Florian Hess (Oldenburg)

Tel Aviv, February 7, 2013

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairing Inversion

Pairings in General

Let G_1 , G_2 , G_T be abelian groups.

A pairing is a non-degenerate bilinear map

$$e: G_1 \times G_2 \rightarrow G_T.$$

Bilinearity:

•
$$e(g_1 + g_2, h) = e(g_1, h)e(g_2, h)$$
,

•
$$e(g, h_1 + h_2) = e(g, h_1)e(g, h_2).$$

Non-degenerate:

- For all $g \in G_1 \setminus \{0\}$ exists $h \in G_2$ with $e(g, h) \neq 1$.
- ▶ For all $h \in G_2 \setminus \{0\}$ exists $g \in G_1$ with $e(g, h) \neq 1$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Supersingular Curves Ordinary Curves

Examples

Examples:

- Scalar product on euclidean space $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.
- Multiplication in a ring defines a pairing e(x, y) = xy.
- Weil- and Tatepairings on elliptic curves and abelian varieties.

Useful for everything which has do with "linear algebra":

- Checking for linear independence or dependence,
- Solving for linear combinations $g = \sum_i \lambda_i g_i$,
- ▶ Depends on computational capabilities in *G*₁, *G*₂, *G*_{*T*}.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Some Algorithmic Requirements

Efficient representations and algorithms for

- Groups laws, equality test, sampling in G_1, G_2, G_T .
- Computation of e(g, h) given $g \in G_1$, $h \in G_2$.

Useful in most cases:

- $\blacktriangleright \ G_1 \cong G_2 \cong G_T$
- Unique bit representation of group elements.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Hardness

High complexity assumptions for algorithms:

- ► Always: No efficiently computable isomorphism from G_T to G₁ or G₂.
- Sometimes: No efficiently computable isomorphism from G₂ to G₁ or from G₁ to G₂ or both.
- ▶ Bilinear Diffie-Hellman: Suppose G = G₁ = G₂. Given g, g^a, g^b, g^c ∈ G then no efficient algorithm to compute

$$e(g,g)^{abc}$$

Many more in

```
www.ecrypt.eu.org/documents/D.MAYA.3.pdf.
```

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Ordinary Curves

What are pairings?

A typical construction for pairings in mathematics is via duality:

- Suppose $G_1 = \mathbb{R}^n$, $G_2 = Hom(\mathbb{R}^n, \mathbb{R})$ and $G_T = \mathbb{R}$.
- Then function evaluation

$$G_1 \times G_2 \rightarrow G_T$$
, $(x, f) \mapsto f(x)$

defines a pairing.

- This very principle is applied in curve based pairing.
- Is inherently bilinear, does not seem to generalize nicely to multilinear maps.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

What are pairings?

Suppose $G_1 \cong G_2 \cong G_T$ cyclic of prime order *n*.

If there are efficiently computable isomorphisms $f: G_T \to G_1$ and $g: G_1 \to G_2$ then we have an efficiently computable pairing

$$p: G_1 \times G_1 \rightarrow G_1, \quad p(x,y) = f(p(x,g(y))).$$

Then G_1 is a "black-box field" with its group law as addition and p as multiplication.

From this interpretation it is not hard to see that the Computational Diffie-Hellman problem in G_1, G_2, G_T and all computational pairing problems are easy to solve.

The non-existence of f is thus vital to pairing security.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

What are pairings?

And: Pairings are essentially "multiplication in fields" of two (and no more!) arguments.

Two lessons:

- Multilinear maps are essentially "multiplication in fields" of n (and no more) arguments.
- Can make higher dimensional linear algebra given a pairing, yields product pairings.

Given $e: G_1 \times G_2 \rightarrow G_T$ a product pairing is of the form

$$G_1^n \times G_2^n \to G_T, \quad (x, y) \mapsto \prod_{i,j=1}^n e(x_i, y_j)^{a_{i,j}}.$$

Note the analogy with a bilinear form having Gram matrix $(a_{i,j})$. Hard computational problems come from e.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Overview over Curve Based Pairings

Curve based pairings:

- Defined in terms of algebraic curves, their Picard groups and Jacobian varieties.
- Always bilinear, groups are cyclic, elements have unique bit representations, various special properties.

Further mathematical background (not important here):

- Arithmetic duality, in particular class field theory.
- Application in descent techniques.

In the following: Focus on the special case of pairings on elliptic curves.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairing Inversion

Foundations

Finite Fields

Let \mathbb{F}_q denote a finite field with $q = p^r$ elements.

$$\blacktriangleright \mathbb{F}_{p} = \mathbb{Z}/p\mathbb{Z}.$$

• $\mathbb{F}_q = \mathbb{F}_p[x]/f\mathbb{F}_p[x]$ with f irreducible of degree r.

•
$$\mathbb{F}_q \neq \mathbb{Z}/p^r\mathbb{Z}$$
 for $r > 1$.

Properties:

- $\mathbb{F}_{q_1} \subseteq \mathbb{F}_{q_2}$ iff q_2 is a power of q_1 .
- ► The algebraic closure F_q of F_q can be seen as the union of all finite fields containing F_q.
- Every $f \in \overline{\mathbb{F}}_q[x]$ decomposes into linear factors.
- The map $\sigma: \overline{\mathbb{F}}_q \to \overline{\mathbb{F}}_q, x \mapsto x^q$ is additive, multiplicative and bijective.

• If
$$x \in \overline{\mathbb{F}}_q$$
, then $x \in \mathbb{F}_q$ iff $\sigma(x) = x$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Supersingular Curves Ordinary Curves

Elliptic Curves

Elliptic curve E over \mathbb{F}_q :

- ► Given by an equation y² = x³ + ax + b with a, b ∈ 𝔽_q suitable and p > 3. For p = 2, 3 more lower order terms.
- Have K-rational point sets

$$E(K) = \{(x, y) \in K \times K \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

for any finite extension field $K \supseteq \mathbb{F}_q$.

- Are abelian groups via point addition given by explicit small degree formulae, with neutral element O.
- Hasse-Weil: $\#E(\mathbb{F}_{q^r}) = q^r + 1 t$ with $|t| \leq 2\sqrt{q^r}$.

Pairing values are obtained by evaluating "exponentially sized" rational functions on E at points of E.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Rational Functions

There exists a field K(E) of K-rational functions on E: • $f \in K(E)$ can be represented as

$$f = \frac{f_{\mathsf{num}}(x, y)}{f_{\mathsf{den}}(x, y)},$$

where f_{num} , f_{den} denote bivariate polynomials with coefficients in K.

▶ f ∈ K(E) defines a map

 $E(\bar{K}) \rightarrow \bar{K} \cup \{\infty\}, P \mapsto f(P),$

by substituting the coordinates of *P* into *f*, where $a/0 = \infty$ with $a \neq 0$.

► The cases ∞/∞ for P = O and 0/0 can be dealt with using something like L'Hospital's rule, and can be avoided for pairings.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Rational Functions - Example

$$K = \mathbb{F}_5, E : y^2 = x^3 + 2.$$

$$E(\mathbb{F}_p) = \{ \mathcal{O}, (2,0), (-2,2), (-2,-2), (-1,1), (-1,-1) \}$$

$$P = (2,0), Q = (-1,1).$$

$$x(P) = 2, x(Q) = -1, y(P) = 0, y(Q) = 1.$$

$$f = x/y: \quad f(Q) = -1/1 = -1, f(P) = \infty.$$

$$f = y^2 - x^3 - 2: \quad f(P) = f(Q) = 0, \dots \text{ thus } f = 0 \text{ in } \mathcal{K}(E).$$

$$f = (x^3 + 2)/y: \quad f(P) = 0/0 ?$$

$$But \ f = (x^3 + 2)/y = y(x^3 + 2)/y^2 = y: \quad f(P) = 0.$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves

Rational Functions

Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Rational Functions

Zeros and Poles:

- P is called a zero of f if f(P) = 0.
- P is called a pole of f if $(P) = \infty$.
- It is possible to attach integral orders to zeros and poles of f, denoted by ord_P(f).

Geometrical interpretation of $ord_P(f)$:

► "ord_P(f) is the intersection multiplicity of the curve defined by f = 0 and E."

Analytical interpretation of $\operatorname{ord}_P(f)$:

- "f has a Laurent series expansion at P and ord_P(f) is the exponent of the leading term"
- "The variable of the Laurent series expansion has a zero of order one at P."

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Rational Functions

Formal properties of ord_P:

Have

$$f(P) = 0, \quad f(P) \neq 0, \quad f(P) = \infty$$

precisely when

$$\operatorname{ord}_P(f)>0,\quad \operatorname{ord}_P(f)=0,\quad \operatorname{ord}_P(f)<0.$$

► For all
$$f, g \in K(E)$$
 have
 $\operatorname{ord}_P(fg) = \operatorname{ord}_P(f)\operatorname{ord}_P(g),$
 $\operatorname{ord}_P(f+g) \ge \min{\operatorname{ord}_P(f), \operatorname{ord}_P(g)},$
 $\operatorname{ord}_P(f+g) = \min{\operatorname{ord}_P(f), \operatorname{ord}_P(g)}$
 $\operatorname{if} \operatorname{ord}_P(f) \neq \operatorname{ord}_P(g),$
 $\operatorname{ord}_P(f) = \infty \text{ iff } f = 0.$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Rational Functions - Example

Let f = ax + by + c with $ab \neq 0$.

