \quad b_{h}(P, Q)=f_{h, P}(Q)^{(\# K-1) / n}$
$w_{h}:\left\langle P_{0}\right\rangle \times\left\langle Q_{0}\right\rangle \rightarrow K^{\times}[n], \quad w_{h}(P, Q)=z_{h} \frac{f_{h, Q}(P)}{f_{h, P}(Q)}$
are bilinear maps with
$b_{h}(P, Q)=t_{n}^{\text {red }}(P, Q)^{h(s) / n}, \quad w_{h}(P, Q)=e_{n}(P, Q)^{h(s) / n}$.
Thus b_{h} and w_{h} are non deg iff $\operatorname{gcd}(h(s) / n, n)=1$.

Parameters and Further Variants

Pairings
F. Hess

Statements about h :

- Conditions $\operatorname{deg}(h) \leq k-1$ and $h(s) \equiv 0 \bmod n$ yield a lattice of all possible h.
- Gives lower bound $\approx n^{1 / \phi(k)}$ on sum of absolute values of coefficients of h.
- Lattice reduction constructs h with upper bound $\approx n^{1 / \phi(k)}$.

Further variants:

- Use endomorphisms for yet different pairing functions.
- Adapt statements to parametric families using lattices over polynomial rings.

Pairing Functions - History

Paper	Pairing	h
BKLS 2001 / M 2003	a_{h}, b_{h}, w_{h}	r
\quad (Tate / Weil)		$x-t(E)+1$
BGOS 2005 (Eta)	b_{h}	$x-t(E)+1$
HSV 2006 (Ate, twisted)	a_{h}, b_{h}	$x^{i}-d$
MKHO 2007 / ZZH 2007	a_{h}, b_{h}	
(optimised ate)		a_{h}, b_{h}
LLP 2008 (R-ate)	w_{h}^{c}	$x^{i j}-d_{1} x^{i}-d_{2}$
ZZ 2008	a_{h}	beliebig
V 2008/10 (optimal ate)	a_{h}, b_{h}, w_{h}	beliebig
H 2008		
(+ use of endos, proofs)	\ldots	\ldots
\ldots	a_{h}, w_{h}	$z-x, z+3 x-x^{4}$,
AFKMR 2012		$6 z+2+x-x^{2}+x^{3}$
fast implementation		

Supersingular Curves

Pairing Functions - Example

Let $E: y^{2}=x^{3}+4$ over \mathbb{F}_{q} with

$$
\begin{aligned}
& q=41761713112311845269, \\
& n=715827883, k=31, h=x+2 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{h}:\left\langle Q_{0}\right\rangle \times\left\langle P_{0}\right\rangle \rightarrow \mu_{r}, \\
& (Q, P) \mapsto\left(y_{P}-3 x_{Q}^{2} /\left(2 y_{Q}\right) x_{P}-\left(-x_{Q}^{3}+8\right) /\left(2 y_{Q}\right)\right)^{\left(q^{k}-1\right) / n}
\end{aligned}
$$

is a pairing.
Has exceptionally small pairing function!

Proof of Main Theorem

Let $g, h \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \bmod n$.

- If $g(s) \equiv 0 \bmod n$ have

$$
f_{g, R}=f_{h, R} \text { iff } g \equiv h \bmod x^{k}-1
$$

Furthermore have additivity

$$
f_{g+h, R}=f_{g, R} f_{h, R} .
$$

- Let $P \in\left\langle P_{0}\right\rangle, Q \in\left\langle Q_{0}\right\rangle$. Then

$$
\begin{aligned}
& f_{x h, Q}(P)=f_{h, Q}(P)^{q} . \\
& \text { Proof: } \quad f_{x h, Q}(P)=f_{h, s Q}(P)=f_{h, q Q}(P)=f_{h, Q^{\sigma}}(P) \\
& =f_{h, Q^{\sigma}}\left(P^{\sigma}\right)=f_{h, Q}(P)^{\sigma}=f_{h, Q}(P)^{q}
\end{aligned}
$$

- Have multiplicativity (constant polynomials included)

$$
f_{g h, Q}(P)=f_{h, Q}(P)^{g(q)}
$$

Proof of Main Theorem

Define

$$
a_{h}:\left\langle Q_{0}\right\rangle \times\left\langle P_{0}\right\rangle \rightarrow K^{\times}[n]
$$

by

$$
a_{h}(Q, P)=f_{h, Q}(P)^{(\# K-1) / n}
$$

- a_{h} is additive and multiplicative in h as before.
- a_{g} and a_{h} defined by same fcts iff $g \equiv h \bmod x^{k}-1$.
- $a_{h}=t_{n}^{\text {red }}$ for $h=n$.

