Differential geometric bifurcation problems in pde2path - algorithms and tutorial examples

Alexander Meiners, Hannes Uecker
Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, alexander.meiners@uni-oldenburg.de, hannes.uecker@uni-oldenburg.de

January 24, 2024

Abstract

We describe how some differential geometric bifurcation problems can be treated with the Matlab continuation and bifurcation toolbox pde2path. The basic setup consists in solving the PDEs for the normal displacement of an immersed surface $X \subset \mathbb{R}^{3}$ and subsequent update of X in each continuation step, combined with bifurcation detection and localization, followed by possible branch switching. Examples treated include some minimal surfaces such as Enneper's surface and a Schwarz-P-family, some non-zero constant mean curvature surfaces such as liquid bridges and nodoids, and some 4th order biomembrane models. In all of these we find interesting symmetry breaking bifurcations. Some of these are (semi)analytically known and thus are used as benchmarks.

Contents

1 Introduction 2
2 Geometric background, and data structures 6
2.1 Differential geometry 6
2.2 Default data and initialization of a pde2path struct p 8
2.3 pde2path setup for discrete differential geometry 9
2.3.1 Discrete differential geometry FEM operators 9
2.3.2 The pde2path library Xcont 11
3 Second order example implementations and results 15
3.1 Spherical caps 15
3.2 Some minimal surfaces 20
3.2.1 \quad Prescribing one component of X at the boundary 21
3.2.2 A Plateau problem 22
3.2.3 Bifurcation from the Enneper surface 23
3.3 Liquid bridges and nodoids 25
3.3.1 Nodoid theory 26
3.3.2 Nodoid continuation with fixed boundaries 27
3.3.3 Short nodoids 28
3.3.4 Long nodoids 30
3.4 Nodoids with pBCs in z 32
3.5 Triply periodic surfaces 37
3.5.1 The Schwarz P minimal surface (family) 38
3.5.2 CMC companions of Schwarz P 40
4 Fourth order biomembranes 42
4.1 Closed Vesicles of spherical topology 44
4.2 Biocaps 48
5 Summary and outlook 53
A Spheres, hemispheres, VPMCF, and an alternative setup 54
A. 1 Spheres 54
A. 2 Hemispheres 55
A. 3 Spherical caps via 2D finite elements 56
B Biocylinders with clamped BCs 58
B. 1 Continuation in the spontaneous curvature 59
B. 2 Intermezzo: Other radii 61
B. 3 Continuation in surface tension 62

1 Introduction

There are various algorithms and toolboxes for the numerical continuation and bifurcation analysis for solutions of partial differential equations (PDEs), for instance AUTO [DCF ${ }^{+} 97$], Coco [DS13], BifurcationKit.jl [Vel20], and pde2path Uec21, Uec23]. In its standard setup, pde2path is for PDEs for functions $u: \Omega \times \Lambda \rightarrow \mathbb{R}^{N}$, where $\Omega \subset \mathbb{R}^{d}$ is a fixed domain, $d=1,2$, or $3, N \in \mathbb{N}$, and $\Lambda \subset \mathbb{R}^{p}$ is a parameter domain, or for time-dependent functions $u: I \times \Omega \times \Lambda \rightarrow \mathbb{R}^{N}, I \subset \mathbb{R}$, which then includes the continuation and bifurcation of time periodic orbits. Essentially, this also applies to BifurcationKit.jl, while wrt PDEs AUTO originally focuses on 1D boundary value problems, and Coco in principle allows great flexibility by delegating the PDE definition/discretization to the user.

However, none of these packages seem directly applicable to differential geometric PDEs in parametric form, which deal directly with manifolds, e.g., surfaces in 2D, which are not graphs over a fixed domain. There are well established numerical methods for the discretization of such PDEs, for instance the surface finite element method (surface FEM) [DE13, but there seem to be few algorithms or packages which combine these with continuation and bifurcation. Two notable exceptions are the algorithm from [Bru18], and the SurfaceEvolver, for which bifurcation aspects are for instance discussed in [Bra96].