Recall f intersects E in three points P, Q, -(P + Q). Moreover, b = 0 and f vertical line iff Q = -P.

Let $P \neq O$ arbitrary.

- If f does not intersect E in P then ord_P(f) = 0, else ord_P(f) ≥ 1.
- If f intersects E in P but is not tangent to E in P then ord_P(f) = 1, else ord_P(f) ≥ 2.
- ▶ If f is tangent to E in P and $P \neq -2P$ then ord_P(f) = 2, else ord_P(f) = 3.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors Miller's Algorithm Tate Pairing Neil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Rational Functions - Example

Let f = ax + by + c with $ab \neq 0$.

Let P = O.

- The geometric interpretation of ord_P(f) more complicated than analytic interpretation, we use the latter.
- From y² = x³ + ax + b we "see" ord_P(y) = −3 and ord_P(x) = −2 when "P, x and y tend to infinity".
- Thus $\operatorname{ord}_P(f) = -3$ if $b \neq 0$, else $\operatorname{ord}_P(f) = -2$.

$$f = x/y$$
: ord _{\mathcal{O}} $(f) = -2 - (-3) = 1$.
 $f(\mathcal{O}) = 0, \quad (1/f)(\mathcal{O}) = \infty.$

Higher degree rational functions are more complicated to compute ...

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves

Rational Functions

Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Divisors

- Similar to an associative array data type with points as keys and integer coefficients as values.
- Divisors are finite formal sums of points with integer coefficients:

$$D = \sum_{P \in E(\bar{K})} \lambda_P \cdot (P)$$

with $\operatorname{ord}_P(D) = \lambda_P \in \mathbb{Z}$ and only finitely many $\lambda_P \neq 0$.

Sum of divisors taken coefficientwise.

Degree

$$\deg(D) = \sum_{P \in E(\bar{K})} \operatorname{ord}_P(D).$$

- deg is additive, $\deg(D_1 + D_2) = \deg(D_1) + \deg(D_2)$.
- D is supported in E(K) if P ∈ E(K) holds for all P with ord_P(D) ≠ 0.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors

Miller's Algorithn Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Ordinary Curves

Rational Functions and Divisors

• The divisor of $f \in K(E)$ is

$$\operatorname{div}(f) = \sum_{P \in E(\bar{K})} \operatorname{ord}_P(f)(P).$$

Such divisors are called principal.

- Have deg(div(f)) = 0.
- f is determined by div(f) up to multiplication by a non-zero constant from K.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors Miller's Algorithm Tate Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Rational Functions and Divisors - Example

Let f = ax + by + c with $ab \neq 0$.

Denote the intersection points of f with E by P, Q, -(P + Q). From the discussion before we have the cases

$$div(f) = \begin{cases} (P) + (Q) + (-(P+Q)) - 3(\mathcal{O}) & Q \neq \pm P \\ (P) + (-P) - 2(\mathcal{O}) & Q = -P \\ 2(P) + (-2P) - 3(\mathcal{O}) & Q = P \\ 3(P) - 3(\mathcal{O}) & Q = Q, 3P = \mathcal{O} \end{cases}$$

The formula

$$div(f) = (P) + (Q) + (-(P+Q)) - 3(O)$$

is correct for every case.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors

Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Rational Functions and Leading Coefficients

It is possible to define a leading coefficient of $f \neq 0$ in K:

- Define t = x/y. Then $\operatorname{ord}_{\mathcal{O}}(t) = 1$.
- Define $lc(f) = (f/t^{ord_{\mathcal{O}}(f)})(\mathcal{O}) \in K^{\times}$.
- f is called monic if lc(f) = 1.

• Have
$$lc(x) = lc(y) = 1$$
.

A monic rational function f is uniquely determined by its divisor div(f).

This is the first step towards an efficient representation of "exponentially sized" monic f by "polynomial sized" div(f).

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions

Divisors

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Picard Groups and Points Groups

- ► The set Div_K(E) of divisors supported in E(K) is an abelian group.
- Div⁰_K(E) denotes the subgroup of Div_K(E) of divisors of degree zero.
- ▶ Princ_K(E) denotes the subgroup of Div⁰_K(E) of principal divisors.
- The degree zero Picard group supported in E(K) is

 $\operatorname{Pic}^{0}_{K}(E) = \operatorname{Div}^{0}_{K}(E)/\operatorname{Princ}_{K}(E).$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Ordinary Curves

Picard Groups and Points Groups

The Abel-Jacobi map

$$AJ : \operatorname{Pic}^{0}_{K}(E) \to E(K), \ \left[\sum_{P \in E(K)} \lambda_{P}(P)\right] \mapsto \sum_{P \in E(K)} \lambda_{P}P$$

is an isomorphism.

Consequences:

•
$$\sum_{P \in E(K)} \lambda_P(P)$$
 of degree zero is principal iff

$$\sum_{\mathsf{P}\in\mathsf{E}(\mathsf{K})}\lambda_{\mathsf{P}}\mathsf{P}=\mathcal{O}.$$

 Efficient product representation of rational functions, Miller's algorithm.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions

Divisors Miller's Algorith

Fate Pairing Neil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Product Representation

Let f be a monic rational function supported in E(K).

Then f can be written in many ways as a product of quotients of linear functions.

Write div $(f) = \sum_{i=1}^{r} \lambda_i P_i$ and $m = \lceil \max \log_2(|\lambda_i|) \rceil$. Then there are monic rational functions $f_{i,j}$ such that

$$f = \prod_{i=0}^{m} \prod_{j=1}^{2r+1} f_{i,j}^{2^{i}}$$

The $f_{i,j}$ are of the form $f_{i,j} = \frac{g_{i,j}}{h_{i,j}}$ with $g_{i,j} \in K[x, y]$ and $h_{i,j} \in K[x]$ at most linear in x and y.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors **Miller's Algorithm** Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Product Representation

Algorithmic implications:

- The storage requirements of f in this product form are linear in the storage requirements for div(f).
- Evaluations f(P) can be efficiently computed (provided P does not occur as a pole of one of the f_{i,j}, which it usually doesn't).

Miller's algorithm computes product repesentations or directly a function evaluation f(P) for monic f with prescribed div(f).

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors **Miller's Algorithm** Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Miller's Algorithm

Let D be a divisor of degree zero supported in E(K). We define

$$\mathsf{red}(D) = (\mathsf{AJ}([D])) - (\mathcal{O})$$

and f_D as the monic function of K(E) with

$$\mathsf{div}(f_D) = D - \mathsf{red}(D)$$

If D is principal then
$$\operatorname{div}(f_D) = D$$
.
 $f_{D_1+D_2} = f_{D_1} \cdot f_{D_2} \cdot f_{\operatorname{red}(D_1)+\operatorname{red}(D_2)}$.

Proof: Since
$$\operatorname{red}(D_1 + D_2) = \operatorname{red}(\operatorname{red}(D_1) + \operatorname{red}(D_2))$$
,
 $\operatorname{div}(f_{D_1+D_2}) = D_1 + D_2 - \operatorname{red}(D_1 + D_2)$
 $= D_1 - \operatorname{red}(D_1) + D_2 - \operatorname{red}(D_2) + \operatorname{red}(D_1) + \operatorname{red}(D_2) - \operatorname{red}(D_1 + D_2)$
 $= \operatorname{div}(f_{D_1}) + \operatorname{div}(f_{D_2}) + \operatorname{div}(f_{\operatorname{red}(D_1) + \operatorname{red}(D_2)})$.

As all functions are monic we obtain the equality.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors **Miller's Algorithm** Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Miller's Algorithm

Recursive strategy for f_D :

- ► Use f_{D1+D2} = f_{D1} · f_{D2} · f_{red(D1)+red(D2)} and suitable addition chain.
- Compute f_D and red(D) simultaneously.
- *D* can be written as sum of divisors of the form (P) (O) and (O) (Q).

For example, write

$$D = \sum_{i=0}^{m} 2^i \sum_{j=1}^{r} \lambda_{i,j}((P_j) - (\mathcal{O}))$$

with $\lambda_{i,j} \in \{0, \pm 1\}$. The addition chain is then executed by adding the terms of the inner sum for i = 0, then multiplying by 2, then adding the terms of the inner sum for i = 1, then multiplying by 2, and so on.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors **Miller's Algorithm** Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Miller's Algorithm

Terminating functions f_D :

 $f_{(P)+(Q)-2(\mathcal{O})} = \begin{cases} \text{"fraction of the line through } P, Q, \\ -(P+Q) \text{ divided by the vertical line} \\ \text{through } P+Q, -(P+Q) \text{"} \end{cases}$

since

$$div(f_{(P)+(Q)-2(\mathcal{O})}) = (P) + (Q) - 2(\mathcal{O}) - ((P+Q) - (\mathcal{O}))$$

= (P) + (Q) + (-(P+Q)) - 3(\mathcal{O}) -
((P+Q) + (-(P+Q)) - 2(\mathcal{O})).

The leading coefficient of y, x or 1 need to be one, in this order of occurence.

Pairings

F. Hess

Pairings in General

Foundations Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Function Evaluation

Let f be a K-rational function and D a divisor supported in E(K) that contains no zero or pole of f. Define

$$f(D) = \prod_{P \in E(K)} f(P)^{\operatorname{ord}_P(D)} \in K^{\times}.$$

This has a bilinearity property:

•
$$f(D_1 + D_2) = f(D_1) + f(D_2)$$
.