For proof of main theorem it suffices to show the relation

$$
a_{h}(Q, P)=t_{n}^{\text {red }}(Q, P)^{h(s) / n}
$$

for general h. Then all properties of a_{h} follow from the properties of $t_{n}^{\text {red }}(Q, P)^{h(s) / n}$.

Proof of Main Theorem

- Trivial for $x-s$:

$$
a_{x-s}(Q, P)=1
$$

Proof: Let $g=\sum_{i=0}^{k-1} x^{i} s^{k-1-i}$. Then $g(x)(x-s)=x^{k}-s^{k}$ and $g(q)=k q^{k-1}$ coprime to n. We obtain

$$
\begin{aligned}
1 & =a_{n}(Q, P)^{\left(1-s^{k}\right) / n}=a_{1-s^{k}}(Q, P) \\
& =a_{x^{k}-s^{k}}(Q, P)=a_{g(x)(x-s)}(Q, P) \\
& =a_{x-s}(Q, P)^{g(q)}=a_{x-s}(Q, P)^{k q^{k-1}} .
\end{aligned}
$$

Thus $a_{x-s}(Q, P)=1$.

- Relation with reduced Tate pairing:

$$
a_{h}(Q, P)=a_{n}(Q, P)^{h(s) / n}=t_{n}^{\text {red }}(Q, P)^{h(s) / n} .
$$

Proof: With $h=g(x)(x-s)+h(s)$ obtain

$$
a_{h}(Q, P)=a_{x-s}(Q, P)^{g(q)} a_{h(s)}(Q, P)=a_{n}(Q, P)^{h(s) / n}
$$

F. Hess

Pairings in General

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Pairing Types

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

Pairing Types

Parameter
Generation
Supersingular Curves Ordinary Curves

Pairing Types

Can/Have to choose groups G and G^{\prime} for pairing according to needs:

- Hashing possible/efficient
- Short representations
- Homomorphisms between groups

Type $1 G=G^{\prime}$:
Modified pairing on supersingular curve E with distortion map and small degree pairing function, embedding degree 2, 4, 6 .

Type $2 G \neq G^{\prime}$ with efficiently computable $\phi: G^{\prime} \rightarrow G$, no hashing in G^{\prime} :
Pairing on ordinary curve E with $G=\left\langle P_{0}\right\rangle$, $G^{\prime}=\left\langle\lambda P_{0}+\mu Q_{0}\right\rangle, \phi=\phi_{0}$ trace map, arbitrary embedding degree.

Pairing Types

Type $3 G \neq G^{\prime}$ no homomorphism, hashing in G^{\prime} slower than in G :

Modified pairings on ordinary curves E, E^{\prime} with $G=\left\langle P_{0}\right\rangle$, $G^{\prime}=\left\langle P_{0}^{\prime}\right\rangle$, distortion map is non rational twisting isomorphism, arbitrary embedding degree for G, embedding degree $2,4,6$ for G^{\prime}, small degree pairing function.

Type $4 G^{\prime}=E(K)[n]$:
Pairing on ordinary curves E with $G=\left\langle P_{0}\right\rangle$, arbitrary embedding degree for G.

Type 3 usually most efficient.

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Parameter Generation

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues
Reduced Tate pairing
Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves Ordinary Curves

Asymptotic Embedding Degree

Most important parameter: Embedding degree k.
DLP security in $E\left(\mathbb{F}_{q}\right)$ grows like $e^{1 / 2 \log q}$ assuming $n \approx q$. DLP security in $K^{\times}=\mathbb{F}_{q^{k}}^{\times}$grows like $e^{c(k \log q)^{1 / 3}}$.

Should be balanced, hence $k \approx(\log q)^{2 / 3}$.

Symm	ECC	RSA	k
80	160	1024	6
128	256	3072	12
192	384	7680	20
256	512	15360	30

Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions

MNT Conditions

MNT conditions on $q, n, t=q+1-\# E\left(\mathbb{F}_{q}\right)$ and k :

- $q+1-t=c n$ with c small (e.g. $c=1$).
- $\phi_{k}(t-1) \equiv 0 \bmod n\left(\right.$ implies $\left.q^{k}-1 \equiv 0 \bmod n\right)$.
- q prime power, $|t| \leq 2 \sqrt{q}$.
- $4 q-t^{2}=D f^{2}$ with D small for CM method.
- $\rho=\log (q) / \log (n)$ should be as small as possible (e.g. ≈ 1).