Here we present an extension of pde2path aimed at geometric PDE bifurcation problems. We focus on constant mean curvature (CMC) surfaces, which are not necessarily graphs, and with, e.g., the mean curvature, or the area or enclosed volume as the primary bifurcation parameter. See Fig. 1 for a preview of the type of solutions we compute. For X a two dimensional surface immersed in \mathbb{R}^{3}, we for instance want to study the parameter dependent problem

$$
\begin{align*}
H(X)-H_{0} & =0, \tag{1a}\\
V(X)-V_{0} & =0, \tag{1b}
\end{align*}
$$

possibly with boundary conditions (BCs) in (a), where $H(X)$ is the mean curvature at each point of X, and $V(X)$ is the (properly defined) volume enclosed by X. The system (1) is obtained for minimizing the area $A(X)$ under the volume constraint $V(X)=V_{0}$, i.e., as the Euler-Lagrange equations for minimizing the energy

$$
\begin{equation*}
E(X)=A(X)+H_{0}\left(V(X)-V_{0}\right), \tag{2}
\end{equation*}
$$

and $V_{0} \in \mathbb{R}$ typically plays the role of an "external continuation parameter", while H_{0}, which for instance describes a spatially constant pressure difference for interfaces between fluids, is "free".

Figure 1: Preview of solutions (solution branches) we compute. (a) H over V for spherical caps, and sample solutions, $\S 3.1$. The colors indicate u in the last step, yellow $>$ blue, and thus besides giving visual structure to X indicate the "direction" of the continuation. H is negative since here N is the outer normal. (b) Enneper minimal surface (a bounded part, with the boundary shown in red), $\$ 3.2 .3$. (c) A liquid bridge between two circles, with excess volume and hence after a symmetry breaking bifurcation, $\oint 3.3 .3$. (d) A nodoid with periodic BCs, cut open for plotting, \$3.4. (e) A Schwarz P surface, §3.5.1. Samples (b)-(e) are each again from branches of solutions of the respective problems, see Figures 8,914 , and 15 for the bifurcation diagrams.

Following [Bru18], our setting for (1) and generalizations is as follows. Let X_{0} be a surface satisfying (1) for some V_{0} and H_{0}, and define a new surface via $X=X_{0}+u N_{0}, u: X_{0} \rightarrow \mathbb{R}$ with suitable boundary conditions, where $N_{0}: X_{0} \rightarrow \mathbb{S}^{2}$ is (a choice of) the unit normal vector field of X_{0}. Then (1) reads

$$
\begin{equation*}
G(u, \widetilde{H})=H(X)-\widetilde{H}=0(\text { with boundary conditions if applicable }) \tag{3a}
\end{equation*}
$$

which is a quasilinear elliptic equation for u coupled to the volume constraint

$$
\begin{equation*}
q(u)=V(X)-\widetilde{V} \tag{3b}
\end{equation*}
$$

Thus,
after solving (3) for $u, \widetilde{H}, \widetilde{V}$ we can update $X_{0}=X_{0}+u N_{0}, H_{0}=\widetilde{H}, V_{0}=\widetilde{V}$, and repeat.
We generally compute (approximate), e.g., the mean curvature H from a surface FEM discretization of X, see $\$ 2.3$. Alternatively, we may assume a parametrization $\phi: \Omega \rightarrow \mathbb{R}^{3}$ of X over some bounded domain $\Omega \subset \mathbb{R}^{2}$, and compute, e.g., H from a classical 2D FEM mesh in Ω, although this is generally more complicated and less robust than using surface meshes, and we mainly review it for completeness in App. A.3. Both approaches can and usually must be combined with adaptive mesh refinement and coarsening as X changes. Both can also be applied to other geometric PDEs, also of
higher order, for instance fourth order biomembrane model, see $\$ 4$. In this case, the analog of (33) can be rewritten as a system of (2nd order) PDEs for a vector valued u, and the same ideas apply.