•
$$(fg)(D) = f(D)g(D).$$

Weil reciprocity:

$$f(\operatorname{div}(g)) = g(\operatorname{div}(f))$$

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors **Miller's Algorithm** Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Finite Abelian Groups

Let G be a finite abelian group. There are r integers $c_i \ge 2$ with $c_i | c_{i+1}$ and s prime powers $p_i^{e_j} \ge 2$ such that

$$G \cong \mathbb{Z}/c_1\mathbb{Z} \times \cdots \times \mathbb{Z}/c_r\mathbb{Z} \ \cong \mathbb{Z}/p_1^{e_1} \times \cdots \times \mathbb{Z}/p_s^{e_s}\mathbb{Z}$$

The c_i and $p_j^{e_j}$ are uniquely determined (the latter only up to permutation).

Define the subgroup of *n*-torsion elements

$$G[n] = \{g \in G \mid ng = 0\}.$$

Have $G[n] \cong G/nG$.

Proof: Reduces to the case $G = \mathbb{Z}/nm\mathbb{Z}$. Then $G[n] = \{ [\lambda m] | \lambda \in \mathbb{Z} \}$ and $G \to G[n], x \mapsto mx$ is an epimorphism with kernel nG.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Duality

Let G_1, G_2, G_T be finite abelian groups with G_T cyclic, and

 $e: \mathit{G}_1 \times \mathit{G}_2 \to \mathit{G}_T$

a bilinear map.

Then

- Left kernel $K_1 = \{x \in G_1 \mid e(x, y) = 0 \text{ for all } y \in G_2\}.$
- Right kernel $K_2 = \{y \in G_2 \mid e(x, y) = 0 \text{ for all } x \in G_1\}.$
- Obtain bilinear map $e': G_1/K_1 \times G_2/K_2 \rightarrow G_T$.
- Left and right kernel of e' are 0, hence e' is non-degenerate.

Have $G_1/K_1 \cong G_2/K_2$.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Tate Pairing

Assume $\#K^{\times}/(K^{\times})^n = \#K^{\times}[n] = n$. Is defined in first stage as

$$t_n: E(K)[n] \times E(K) \to K^{\times}/(K^{\times})^n$$

as follows:

Let $P \in E(K)[n]$ and $Q \in E(K)$. Choose divisors D_1, D_2 in $\operatorname{Div}^0_K(E)$ with

$$AJ([D_1]) = P$$
 and $AJ([D_2]) = Q$

such that D_1 and D_2 have no points in common. Choose a K-rational function f such that $div(f) = nD_1$. Then

$$t_n(P,Q) = f(D_2) \cdot (K^{\times})^n$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Choice of divisors

A possible choice of divisors is as follows:

Take
$$D_2 = (Q) - (\mathcal{O})$$
.
Then $\mathsf{AJ}([D_2]) = Q - \mathcal{O} = Q$, as required.

Now we cannot take $D_1 = (P) - (O)$ because it has points in common with D_2 .

Choose $T \in E(K)$ such that $\mathcal{O}, Q, P + T, T$ are all distinct.

Then take $D_1 = (P + T) - (T)$. We have $AJ([D_1]) = P + T - T = P$, as required.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Well Definedness

Well defined in first argument:

- ► Choose D'₁ with AJ([D'₁]) = P. Then D'₁ D₁ is principal.
- Thus there is g with $D'_1 = D_1 + \operatorname{div}(g)$ and $nD'_1 = nD_1 + \operatorname{div}(g^n)$.
- ► Choose f' with div $(f') = nD'_1$. Then there is $c \in K^{\times}$ with $f' = cg^n f$.

▶ Since deg(D₂) = 0 we have

$$f'(D_2) = (cg^n f)(D_2) = c(D_2)g(D_2)^n f(D_2)$$

= $c^{\deg(D_2)}g(D_2)^n f(D_2)$
= $f(D_2) \mod (K^{\times})^n$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Well Definedness

Well defined in second argument:

- ► Choose D'₂ with AJ([D'₂]) = Q. Then D'₂ D₂ is principal.
- Thus there is g with $D'_2 = D_2 + \operatorname{div}(g)$.
- Using Weil reciprocity we get

$$f(D'_2) = f(D_2 + \operatorname{div}(g)) = f(D_2)f(\operatorname{div}(g))$$

= $f(D_2)g(\operatorname{div}(f)) = f(D_2)g(nD_1) = f(D_2)g(D_1)^n$
= $f(D_2) \mod (K^{\times})^n$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Bilinearity

Bilinear in first argument:

• Given P, P' and D_1, D'_1 with

$$AJ([D_1]) = P$$
 and $AJ([D'_1]) = P'$

we have

$$\begin{aligned} \mathsf{AJ}([D_1 + D_1']) &= \mathsf{AJ}([D_1] + [D_2]) \\ &= \mathsf{AJ}([D_1]) + \mathsf{AJ}([D_2]) = P + P'. \end{aligned}$$

• Choose f, f' with div(f) = nD and $div(f') = nD'_1$. Then

$$\operatorname{div}(ff') = nD_1 + nD_1' = n(D_1 + D_1').$$

Thus

$$t_n(P + P', Q) = (ff')(D_2) \cdot (K^{\times})^n = f(D_2)f'(D_2) \cdot (K^{\times})^n = t_n(P, Q)t_n(P', Q)$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves
 Ordinary Curves

Bilinearity

Bilinear in second argument:

• Given Q, Q' and D_2, D'_2 with

$$AJ([D_2]) = Q$$
 and $AJ([D'_2]) = Q'$

we have similarly

$$\mathsf{AJ}([D_2+D_2'])=P+P'.$$

Then

$$t_n(P, Q + Q') = f(D_2 + D'_2) \cdot (K^{\times})^n = f(D_2)f(D'_2) \cdot (K^{\times})^n = t_n(P, Q)t_n(P, Q').$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Non-degenerate

Tricky part (without proof here): The left kernel of t_n is 0.

Non-degenerate:

- We have $t_n(P, nQ) = t_n(P, Q)^n = 1$.
- So right kernel K₂ of tn contains nE(K) and we get pairing

$$t_n: E(K)[n] \times E/K_2 \to K^{\times}/(K^{\times})^n.$$

• Since $E(K)/nE(K) \cong E(K)[n] \cong E/K_2$ we have

$$K_2 = nE(K).$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm

Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Ordinary Curves

Weil Pairing

Assume $\#K^{\times}/(K^{\times})^n = \#K^{\times}[n] = n$. Is defined as

$$e_n: E(K)[n] \times E(K)[n] \to K^{\times}[n]$$

as follows:

Let $P \in E(K)[n]$ and $Q \in E(K)[n]$. Choose divisors D_1, D_2 in $\text{Div}^0_K(E)$ with

$$\mathsf{AJ}([D_1]) = P$$
 and $\mathsf{AJ}([D_2]) = Q$

not necessarily coprime.

Choose K-rational functions f_1 , f_2 such that $div(f_1) = nD_1$ and $div(f_2) = nD_2$.

Then

$$e_n(P,Q) = \prod_{P \in E(K)} (-1)^{n \operatorname{ord}_P(D_1) \operatorname{ord}_P(D_2)} \frac{f_2^{\operatorname{ord}_P(D_1)}}{f_1^{\operatorname{ord}_P(D_2)}}(P)$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curv

Ordinary Curves

Weil Pairing

Remarks:

- Definition given here more general than usually seen in cryptography.
- There is a mathematical background of the Tate- and Weil pairings connecting the two. Apparently no specific use in cryptography though.

Properties:

- e_n is bilinear and alternating: $e_n(P, P) = 1$ for all P.
- e_n is non-degenerate if and only if $E(K)[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.
- Proofs are similar to the Tate pairing case.
- There are special cases where t_n is non-degenerate and e_n is degenerate. Usually not considered in cryptography.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairing Inversion

Standard Setting

Embedding Degree

Let gcd(q, n) = 1.

The embedding degree k is the minimal number $k \ge 1$ such that

$$q^k \equiv 1 \mod n$$
.

Let
$$K = \mathbb{F}_{q^k}$$
. Then $k | \phi(n)$ and
 $K^{\times} / (K^{\times})^n \cong K^{\times}[n] \cong \mathbb{Z}/n\mathbb{Z}$.
Here $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Embedding Degree

Let *E* be an elliptic curve over \mathbb{F}_q with

$$E(\mathbb{F}_q)[n] \cong \mathbb{Z}/n\mathbb{Z}$$

and gcd(k(q-1), n) = 1.

The embedding degree satisfies $k \ge 2$. Moreover, $E(K)[n] \cong E(K)/nE(K) \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ and we get pairings $t_n : E(K)[n] \times E(K)/nE(K) \to K^{\times}/(K^{\times})^n$, $e_n : E(K)[n] \times E(K)[n] \to K^{\times}[n]$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Frobenius Eigenvalues

Let

- π the Frobenius endomorphism of E, $(x, y) \mapsto (x^q, y^q)$,
- $\chi = x^2 tx + q \in \mathbb{Z}[x]$ its characteristic polynomial,
- Have $\chi(1) = \#E(\mathbb{F}_q) \equiv 0 \mod n$ thus $\chi(q) \equiv 0 \mod n$.
- Thus π has eigenvalues 1 and q.