Supersingular curves always $k \in\{2,3,4,6\}$ and $\rho \approx 1$.
Finding solutions for arbitrary k and prime n with $\rho \approx 2$ by clever searching algorithms is fairly easy.

For $\rho \approx 1$ solutions are very scarse! In such cases parametric solutions are of great help.

Supersingular Elliptic Curves

Overview over supersingular elliptic curves and some distortion maps.

q	Curve	$\# E\left(\mathbb{F}_{q}\right)$	k	ψ
2^{p}	$y^{2}+y=x^{3}$	$2^{p}+1$	2	$(x, y) \rightarrow(x+1, y+x+\xi)$
2^{p}	$y^{2}+y=x^{3}+x$	$2^{p}+1+t_{2}(p)$	4	$(x, y) \rightarrow\left(\xi^{2} x+\zeta^{2}, y+\xi^{2} \zeta x+\mu\right)$
2^{p}	$y^{2}+y=x^{3}+x+1$	$2^{p}+1-t_{2}(p)$	4	$(x, y) \rightarrow\left(\xi^{2} x+\zeta^{2}, y+\xi^{2} \zeta x+\mu\right)$
3^{p}	$y^{2}=x^{3}+x$	$3^{p}+1$	2	$(x, y) \rightarrow(-x, i y)$
3^{p}	$y^{2}=x^{3}-x+1$	$3^{p}+1+t_{3}(p)$	6	$(x, y) \rightarrow\left(-x+\tau_{1}, i y\right)$
3^{p}	$y^{2}=x^{3}-x-1$	$3^{p}+1-t_{3}(p)$	6	$(x, y) \rightarrow(-x+\tau-1, i y)$
p	$y^{2}=x^{3}+b$	$p+1$	2	$(x, y) \rightarrow(\xi x, y)$
p	$y^{2}=x^{3}+a x$	$p+1$	2	$(x, y) \rightarrow(-x, i y)$

Here $E\left(\mathbb{F}_{q^{k}}\right) \cong(\mathbb{Z} / c \mathbb{Z})^{2}$ and p denotes a prime ≥ 5 and

$$
\begin{gathered}
t_{2}(p)=\left\{\begin{array}{rc}
2^{(p+1) / 2} & \text { for } p \equiv \pm 1, \pm 7 \bmod 24 \equiv \pm 1 \bmod 8, \\
-2^{(p+1) / 2} & \text { for } p \equiv \pm 5, \pm 11 \bmod 24 \equiv \pm 3 \bmod 8,
\end{array}\right. \\
t_{3}(p)=\left\{\begin{array}{rc}
3^{(p+1) / 2} & \text { for } p \equiv \pm 1 \bmod 12, \\
-3^{(p+1) / 2} & \text { for } p \equiv \pm 5 \bmod 12 .
\end{array}\right.
\end{gathered}
$$

Furthermore, ψ is a distortion map with

$$
\begin{array}{ll}
\xi^{2}+\xi+1=0, & \zeta^{4}+\zeta+\xi+1=0 \\
\mu^{2}+\mu+\zeta^{6}+\zeta^{2}=0, & \tau_{s}^{3}-\tau_{s}-s=0
\end{array}
$$

and $i^{2}+1=0$. In order that $\xi \notin \mathbb{F}_{p}$ we need $p \equiv 2 \bmod 3$ and for $i \notin \mathbb{F}_{p}$ we need $p \equiv 3 \bmod 4$.

F. Hess

Elliptic Curves Rational Functions Divisors Miller's Algorithm
Tate Pairing
Weil Pairing
Standard Setting
Embedding Degree
Frobenius Eigenvalues
Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves Ordinary Curves

Ordinary Curves - Search Strategy

Search strategy for ordinary elliptic curves:

- We require n prime and $n \equiv 1 \bmod k$.
- Assume $4 q=t^{2}+D f^{2}$. Since $t^{2}, f^{2},-D \equiv 0,1 \bmod 4$ we have t even and D or f even.
- Thus there are integers $t^{\prime}=t / 2, f^{\prime}=f / 2$ and $D^{\prime}=D$, or $f^{\prime}=f$ and $D^{\prime}=D / 2$ such that $q=t^{\prime 2}+D^{\prime} f^{\prime 2}$ and

$$
\left(t^{\prime}-1\right)^{2}+D^{\prime} f^{\prime 2} \equiv 0 \bmod n
$$

- Choose t^{\prime} such that $\Phi_{k}\left(2 t^{\prime}\right) \equiv 0 \bmod n$. Then there are two values for f^{\prime} modulo n.
- Search over f^{\prime} until $q=t^{\prime 2}+D^{\prime} f^{\prime 2}$ is prime.