Our work comes with a number of demos which are subdirectories of pde2path/demos/geomtut, see Table 1. The rather large number of demos is aimed at showing versatility, and, more importantly, is due to our own needs for extensive testing, in particular of various BCs, and of different mesh handling strategies. Table 2 summarizes acronyms and notation used throughout, and Fig 2 explains the basic installation steps for pde2path. See also [dWDR $\left.{ }^{+} 23\right]$ for a quick overview of installation and usage of pde2path, and of all demos coming with pde2path, and RU19 or Uec21, Chapters 5 and 6] for getting started with pde2path via simple classical PDEs.

Table 1: Demo directories in pde2path/demos/geomtut. The first two and last three are rather introductory and not dealing with bifurcations.

directory	remarks
spcap1	Spherical caps via surface meshes, introductory demo.
bdcurve	Experiments on minimal surfaces with different boundary curves.
enneper	Bifurcation from Enneper's surface, closely related to bdcurve.
nodDBC	Nodoids with Dirichlet BCs, including so called liquid bridges.
nodpBC	Nodoids with periodic BCs.
TPS	Triply Periodic Surfaces, here Schwarz P.
vesicles	Closed vesicles as critical points of the Helfrich functional, a 4th order problem.
biocaps	Disk type solutions as a variant of vesicles.
biocyl	Helfrich cylinders with clamped BCs as a variant of biocaps.
spheres	Continuation of spheres, and tests for VPMCF, A.1.
hemispheres	Continuation of hemispheres on a supporting plane, and VPMCF, §A.2.
spcap2	Spherical caps via 2D FEM in the preimage, A.3.

Table 2: Notations and acronyms; for given X_{0}, quantities of $X=X_{0}+u N_{0}$ will also be considered as functions of u, e.g., $A(u)=A\left(X_{0}+u N_{0}\right)$.

X	surface immersed in \mathbb{R}^{3}	$N=N(X)$	surface unit normal
$A=A(X)=A(u)$	area of X, resp. of $X=X_{0}+u N_{0}$	$V=V(X)$	(algebraic) volume, e.g., (14)
$H=H(X)$	mean curvature, e.g., $\sqrt{12})$	$K=K(X)$	Gaussian curvature
$G(u, \lambda)=0$	generic form of a PDE such as	$\operatorname{ind}(X)$	index, i.e., number of unstable eigenvalues of linearization $L=\partial_{u} H(u)$
$(3 \mathrm{a}), \lambda$ as a generic parameter		Jacobi op. (with BCs)	$q(u, \lambda)=0$
generic constraint such as (3b)			
BC	boundary condition	DBC/NBC	Dirichlet/Neumann BC
pBC	periodic BC	PC	phase condition
BP/FP	branch/fold point	CMC	constant mean curvature
TPS	triply periodic surface	TPMS	triply periodic minimal surface
MCF	mean curvature flow	VPMCF	volume preserving MCF

Remark 1.1 Here we focus on stationary problems of type (1), which give critical points of the volume preserving mean curvature flow (VPMCF). A time t dependent 2D manifold $X(t) \subset \mathbb{R}^{3}$ deforms by mean curvature flow (MCF) if, assuming the correct sign for H, i.e., $H>0$ for X bounding a convex body and N the inner normal,

$$
\begin{equation*}
\dot{X}=-H(X) N \tag{5}
\end{equation*}
$$

This is the L^{2} gradient flow for the area functional $A(X)$, and can be considered as a quasilinear parabolic PDE, at least on short times. For closed and compact X there always is finite time blowup