Then
$$E(K)[n] = \langle P_0 \rangle \times \langle Q_0 \rangle$$
 with
 $\pi(P_0) = P_0$ and $\pi(Q_0) = qQ_0$.
Therefore $P_0 \in E(\mathbb{F}_q)$ and $Q_0 \in E(K) \setminus \bigcup_{\mathbb{F}_q \subseteq L \subsetneq K} E(L)$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Frobenius Eigenvalues - Remarks

From $\chi(1) \equiv 0 \mod n$ we know

$$(x-1)(x-a) = x^2 - tx + q \bmod n$$

for some $a \in \mathbb{Z}$. Comparing absolute coefficients shows

 $a \equiv q \mod n$.

The general equality $\chi(1) = \#E(\mathbb{F}_q)$ is out of the scope of these slides.

One usually argues using properties of dual isogenies roughly as follows: First we have $\widehat{\chi(\pi)} = \chi(\hat{\pi}) = 0$ and $\hat{\pi} \neq \pi$, so $\chi(t) = (t - \pi)(t - \hat{\pi})$ where $\hat{\cdot}$ denotes taking the dual isogeny. Then $\pi - 1$ is a separable isogeny, hence

$$\#E(\mathbb{F}_q) = \#\ker(\pi-1) = \deg(\pi-1) = (\pi-1)(\hat{\pi}-1) = \chi(1).$$

See for example the book by Silverman.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Frobenius Eigenvalues

The following conditions are equivalent:

1.
$$gcd(\#E(K)/n^2, n) = 1.$$

2. $E(K) \cong \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ with gcd(d, n) = 1.

3.
$$E(K)[n] \cap E(K)/nE(K) = 0.$$

4.
$$gcd((u^k - 1)/n, n) = 1$$
 and $gcd((v^k - 1)/n, n) = 1$.

Here let

•
$$\chi(u) \equiv 0 \mod n^2$$
 for $u \in \mathbb{Z}$ with $u \equiv 1 \mod n$.

•
$$\chi(v) \equiv 0 \mod n^2$$
 for $v \in \mathbb{Z}$ with $u \equiv q \mod n$.

We assume that (any one of) these conditions holds true in the following.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Ordinary Curves

Reduced Tate Pairing

So far have $t_n: E(\mathcal{K})[n] \times E(\mathcal{K})/nE(\mathcal{K}) \to \mathcal{K}^{\times}/(\mathcal{K}^{\times})^n$.

Have isomorphisms:

•
$$\mathcal{K}^{\times}/(\mathcal{K}^{\times})^n \to \mathcal{K}^{\times}[n], x \mapsto x^{(\#\mathcal{K}-1)/n}$$

- ▶ $\phi: E(K)[n] \rightarrow E(K)/nE(K), P \mapsto P + nE(K)$ due to the condition $E(K)[n] \cap nE(K) = 0$.
- Elements of K×[n] and E(K)[n] have unique bit representation thus these groups are more convenient.

Obtain reduced Tate pairing

$$t_n^{\text{red}} : E(\mathcal{K})[n] \times E(\mathcal{K})[n] \to \mathcal{K}^{\times}[n],$$
$$t_n^{\text{red}}(\mathcal{P}, \mathcal{Q}) = t_n(\mathcal{P}, \phi(\mathcal{Q}))^{(\#\mathcal{K}-1)/n}$$

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Weil Pairing and Reduced Tate Pairing

If D_1 and D_2 are coprime then the Weil pairing simplifies to

 $e_n(P,Q) = f_2(D_1)/f_1(D_2).$

Thus we obtain the following computational relation:

1.
$$e_n(P,Q)^{(\#K-1)/n} = \frac{t_n^{\text{red}}(Q,P)}{t_n^{\text{red}}(P,Q)}.$$
2.
$$t_n^{\text{red}}(P,Q) = t_n^{\text{red}}(Q,P) \text{ for all } P,Q \in E(K)[n]$$
if and only if $n \mid (\#K-1)/n.$

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairing Inversion

Pairing Properties

Action of Galois

Recall σ is the *q*-power Frobenius automorphism of *K*. Operates on the objects related to *E* by coefficientwise application:

For
$$x \in K$$
 write $x^{\sigma} = \sigma(x) = x^{q}$.

- Write $E^{\sigma}: y^2 = x^3 + a^{\sigma}x + b^{\sigma}$. Since *E* is defined over \mathbb{F}_q we have $E^{\sigma} = E$.
- ► For $P \in E(K)$ write $P^{\sigma} = (x(P)^{\sigma}, y(P)^{\sigma})$. Have $P^{\sigma} \in E^{\sigma}(K) = E(K)$. Also define $\mathcal{O}^{\sigma} = \mathcal{O}$.
- For f ∈ K(E) write f^σ for the fctn in K(E) obtained from f by application of σ to the coefficients of f.

• E.g.
$$(ax)^{\sigma} = a^{\sigma}x^{\sigma} = a^{\sigma}x$$
.

Similarly for divisors and other objects.

Note $P^{\sigma} = \pi(P)$ and $f^{\sigma}(P^{\sigma}) = f(P)^{\sigma}$.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Orthogonality

Let p_n denote t_n^{red} or e_n .

The points P_0 and Q_0 are a "orthogonal" basis of E(K)[n]:

1.
$$p_n(P_0, P_0) = p_n(Q_0, Q_0) = 1.$$

2. $\langle p_n(P_0, Q_0) \rangle = \langle p_n(Q_0, P_0) \rangle = K^{\times}[n].$

Proof: We have $p_n(P_0, P_0) = 1$ since $\mathbb{F}_q \cap K^{\times}[n] = 1$. Now in general $(f_D)^{\sigma} = f_{D^{\sigma}}$. This implies the Galois invariance

$$p_n(P,Q)^{\sigma}=p_n(P^{\sigma},Q^{\sigma})$$

for all $P, Q \in E(K)[n]$. We obtain

 $p_n(Q_0, Q_0)^{\sigma} = p_n(Q_0^{\sigma}, Q_0^{\sigma}) = p_n(qQ_0, qQ_0) = p_n(Q_0, Q_0)^{q^2} = p_n(Q_0, Q_0)^{\sigma^2},$

hence $p_n(Q_0, Q_0) = p_n(Q_0, Q_0)^{\sigma}$ and $p_n(Q_0, Q_0) \in \mathbb{F}_q \cap K^{\times}[n] = 1$. The second assertion follows from the first and the non-degeneracy.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Ordinary Curves

Trace Map

Let $T \in E(K)[n]$ and define the trace map

$$\phi_0(T) = c \sum_{i=0}^{k-1} T^\sigma$$

with $ck \equiv 1 \mod n$ and $\phi_1(T) = T - \phi_0(T)$.

Then

•
$$\phi_0(T)^{\sigma} = \phi_0(T)$$
, hence $\phi_0(T) \in E(\mathbb{F}_q)[n]$.
• $\phi_0(T) = ckT = T$ for $T \in \langle P_0 \rangle$.
• $\phi_0(T) = (c \sum_{i=0}^{k-1} q^i)T = c \frac{\#K-1}{q-1}T = 0$ for $T \in \langle Q_0 \rangle$
• $\phi_0(\lambda P_0 + \mu Q_0) = \lambda P_0$.
• $\phi_1(\lambda P_0 + \mu Q_0) = \mu Q_0$.

There are efficiently computable "orthogonal" projections ϕ_0 , ϕ_1 of E(K)[n] onto $\langle P_0 \rangle$ with kernel $\langle Q_0 \rangle$ and onto $\langle Q_0 \rangle$ with kernel $\langle P_0 \rangle$ respectively.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Viiller's Algorithm Fate Pairing Neil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Orthogonal decomposition

The isomorphism

$$\langle P_0 \rangle \times \langle Q_0 \rangle \to E(\mathcal{K})[n], \quad (P,Q) \mapsto P+Q$$

can be efficiently computed in both directions.

Proof: The direction $(P, Q) \mapsto P + Q$ is obvious. For the other direction let $T \in E(K)[n]$. Define $P = \phi_0(T)$ and $Q = \phi_1(T)$. Then $P + Q = \phi_0(T) + \phi_1(T) = \phi_0(T) + T - \phi_0(T) = T$, as required.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairings on Cyclic Subgroups

We obtain

Efficiently computable pairings

$$E(\mathbb{F}_q)[n] \times G' \to K^{\times}[n]$$

for any cyclic subgroup $G' \subseteq E(K)[n]$ of order *n* with $G' \neq E(\mathbb{F}_q)[n]$ are possible.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Rational Pairings

Rationality question:

- Have $p_n(P,P) = 1$ for all $P \in E(\mathbb{F}_q)[n]$.
- Thus one argument needs to be defined in E(K) proper.
- ► K is a huge field, absolutely want to reduce computations in K to a minimum.
- ► Can we represent pairing arguments in E(F_q) and map one argument homomorphically to E(K) prior to pairing computation?

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properti

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Rational Pairings - Main Theorem

Efficiently computable pairings

$$E(\mathbb{F}_q)[n] \times E'(\mathbb{F}_{q^{k/\operatorname{gcd}(k,d)}})[n] \to K^{\times}[n]$$

with an auxiliary E' defined over $\mathbb{F}_{q^{k/\gcd(k,d)}}$ are possible under the following conditions:

1. E is supersingular.

Then also E = E' and d = k possible.