Can be adapted to composite n, as long as square root of $-D^{\prime}$ modulo n is known. This is possible if $D^{\prime}=k$ is prime, $k \equiv 3 \bmod 4$ and a suitable k-th root of unity is known.

Parametric Solutions - Barreto/Naehrig Curves

For $k=12, D=3$ and $E: y^{2}=x^{3}+b$:
Let

- $t(z):=6 z^{2}+1$
- $q(z):=36 z^{4}+36 z^{3}+24 z^{2}+6 z+1$
- $n(z):=q(z)+1-t(z)$.

Then

- $\Phi_{12}(q(z)) \equiv 0 \bmod n(z)$
- $4 q(z)-t(z)^{2}=3\left(6 z^{2}+4 z+1\right)^{2}$

Construction:

- Find x such that $q(\pm x)$ and $n(\pm x)$ are primes.
- Check $\# E\left(\mathbb{F}_{q}\right)=n(\pm x)$ for randomly chosen $b \in \mathbb{F}_{q}$.
- Then E satisfies all conditions and $k=12$.

No CM construction necessary, suitable E is found very fast.

Attractive Parametric Families

BN curves: $k=12, \rho \approx 1$, suitable for 128 bit.

- $p(z)=36 z^{4}+36 z^{3}+24 z^{2}+6 z+1$
- $r(z)=36 z^{4}+36 z^{3}+18 z^{2}+6 z+1$
- $t(z)=6 z^{2}+1, \quad h(x)=6 z+1+x-x^{2}+x^{3}$

BLS12 curves: $k=12, \rho \approx 1.5$, suitable for 192 bit.

- $p(z)=(z-1)^{2}\left(z^{4}-z^{2}+1\right) / 3+z$
- $r(z)=z^{4}-z^{2}+1$
- $t(z)=z+1, \quad h(x)=z-x$.

BLS24 curves: $k=24, \rho \approx 1.25$, suitable for 256 bit.

- $p(z)=(z-1)^{2}\left(z^{8}-z^{4}+1\right) / 3+z$
- $r(z)=z^{8}-z^{4}+1$
- $t(z)=z+1, \quad h(x)=z-x$.

There are many more families for $2 \leq k \leq 50$.

Remarks

Futher topics:

- Many more constructions in "Taxonomy of Pairing-Friendly Elliptic Curves".
- Use subfamilies for further optimisations, e.g. pairing friendly $\mathbb{F}_{q^{k}}$.
- Consider special hardware situations.
- Weil pairings offer advantage in multi-processor environment.

Elliptic Curves

F. Hess

Pairings in General

Foundations

Elliptic Curves
Rational Functions
Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing

Pairing Inversion

Standard Setting

Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues
Reduced Tate pairing
Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves Ordinary Curves

Pairing Inversion

Pairing Inversion

Pairings
F. Hess

There are many attacks on elliptic curves and finite fields. Here consider pairing specific attacks, more precisely pairing inversion.

Has not been intensely researched ...

- Choose subgroups G_{1}, G_{2} of $\operatorname{Pic}_{K}^{0}(E)[n]$.
- Then have pairing $e: G_{1} \times G_{2} \rightarrow K^{\times}[n]$,

$$
\left(\bar{D}_{1}, \bar{D}_{2}\right) \mapsto g_{D_{1}}\left(D_{2}\right)
$$

- Independent of choices of D_{1}, D_{2} but need to be coprime.
- Given $z \in K^{\times}[n]$ and given at most one of D_{1}, D_{2} find the rest such that

$$
g_{D_{1}}\left(D_{2}\right)=z
$$

Pairing Inversion

Pairings

- Necessary condition $\operatorname{deg}\left(g_{D_{1}}\right) \geq n$.
- Under special choice of $n, E, k, G_{1}, G_{2}, D_{1}$ we can obtain

$$
g_{D_{1}}=h_{D_{1}}^{(\# K-1) / n} \text { with } \operatorname{deg}\left(h_{D_{1}}\right) \approx n^{1 / \varphi(k)}
$$

For bigger k necessarily $G_{2} \subseteq E\left(\mathbb{F}_{q}\right)$.