2. *E* is ordinary, char(K) \neq 2, 3 and

$$d = \begin{cases} 2 & ab \neq 0\\ 4 & b = 0\\ 6 & a = 0 \end{cases}$$

For supersingular curves we also have k = 2, 3, 4, 6 only. In the following outline why this works.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Propert

Orthogonality

Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Main Theorem - Construction

 $m = \gcd(k, d).$

 $E(\mathbb{F}_{q^k})[n] \cong E'(\mathbb{F}_{q^k})[n] \cong E(\mathbb{F}_q)[n] \oplus E'(\mathbb{F}_{q^{k/m}})[n]$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

airing Properti

Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Isogenies and Isomorphisms

Let E_1, E_2 be elliptic curves defined over \mathbb{F}_q . An isogeny $\psi: E_1 \to E_2$ is a map

$$\psi: E_1(\overline{\mathbb{F}}_q) \to E_2(\overline{\mathbb{F}}_q)$$

with the following properties:

- 1. ψ is defined by rational functions $x_{\psi}, y_{\psi} \in K(E)$ such that $\psi(P) = (x_{\psi}(P), y_{\psi}(P))$.
- 2. ψ is a homomorphism with finite kernel.

If $\gcd(\deg(\psi),q)=1$ then

 $\deg(\psi) = \# \ker(\psi) \approx \max \text{ degrees in } x_{\psi}, y_{\psi}.$

The isogeny ψ is called an isomorphism if ker $(\psi) = 0$. Then

- ► exists isomorphism ψ^{-1} such that $\psi \circ \psi^{-1} = id$ and $\psi^{-1} \circ \psi = id$.
- $x_{\psi} \in K[x]$ and $y_{\psi} \in K[x, y]$ are linear in x and y.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Propert

Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Isogenies and Isomorphisms - Example

$$E_1: y^2 = x^3 + a_1x + b_1, \ E_2: y^2 = x^3 + a_2x + b_2 \ \text{over} \ \mathbb{F}_p$$

with $p \neq 2, 3$.

All isomorphisms $\phi: E_1 \rightarrow E_2$ are of the form

$$\phi = (u^2 x, u^3 y)$$

with
$$u\in\overline{\mathbb{F}}_{p}$$
 and $u^{4}a_{1}=a_{2}$ and $u^{6}b_{1}=b_{2}.$

There can be 0, 2, 3, 4, 6 solutions u.

The Frobenius endomorphism $\pi = (x^p, y^p)$ is also an isogeny. Here incidentally $\ker(\pi) = 0$ but $\deg(\pi) = p$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Propert

Orthogonality

Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Isogenies - Application

Let E' be an elliptic curve over \mathbb{F}_q with $E'(\mathbb{F}_q)[n] \cong \mathbb{Z}/n\mathbb{Z}$ and

$$\psi: E' \to E$$

an isogeny defined over \overline{K} of degree coprime to qn.

Then ψ is defined over K and yields an isomorphism $E'(K)[n] \rightarrow E(K)[n].$

Proof: Firstly E' has the same embedding degree like E and $E'(\mathcal{K})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$. Since $E'(\mathcal{K})[n] = E'(\overline{\mathcal{K}})[n]$, $E(\overline{\mathcal{K}})[n] = E(\mathcal{K})[n]$ and ψ has coprime degree we have an injective homomorphism $E'(\mathcal{K})[n] \to E(\mathcal{K})[n]$, whence an isomorphism. Furthermore

$$(\psi^{\sigma^k} - \psi)(P) = \psi^{\sigma^k}(P) - \psi(P) = \psi(P)^{\sigma^k} - \psi(P) = \mathcal{O}$$

for all $P \in E'(\mathbb{F}_q)[n]$, thus $\psi^{\sigma^k} - \psi = 0$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Propertie

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Isogenies - Application

E' is "pairing-equivalent" to E:

- Same embedding degree
- $E(\mathbb{F}_q)[n] \cong E'(\mathbb{F}_q)[n]$ and $E(K)[n] \cong E'(K)[n]$
- $E'(K)[n] \cap nE'(K) = 0$

Proof: Tate implies #E'(K) = #E(K). So π^k has the same characteristic polynomial on E and E' and the same eigenvalues as in a condition on slide 48.

Write

$$E'({\cal K})\cong \langle P_0'
angle imes \langle Q_0'
angle$$
 with $\pi(P_0')=P_0'$ and $\pi(Q_0')=qQ_0'.$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properti

Orthogonality

Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Modified Pairings

Consider now modified pairings

 $G \times G' \to K^{\times}[n], \quad (P,Q) \mapsto p_n(P,\psi(Q))$

for $G \subseteq E(K)[n]$, $G' \subseteq E'(K)[n]$ and $\psi : E' \to E$.

Usually G and G' chosen as cyclic groups.

Need to know $\psi(P'_0)$ and $\psi(Q'_0)$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properti

Orthogonality

Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Need to know $\psi(P'_0)$ and $\psi(Q'_0)$.

Write

$$(\psi(P'_0),\psi(Q'_0))=(P_0,Q_0)\begin{pmatrix}a&c\\b&d\end{pmatrix}.$$

Observe $\pi\psi = \psi^{\sigma}\pi$. Then

$$\psi^{\sigma}(P_0') = \psi^{\sigma}(\pi(P_0')) = \pi(\psi(P_0)) = aP_0 + qbQ_0$$

$$\psi^{\sigma}(Q_0') = q^{-1}\psi^{\sigma}(\pi(Q_0')) = q^{-1}\pi(\psi(Q_0)) = q^{-1}(cP_0 + qdQ_0)$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

airing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curv

Ordinary Curves

From this we get

$$(\psi^{\sigma}(P_0'),\psi^{\sigma}(Q_0'))=(P_0,Q_0)egin{pmatrix} a & q^{-1}c\ qb & d \end{pmatrix}.$$

Case $\psi^{\sigma} = \psi$: Then $c \equiv b \equiv 0 \mod n$ and

$$\psi(P'_0) \in \langle P_0 \rangle$$
 and $\psi(Q'_0) \in \langle Q_0 \rangle$.

Case $\psi^{\sigma} \neq \psi$ "distortion maps":

Then $(\psi^{\sigma} - \psi)(P'_0)$ and $(\psi^{\sigma} - \psi)(Q'_0)$ generate $\langle Q_0 \rangle$ and $\langle P_0 \rangle$ respectively.

Practice: Usually ψ already satisfies these conditions in place of $\psi^{\sigma} - \psi$ and moreover deg $(\psi) = 1$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Consequences for supersingular elliptic curves:

- ► *E* supersingular with embedding degree > 1 iff exists $\psi \in \text{End}(E)$ st. $\psi^{\sigma} \neq \psi$.
- Thus have E' = E, $P'_0 = P_0$ and $Q'_0 = Q_0$.
- Have efficiently computable ψ ∈ End(E) with ψ(P₀) = Q₀ and ψ(Q₀) = P₀.
- Can obtain modified pairings for any cyclic subgroups of E(K) using φ₀, φ₁ or ψ.

Symmetric pairings on $G = E(\mathbb{F}_q)[n]$ for supersingular elliptic curves possible!

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

First consequences for ordinary elliptic curves:

- *E* ordinary iff $\psi^{\sigma} = \psi$ for all $\psi \in \text{End}(E)$.
- Consider first E' = E, $P'_0 = P_0$ and $Q'_0 = Q_0$.
- There is no ψ with $\psi(P'_0) \in \langle Q_0 \rangle$ or $\psi(Q'_0) \in \langle P_0 \rangle$.
- No symmetric pairings on $G = E(\mathbb{F}_q)[n]$.

Distortion maps do not exist for ordinary elliptic curves.

Then try $E' \neq E$.

Need to construct E' over a subfield L of K such that $E'(L)[n] \cong \mathbb{Z}/n\mathbb{Z}$ and there is $\psi : E' \to E$...

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Twists

An elliptic curve E' over \mathbb{F}_q is called a twist of E over \mathbb{F}_q of degree d if there is an isomorphism $\psi: E' \to E$ such that $\psi^{\sigma^d} = \psi$ and d is minimal with this property.

Assume *E* ordinary, char(\mathbb{F}_q) $\neq 2, 3$.

• Then Aut(E) is cyclic of order
$$d = \begin{cases} 2 & ab \neq 0 \\ 4 & b = 0 \\ 6 & a = 0 \end{cases}$$
.

▶ $q \equiv 1 \mod d$.

- For every u ∈ Aut(E) there is a twist E_u of E of degree ord(u).
- The corresponding $\psi_u : E_u \to E$ satisfies $u\psi_u^{\sigma} = \psi_u$.
- Every twist E' of E is obtained this way up to twists of degree one.
- There are explicit formulae for E_u , ψ_u and $\#E_u(\mathbb{F}_q)$.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Twists - Example

$$E: y^2 = x^3 + b$$
, $E': y^2 = x^3 + b'$ over \mathbb{F}_p with $p \neq 2, 3$.

All automorphisms $u: E \rightarrow E$ are of the form

$$\phi = (z^2 x, z^3 y)$$

with $u \in \overline{\mathbb{F}}_p$ and $z^6 = 1$. *E* ordinary means $p \equiv 1 \mod 6$. Then six automorphisms defined over \mathbb{F}_p .

All isomorphisms $\psi: E' \to E$ are of the form

$$\psi = (w^2 x, w^3 y)$$

with $w \in \overline{\mathbb{F}}_p$ and $w^6 = b/b'$. So for twist of degree 6 take w as a 6-th root generating the Kummer extension $\mathbb{F}_{p^6}/\mathbb{F}_p$.

Then ψ/ψ^{σ} is the automorphism corresponding to the 6-th root of unity w/w^{σ} .

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Twists

Let u ∈ Aut(E) with m = ord(u) = gcd(k, d) and let E' denote the corresponding twist of E over F_{q^{k/m}} of degree m.

• Write
$$P_{0,u} = \psi_u^{-1}(P_0)$$
 and $Q_{0,u} = \psi_u^{-1}(Q_0)$.

• We have
$$\psi_u^{-1}u\pi^{k/m}\psi_u = \psi_u^{-1}u\psi_u^{\sigma^{k/m}}\pi^{k/m} = \pi^{k/m}$$
 and

$$u(P_0) = \lambda P_0, \quad u(Q_0) = \lambda^{-1} Q_0$$

für $\lambda^m \equiv 1 \mod n$ with same order as u.

Thus

$$\pi^{k/m}(P_{0,u}) = \lambda P_{0,u}, \quad \pi^{k/m}(Q_{0,u}) = \lambda^{-1} q^{k/m} Q_{0,u}.$$

• There is a unique choice of u such that $\lambda \equiv q^{k/m} \mod n$. Then

$$\pi^{k/m}(P_{0,u}) = q^{k/m}P_{0,u}, \quad \pi^{k/m}(Q_{0,u}) = Q_{0,u}.$$

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curv

Twists

Final consequences for ordinary elliptic curves:

- ▶ Let E' be such a twist of degree m = gcd(k, d) over $\mathbb{F}_{q^{k/m}}$ and $\psi : E' \to E$ the corresponding isomorphism.
- ▶ Then $\psi^{\sigma^{k/m}} \neq \psi$ and

$$\pi^{k/m}(Q'_0) = q^{k/m}Q'_0, \quad \pi^{k/m}(P'_0) = P'_0$$

for
$$Q_0'=\psi^{-1}(P_0)$$
 and $P_0'=\psi^{-1}(Q_0).$

• Thus ψ is a distortion map.

Efficiently computable pairings

$$E(\mathbb{F}_q)[n] \times E'(\mathbb{F}_{q^{k/m}})[n] \to K^{\times}[n]$$

are possible.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairing Inversion

Pairing Functions

Minimize Function Evaluations

Minimize number of function evaluations:

- Given $P, Q \in E(K)[n]$.
- ► Take D₂ = (Q) (O) and D₁ = (P + T) (T) where T can be chosen arbitrarily in E(K) such that all points O, Q, T, P + T are distinct.
- There is g such that $f_{nD_1} = f_{n((P)-(\mathcal{O}))}g^n$.

Then

$$t_n(P, Q) = f_{nD_1}(D_2)^{(\#K-1)/n}$$

= $f_{nD_1}(Q)^{(\#K-1)/n} \cdot f_{nD_1}(\mathcal{O})^{-(\#K-1)/n}$
= $f_{nD_1}(Q)^{(\#K-1)/n} = f_{n((P)-(\mathcal{O}))}g^n(Q)^{(\#K-1)/n}$
= $f_{n((P)-(\mathcal{O}))}(Q)^{(\#K-1)/n}$.

▶ For the last we have to and may assume $Q \neq P, O$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Denominator Elimination

Use notation from above.

Consider $\psi : E' \to E$ with $\psi(P'_0) = Q_0$, $\psi(Q'_0) = P_0$ and $\psi^{\sigma} \neq \psi$, $\psi^{\sigma^2} = \psi$.

Let $x : E \to \mathbb{P}^1$ and $x' : E' \to \mathbb{P}^1$ denote the x-coordinate functions.

We have $x(Q_0) = x(\psi(P'_0)) \in \mathbb{F}_q$. By symmetry, $x(Q'_0) = x(\psi^{-1}(P_0)) \in \mathbb{F}_q$.

Implication: If embedding degree even then the $h_{i,j}$ in Miller's algorithm can be discarded.

Proof:
$$\psi^{\sigma}\psi^{-1} \in \operatorname{Aut}(E)$$
 has order 2, hence $\psi^{\sigma}\psi^{-1} = [-1]$. Then
 $x \circ \psi^{\sigma}\psi^{-1} = x \circ [-1] = x$, and $x \circ \psi^{\sigma} = x \circ \psi$. So
 $x(\psi(P'_0)) = x(\psi^{\sigma}(P'_0)) = x(\psi(P'_0)^{\sigma}) = x(\psi(P'_0))^{\sigma}$. Finally,
 $h_{i,j}(x)^{(\#K-1)/n} = 1$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Final Exponentiation

We wish to compute $z^{(q^k-1)/n}$ in $K = \mathbb{F}_{q^k}$ for k even.

We have the following factorisation of $(q^k - 1)/n$:

$$(q^{k}-1)/n = (q^{k/2}-1) \cdot \frac{q^{k/2}+1}{\Phi_{k}(q)} \cdot \frac{\Phi_{k}(q)}{n}$$

where Φ_k is the *k*-th cyclotomic polynomial.

Here the second factor is a polynomial in q with small coefficients and $\Phi_k(q)$ is divisible by n.

Thus raise z to the power of the first two factors, using q-powering tricks, and finally raise to the power $\Phi_k(q)/n$.

Reduction of exponent bit length by roughly $\phi(k)/k$. Expansion of last factor to base q leads to further speed-up.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Weil Pairing

Similar reductions can be done for the Weil pairing.

Let $P, Q \in E(K)[n]$ and $D_1 = (P) - (\mathcal{O})$, $D_2 = (Q) - (\mathcal{O})$. From the general definition we obtain however directly

$$e_n(P,Q) = (-1)^n \frac{f_{n((Q)-(\mathcal{O}))}(P)}{f_{n((P)-(\mathcal{O}))}(Q)}.$$

If the embedding degree k is even and $P \in \langle P_0 \rangle$, $Q \in \langle Q_0 \rangle$, denominator elimination can be bought for a cheap final exponentiation by $q^{k/2} - 1$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Further Techniques

- For hashing use cofactor multiplication techniques similar to final exponentiation.
- Use pairing friendly fields.
- Apply standard exponentation tricks to Miller loop: Low Hamming weight n, addition-subtraction chains, sliding windows, adapt the base in characteristic three, ...
- Use different Miller reduction ...
- Use pairing value compression …
- Use parallel computation and hardware ...

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

General Pairing Functions

- ► Have used pairing functions of the form f_{n((P)-(O))} only so far.
- Are there other suitable functions of smaller degree, possibly with supported on more points?
- Complete overview of functions that define pairings?
- Pairing functions have worked for pairings defined on all of E(K)[n] so far.
- Denominator elimination technique can be seen as simplification of pairings when restricted to special inputs.
- "Interpolation" becomes easier when restricted to smaller point sets.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

General Pairing Functions

Let $s \in \mathbb{Z}$ with $s \equiv q \mod n$ and $s^k \equiv 1 \mod n^2$. Exists since gcd(k, n) = 1.

Let $h = \sum_{i=0}^{d} h_i x^i \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \mod n$. Let $R \in E(K)[n]$.

Define $f_{h,R} \in K(E)$ monic such that

$$\operatorname{div}(f_{h,R}) = \sum_{i=0}^{d} h_i((s^i R) - (\mathcal{O})).$$

Exists since

$$\mathsf{AJ}\left(\sum_{i=0}^d h_i((s^iR) - (\mathcal{O}))\right) = \left(\left(\sum_{i=0}^d h_is^i\right)R\right) - (\mathcal{O}) = \mathcal{O}.$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Main Theorem on Pairing Functions

Let
$$h \in \mathbb{Z}[x]$$
 with $h(s) \equiv 0 \mod n^2$. Then

$$a_h: \langle Q_0 \rangle \times \langle P_0 \rangle \to \mathcal{K}^{\times}[n], \quad a_h(Q, P) = f_{h,Q}(P)^{(\#\mathcal{K}-1)/n}$$

is a bilinear map with

$$a_h(Q,P) = t_n^{\rm red}(Q,P)^{h(s)/n}$$

Thus a_h is non degenerate iff gcd(h(s)/n, n) = 1.

Any function supported on sⁱQ for 0 ≤ i ≤ k − 1 is of the form f = f_{h,Q} (see AJ map). Thus have exhaustive classification of such pairing functions.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Main Theorem - Variants

Assume *E* has an automorphism defined over \mathbb{F}_q of order equal to embedding degree *k* and *n* odd.

Let $h \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \mod n^2$. There is $z_h \in \mathbb{F}_q^{\times}[k]$ such that

$$b_h: \langle P_0 \rangle \times \langle Q_0 \rangle \to K^{\times}[n], \quad b_h(P,Q) = f_{h,P}(Q)^{(\#K-1)/n}$$
$$w_h: \langle P_0 \rangle \times \langle Q_0 \rangle \to K^{\times}[n], \quad w_h(P,Q) = z_h \frac{f_{h,Q}(P)}{f_{h,P}(Q)}$$

are bilinear maps with

$$b_h(P,Q) = t_n^{red}(P,Q)^{h(s)/n}, \quad w_h(P,Q) = e_n(P,Q)^{h(s)/n}.$$

Thus b_h and w_h are non deg iff gcd(h(s)/n, n) = 1.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Parameters and Further Variants

Statements about h:

- Conditions deg(h) ≤ k − 1 and h(s) ≡ 0 mod n yield a lattice of all possible h.
- ► Gives lower bound ≈ n^{1/φ(k)} on sum of absolute values of coefficients of h.
- ► Lattice reduction constructs *h* with upper bound ≈ n^{1/φ(k)}.