- This means $\operatorname{deg}\left(h_{D_{1}}\right)$ can be small, maybe inversion easier then?
F. Hess

Pairing Inversion - Example

Pairings

Pairing Inversion

Naive approaches:

- We can obtain $g_{D_{1}}=h_{D_{1}}^{(\# K-1) / n}$ with small $g_{D_{1}}$, need to solve

$$
h_{D_{1}}\left(D_{2}\right)^{(\# K-1) / n}=z
$$

in D_{2} with $\operatorname{AJ}\left(D_{2}\right) \in G_{2} \subseteq E\left(\mathbb{F}_{q}\right)$.

- Computing $D_{2}=[P]-[O]$ from $h_{D_{1}}\left(D_{2}\right)$ is easy.
- $z \mapsto z^{(\# K-1) / n}$ is many-to-one, computing random preimages is easy.
- Problem: Which preimage z_{0} is the correct one?
- Or use more general D_{2}, that is solve something like

$$
\prod_{i=1}^{k} h_{D_{1}}\left(\left[P_{i}\right]-[O]\right)=z_{0}
$$

in the P_{i} for any preimage z_{0}. But high degree, many variables and terms ...
F. Hess

Pairing Inversion

Pairings
F. Hess

Elliptic Curves

Rational Functions

Some random references for further reading and further references

Very incomplete and possibly biased ...

Foundations of pairings:

- Galbraith: "Pairings", Chapter in "Advances in Elliptic Curve Cryptography", 2004
- Hess: "Some Remarks on the Weil and Tate Pairings of Curves over Finite Fields", 2004
- Miller: "The Weil Pairing, and Its Efficient Calculation", 2004
- Galbraith: "Mathematics of Public Key Cryptography", 2012.

Elliptic Curves

Some random references for further reading and further references

Efficient Implementation:

- Barreto, Kim, Lynn, Scott: "Efficient Algorithms for Pairing-Based Cryptosystems", 2002
- Barreto, Lynn, Scott: "On the Selection of Pairing-Friendly Groups", 2003
- Hess, Smart, Vercauteren: "The Eta Pairing Revisited", 2006
- Scott, Benger, Charlemagne, Perez, Kachisa: "Fast hashing to G2 on pairing friendly curves", 2009.
- Boxall, El Mrabet, Laguillaumie, Le: "A Variant of Millers Formula and Algorithm", 2010.
- Aranha, Fuentes-Castaneda, Knapp, Menezes, Rodgriguez-Henriquez: "Implementing Pairing at the 192 Bit Security Level", 2012.

Some random references for further reading and further references

Parameter generation:

- Fremann, Scott, Teske: "A taxonomy of Pairing-Friendly Elliptic Curves", 2010
- Search separate for Barreto-Naehrig (BN), Kachisa-Schaefer-Scott (KKS) curves, Barreto-Lynn-Scott (BLS) curves,
- or look in paper by Aranha et. al.

General pairing functions:

- Hess: "Pairing Lattices", 2008
- Vercauteren: "Optimal Pairings", 2008/10.

Some random references for further reading and further references

Pairing inversion:

- Galbraith, Hess, Vercauteren: "Aspects of Pairing Inversion", 2008
- Verheul: "Evidence that XTR is more secure than supersingular elliptic curves", 2001

Complete detailed overview over pairings:

- Lynn: "On the Implementation of Pairing-Based Cryptosystems", 2007.

Some random references for further reading and further references

Books about elliptic curves, and applications in cryptography:

- Blake, Seroussi, Smart: "Elliptic Curves in Cryptography", 1999.
- Blake, Seroussi, Smart: "Advances in Elliptic Curve Cryptography", 2004.
- Frey and Cohen: "Handbook of Elliptic and Hyperelliptic Curve Cryptography", 2006
- Galbraith: "Mathematics of Public Key Cryptography", 2012
- Silverman: "The Arithmetic of Elliptic Curves", 1986
- Washington: "Elliptic Curves, Number Theory and Cryptography", 2008.

F. Hess

Pairings in General

Foundations

Elliptic Curves
Rational Functions Divisors
Miller's Algorithm
Tate Pairing
Weil Pairing
Standard Setting
Thank you!
Embedding Degree
Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties
Orthogonality
Rationality
Distortion Maps
Twists
Pairing Functions
Computational
Reductions
Classification of
Pairing Functions
Pairing Types
Parameter
Generation
Supersingular Curves Ordinary Curves

Pairing Inversion