Further variants:

- Use endomorphisms for yet different pairing functions.
- Adapt statements to parametric families using lattices over polynomial rings.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairing Functions - History

Paper

Pairing

Pairings

F. Hess

Pairings in General

Foundations

h

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

arameter ieneration

Supersingular Curves Ordinary Curves

•	-		
BKLS 2001 / M 2003	a _h , b _h , w _h	r	Founda Elliptic
(Tate / Weil)			Rationa
BGOS 2005 (Eta)	b _h	x - t(E) + 1	Miller's Tate Pa
HSV 2006 (Ate, twisted)	a _h , b _h	x - t(E) + 1	Weil Pa
MKHO 2007 / ZZH 2007	a _h , b _h	$x^{i}-d$	Standa Embede
(optimised ate)			Frobeni Frobeni
LLP 2008 (<i>R</i> -ate)	a _h , b _h	$x^{ij}-d_1x^i-d_2$	Reduce
ZZ 2008	W_{h}^{c}	$x^i - d$	Pairing Orthog
V 2008/10 (optimal ate)	a _h	beliebig	Rationa Distorti
H 2008	a_h, b_h, w_h	beliebig	Twists Pairing
(+ use of endos, proofs)			Comput Reducti
			Classifie Pairing
AFKMR 2012	a _h , w _h	$z - x, z + 3x - x^4$,	Pairing
fast implementation		$6z + 2 + x - x^2 + x^3$	Parame Genera
		-	Genera

Pairing Functions - Example

Let
$$E: y^2 = x^3 + 4$$
 over \mathbb{F}_q with

q = 41761713112311845269,n = 715827883, k = 31, h = x + 2.

Then

$$a_h: \langle Q_0 \rangle \times \langle P_0 \rangle \rightarrow \mu_r,$$

 $(Q, P) \mapsto (y_P - 3x_Q^2/(2y_Q)x_P - (-x_Q^3 + 8)/(2y_Q))^{(q^k - 1)/n}$

is a pairing.

Has exceptionally small pairing function!

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Proof of Main Theorem

Let $g, h \in \mathbb{Z}[x]$ with $h(s) \equiv 0 \mod n$.

• If $g(s) \equiv 0 \mod n$ have

 $f_{g,R} = f_{h,R}$ iff $g \equiv h \mod x^k - 1$.

Furthermore have additivity

$$f_{g+h,R} = f_{g,R} f_{h,R}$$

• Let $P \in \langle P_0 \rangle$, $Q \in \langle Q_0 \rangle$. Then

 $f_{xh,Q}(P)=f_{h,Q}(P)^q.$

Proof: $f_{xh,Q}(P) = f_{h,sQ}(P) = f_{h,qQ}(P) = f_{h,Q^{\sigma}}(P)$ $= f_{h,Q^{\sigma}}(P^{\sigma}) = f_{h,Q}(P)^{\sigma} = f_{h,Q}(P)^{q}$

Have multiplicativity (constant polynomials included)

$$f_{gh,Q}(P) = f_{h,Q}(P)^{g(q)}$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Proof of Main Theorem

Define

$$a_h:\langle Q_0
angle imes \langle P_0
angle o K^{ imes}[n]$$

by

$$a_h(Q,P) = f_{h,Q}(P)^{(\#K-1)/n}$$

- ► *a_h* is additive and multiplicative in *h* as before.
- a_g and a_h defined by same fcts iff g ≡ h mod x^k 1.
 a_h = t_n^{red} for h = n.

For proof of main theorem it suffices to show the relation

$$a_h(Q,P) = t_n^{\mathsf{red}}(Q,P)^{h(s)/n}$$

for general *h*. Then all properties of a_h follow from the properties of $t_n^{\text{red}}(Q, P)^{h(s)/n}$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Proof of Main Theorem

► Trivial for x − s:

$$a_{x-s}(Q,P)=1.$$

Proof: Let $g = \sum_{i=0}^{k-1} x^i s^{k-1-i}$. Then $g(x)(x-s) = x^k - s^k$ and $g(q) = kq^{k-1}$ coprime to *n*. We obtain

$$1 = a_n(Q, P)^{(1-s^k)/n} = a_{1-s^k}(Q, P)$$

= $a_{x^k-s^k}(Q, P) = a_{g(x)(x-s)}(Q, P)$
= $a_{x-s}(Q, P)^{g(q)} = a_{x-s}(Q, P)^{kq^{k-1}}.$

Thus $a_{x-s}(Q, P) = 1$.

Relation with reduced Tate pairing:

$$a_h(Q, P) = a_n(Q, P)^{h(s)/n} = t_n^{red}(Q, P)^{h(s)/n}$$

Proof: With h = g(x)(x - s) + h(s) obtain

$$a_h(Q, P) = a_{x-s}(Q, P)^{g(q)}a_{h(s)}(Q, P) = a_n(Q, P)^{h(s)/n}.$$

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions

Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Pairing Inversion

Pairing Types

Pairing Types

Can/Have to choose groups G and G' for pairing according to needs:

- Hashing possible/efficient
- Short representations
- Homomorphisms between groups

Type 1 G = G':

Modified pairing on supersingular curve E with distortion map and small degree pairing function, embedding degree 2, 4, 6.

Type 2 $G \neq G'$ with efficiently computable $\phi : G' \rightarrow G$, no hashing in G':

Pairing on ordinary curve E with $G = \langle P_0 \rangle$, $G' = \langle \lambda P_0 + \mu Q_0 \rangle$, $\phi = \phi_0$ trace map, arbitrary embedding degree.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Pairing Types

Type 3 $G \neq G'$ no homomorphism, hashing in G' slower than in G:

Modified pairings on ordinary curves E, E' with $G = \langle P_0 \rangle$, $G' = \langle P'_0 \rangle$, distortion map is non rational twisting isomorphism, arbitrary embedding degree for G, embedding degree 2, 4, 6 for G', small degree pairing function.

Type 4
$$G' = E(K)[n]$$
:

Pairing on ordinary curves *E* with $G = \langle P_0 \rangle$, arbitrary embedding degree for *G*.

Type 3 usually most efficient.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Parameter Generation

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Asymptotic Embedding Degree

Most important parameter: Embedding degree k.

DLP security in $E(\mathbb{F}_q)$ grows like $e^{1/2 \log q}$ assuming $n \approx q$. DLP security in $K^{\times} = \mathbb{F}_{q^k}^{\times}$ grows like $e^{c(k \log q)^{1/3}}$.

Should be balanced, hence $k \approx (\log q)^{2/3}$.

Symm	ECC	RSA	k
80	160	1024	6
128	256	3072	12
192	384	7680	20
256	512	15360	30

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

MNT Conditions

MNT conditions on q, n, $t = q + 1 - \#E(\mathbb{F}_q)$ and k:

- q+1-t = cn with c small (e.g. c = 1).
- $\phi_k(t-1) \equiv 0 \mod n \text{ (implies } q^k 1 \equiv 0 \mod n \text{)}.$
- q prime power, $|t| \leq 2\sqrt{q}$.
- $4q t^2 = Df^2$ with D small for CM method.
- ρ = log(q) / log(n) should be as small as possible
 (e.g. ≈ 1).

Supersingular curves always $k \in \{2, 3, 4, 6\}$ and $\rho \approx 1$.

Finding solutions for arbitrary k and prime n with $\rho \approx 2$ by clever searching algorithms is fairly easy.

For $\rho\approx 1$ solutions are very scarse! In such cases parametric solutions are of great help.

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Supersingular Elliptic Curves

Overview over supersingular elliptic curves and some distortion maps.

-				
q	Curve	$\#E(\mathbb{F}_q)$	k	ψ
2 ^p	$y^2 + y = x^3$	$2^{p} + 1$	2	$(x, y) \rightarrow (x + 1, y + x + \xi)$
2 ^p	$y^2 + y = x^3 + x$	$2^{p} + 1 + t_{2}(p)$	4	$(x, y) \rightarrow (\xi^2 x + \zeta^2, y + \xi^2 \zeta x + \mu)$
2 ^p	$y^2 + y = x^3 + x + 1$	$2^{p} + 1 - t_{2}(p)$	4	$(x, y) \rightarrow (\xi^2 x + \zeta^2, y + \xi^2 \zeta x + \mu)$
3 ^p	$y^2 = x^3 + x$	$3^{p} + 1$	2	$(x, y) \rightarrow (-x, iy)$
3 ^p	$y^2 = x^3 - x + 1$	$3^{p} + 1 + t_{3}(p)$	6	$(x, y) \rightarrow (-x + \tau_1, iy)$
3 ^p	$y^2 = x^3 - x - 1$	$3^{p} + 1 - t_{3}(p)$	6	$(x, y) \rightarrow (-x + \tau_{-1}, iy)$
р	$y^2 = x^3 + b$	p + 1	2	$(x,y) \rightarrow (\xi x,y)$
р	$y^2 = x^3 + ax$	p+1	2	$(x, y) \rightarrow (-x, iy)$

Here $E(\mathbb{F}_{a^k})\cong (\mathbb{Z}/c\mathbb{Z})^2$ and p denotes a prime ≥ 5 and

 $t_2(p) = \left\{ \begin{array}{ll} 2^{(p+1)/2} & \mbox{ for } p \equiv \pm 1, \pm 7 \mbox{ mod } 24 \equiv \pm 1 \mbox{ mod } 8, \\ -2^{(p+1)/2} & \mbox{ for } p \equiv \pm 5, \pm 11 \mbox{ mod } 24 \equiv \pm 3 \mbox{ mod } 8, \end{array} \right.$

$$t_3(p) = \begin{cases} 3^{(p+1)/2} & \text{for } p \equiv \pm 1 \mod 12, \\ -3^{(p+1)/2} & \text{for } p \equiv \pm 5 \mod 12. \end{cases}$$

Furthermore, ψ is a distortion map with

$$\begin{aligned} \xi^2 + \xi + 1 &= 0, & \zeta^4 + \zeta + \xi + 1 &= 0 \\ \mu^2 + \mu + \zeta^6 + \zeta^2 &= 0, & \tau_s^3 - \tau_s - s &= 0, \end{aligned}$$

and $i^2 + 1 = 0$. In order that $\xi \notin \mathbb{F}_p$ we need $p \equiv 2 \mod 3$ and for $i \notin \mathbb{F}_p$ we need $p \equiv 3 \mod 4$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Ordinary Curves - Search Strategy

Search strategy for ordinary elliptic curves:

- We require *n* prime and $n \equiv 1 \mod k$.
- Assume 4q = t² + Df². Since t², f², −D ≡ 0, 1 mod 4 we have t even and D or f even.
- ► Thus there are integers t' = t/2, f' = f/2 and D' = D, or f' = f and D' = D/2 such that $q = t'^2 + D'f'^2$ and

$$(t'-1)^2 + D'f'^2 \equiv 0 \mod n$$

- Choose t' such that Φ_k(2t') ≡ 0 mod n. Then there are two values for f' modulo n.
- Search over f' until $q = t'^2 + D'f'^2$ is prime.

Can be adapted to composite *n*, as long as square root of -D' modulo *n* is known. This is possible if D' = k is prime, $k \equiv 3 \mod 4$ and a suitable *k*-th root of unity is known.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Parametric Solutions - Barreto/Naehrig Curves

For k = 12, D = 3 and $E : y^2 = x^3 + b$:

Let

Then

•
$$\Phi_{12}(q(z)) \equiv 0 \mod n(z)$$

• $4q(z) - t(z)^2 = 3(6z^2 + 4z + 1)^2$

Construction:

- Find x such that $q(\pm x)$ and $n(\pm x)$ are primes.
- Check $\#E(\mathbb{F}_q) = n(\pm x)$ for randomly chosen $b \in \mathbb{F}_q$.
- Then E satisfies all conditions and k = 12.

No CM construction necessary, suitable E is found very fast.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Attractive Parametric Families

BN curves: k = 12, $\rho \approx 1$, suitable for 128 bit.

BLS12 curves: k = 12, $\rho \approx 1.5$, suitable for 192 bit.

BLS24 curves: k = 24, $\rho \approx 1.25$, suitable for 256 bit.

$$p(z) = (z-1)^2(z^8 - z^4 + 1)/3 + z$$
 $r(z) = z^8 - z^4 + 1$
 $t(z) = z + 1, \quad h(x) = z - x.$

There are many more families for $2 \le k \le 50$.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Remarks

Futher topics:

- Many more constructions in "Taxonomy of Pairing-Friendly Elliptic Curves".
- ► Use subfamilies for further optimisations, e.g. pairing friendly F_{q^k}.
- Consider special hardware situations.
- Weil pairings offer advantage in multi-processor environment.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves Ordinary Curves

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairing Inversion

Pairing Inversion

There are many attacks on elliptic curves and finite fields. Here consider pairing specific attacks, more precisely pairing inversion.

Has not been intensely researched ...

- Choose subgroups G_1, G_2 of $\operatorname{Pic}^0_K(E)[n]$.
- Then have pairing $e: G_1 \times G_2 \rightarrow K^{\times}[n]$,

 $(\overline{D}_1,\overline{D}_2)\mapsto g_{D_1}(D_2).$

- ► Independent of choices of D₁, D₂ but need to be coprime.
- ► Given z ∈ K[×][n] and given at most one of D₁, D₂ find the rest such that

$$g_{D_1}(D_2)=z$$

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

^Darameter Generation Supersingular Curve

Pairing Inversion

• Necessary condition $\deg(g_{D_1}) \ge n$.

• Under special choice of n, E, k, G_1, G_2, D_1 we can obtain

$$g_{D_1}=h_{D_1}^{(\# \mathcal{K}-1)/n}$$
 with $ext{deg}(h_{D_1})pprox n^{1/arphi(k)}.$

For bigger k necessarily $G_2 \subseteq E(\mathbb{F}_q)$.

This means deg(h_{D1}) can be small, maybe inversion easier then?

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairing Inversion - Example

Pairing function g_{D_1} of smallest degree again:

$$([Q]-[O], [P] - [O]) \mapsto$$

 $(y_P - 3x_Q^2/(2y_Q)x_P - (-x_Q^3 + 8)/(2y_Q))^{(q^k-1)/n}$

defines a pairing.

▶ There is an asymptotic family with linear *h*_{D1}.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Fate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairing Inversion

Naive approaches:

• We can obtain $g_{D_1} = h_{D_1}^{(\#K-1)/n}$ with small g_{D_1} , need to solve

$$h_{D_1}(D_2)^{(\#K-1)/n} = z$$

in D_2 with $AJ(D_2) \in G_2 \subseteq E(\mathbb{F}_q)$.

- Computing $D_2 = [P] [O]$ from $h_{D_1}(D_2)$ is easy.
- z → z^{(#K-1)/n} is many-to-one, computing random preimages is easy.
- Problem: Which preimage z₀ is the correct one?
- Or use more general D_2 , that is solve something like

$$\prod_{i=1}^{k} h_{D_1}([P_i] - [O]) = z_0$$

in the P_i for any preimage z_0 . But high degree, many variables and terms ...

Pairings

F. Hess

airings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairing Inversion

Remarks:

- For the standard Tate pairing z₀ can be taken arbitrary but solving h_{D1}(D₂) = z₀ hard because deg(h_{D1}) = r.
- Other approaches interpolate an inverse to the Weil pairing, but no efficient representation.
- No attack whatsoever?

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

mbedding Degree robenius Eigenvalues robenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Very incomplete and possibly biased ...

Foundations of pairings:

- Galbraith: "Pairings", Chapter in "Advances in Elliptic Curve Cryptography", 2004
- Hess: "Some Remarks on the Weil and Tate Pairings of Curves over Finite Fields", 2004
- Miller: "The Weil Pairing, and Its Efficient Calculation", 2004
- Galbraith: "Mathematics of Public Key Cryptography", 2012.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Efficient Implementation:

- Barreto, Kim, Lynn, Scott: "Efficient Algorithms for Pairing-Based Cryptosystems", 2002
- Barreto, Lynn, Scott: "On the Selection of Pairing-Friendly Groups", 2003
- Hess, Smart, Vercauteren: "The Eta Pairing Revisited", 2006
- Scott, Benger, Charlemagne, Perez, Kachisa: "Fast hashing to G2 on pairing friendly curves", 2009.
- Boxall, El Mrabet, Laguillaumie, Le: "A Variant of Millers Formula and Algorithm", 2010.
- Aranha, Fuentes-Castaneda, Knapp, Menezes, Rodgriguez-Henriquez: "Implementing Pairing at the 192 Bit Security Level", 2012.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Parameter generation:

- Fremann, Scott, Teske: "A taxonomy of Pairing-Friendly Elliptic Curves", 2010
- Search separate for Barreto-Naehrig (BN), Kachisa-Schaefer-Scott (KKS) curves, Barreto-Lynn-Scott (BLS) curves,
- or look in paper by Aranha et. al.

General pairing functions:

- Hess: "Pairing Lattices", 2008
- Vercauteren: "Optimal Pairings", 2008/10.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curve

Pairing inversion:

- Galbraith, Hess, Vercauteren: "Aspects of Pairing Inversion", 2008
- Verheul: "Evidence that XTR is more secure than supersingular elliptic curves", 2001

Complete detailed overview over pairings:

 Lynn: "On the Implementation of Pairing-Based Cryptosystems", 2007.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Books about elliptic curves, and applications in cryptography:

- Blake, Seroussi, Smart: "Elliptic Curves in Cryptography", 1999.
- Blake, Seroussi, Smart: "Advances in Elliptic Curve Cryptography", 2004.
- Frey and Cohen: "Handbook of Elliptic and Hyperelliptic Curve Cryptography", 2006
- Galbraith: "Mathematics of Public Key Cryptography", 2012
- Silverman: "The Arithmetic of Elliptic Curves", 1986
- Washington: "Elliptic Curves, Number Theory and Cryptography", 2008.

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation Supersingular Curves

Pairings

F. Hess

Pairings in General

Foundations

Elliptic Curves Rational Functions Divisors Miller's Algorithm Tate Pairing Weil Pairing

Standard Setting

Embedding Degree Frobenius Eigenvalues Frobenius Eigenvalues Reduced Tate pairing

Pairing Properties

Orthogonality Rationality Distortion Maps Twists

Pairing Functions

Computational Reductions Classification of Pairing Functions

Pairing Types

Parameter Generation

Supersingular Curves Ordinary Curves

Pairing Inversion

Thank you!