- Make a directory, e.g., myp2p anywhere in your path. Download pde2path from [Uec23] to myp2p and unpack, which gives you the pde2path home directory myp2p/pde2path.
- In Matlab, change into pde2path/ and call setpdepath to make the libraries available. (We also recommend ilupack Bol11, which is not used here but otherwise in pde2path for large scale problems).
- Test, i.e: change directory into pde2path/demos/geomtut/spcap1, load the script cmds1.m into the editor (i.e., type edit cmds1.m at the command line). To get an understanding what command does what, we then recommend to run cmds1.m in "cell-mode", i.e., to proceed "cell-by-cell".
- Find a demo that is closest to the problem you want to study; copy this demo directory to a new directory myproblem/ or any other name (we recommend not as a subdirectory of pde2path but somewhere else, for
 instance in a subdirectory myproblems of myp2p. In myproblem, modify the relevant files (usually at least *init and cmds) and explore.

Figure 2: Installation of pde2path (version 3.1), and a "typical" directory structure of myp2p.
(generically by shrinking to a "spherical point"), and we refer to Man11 for an introduction to this huge field, which inter alia heavily relies on maximum (comparison) principles.

The VPMCF reads

$$
\begin{equation*}
\dot{X}=-(H(X)-\bar{H}) N, \quad \bar{H}=\frac{1}{A(X)} \int_{X} H \mathrm{~d} S \tag{6}
\end{equation*}
$$

and for closed X conserves the enclosed volume $V(X)$. For non-closed X one typically studies Neumann type BCs on "support planes", see, e.g., Har13], and in most cases the analysis is done near axisymmetric states such as spheres, spherical caps, and cylinders. In general, the existence and regularity theory for (6) is less well understood than for (5) due to the lack of general maximum principles for (6).

Our notion of stability of solutions of (11) (indicated by thick lines in bifurcation diagrams, while branches of unstable solutions are drawn as thinner lines) refers to (6) if we have an active volume constraint such as (3b), and to (5) if not, with the exception of the fourth order problems in $\$ 4$, see Remark 4.1. Moreover, by $\operatorname{ind}(X)$ we denote the number of unstable eigenvalues of the linearization of (the discretization of) (3), including the constraints (if active).

We also provide very basic setups to numerically integrate (5) and (6) by explicit Euler stepping. This often has to be combined with mesh adaptation, and in this case A does not necessarily decrease monotonously for MCF. Moreover, our VPMCF typically conserves V only up to 0.5% error. Thus, both are not necessarily efficient or highly accurate, but can be used to generate initial guesses for the continuation of steady states of (1). See $\$ 3.1$, $\$ 3.2 .3$ (MCF) and $\$$ A.1, $\$$ A.2 (VPMCF) for examples, and, e.g., BNP10, BGN20, BGNZ22 for much more sophisticated numerical algorithms for geometric flows including (5) and (6), and detailed discussion.

The remainder of this tutorial is organized as follows: In $\S 2$ we review some differential geometric background, and the pde2path data structures and functions to deal with geometric PDEs. In $\$ 3$ we discuss the main 2 nd order demos, and $\S 4$ deals with the 4 th order biomembrane demos vesicles and biocaps. In $\S 5$ we give a summary, and an outlook on ongoing and future work. In $\$$ A we comment on the further demos spheres and hemispheres, which do not show bifurcations but deal with VPMCF and Neumann type free BCs, and present a classical FEM setup for spherical caps, and in \S we discuss the biocyl demo. See also MU23] for supplementary information (movies) on some of the rather complicated bifurcation diagrams we obtain.

2 Geometric background, and data structures

2.1 Differential geometry

We briefly review the geometric PDE setup, and recommend [Des04, Tap16, UY17] for further background, among many others.

Throughout, let Σ be a 2 D connected compact orientable manifold, with coordinates x, y, and possibly with boundary $\partial \Sigma$, and for some $\alpha \in(0,1)$ immersed by $X \in C^{2, \alpha}\left(\Sigma, \mathbb{R}^{3}\right)$. By pulling back the standard metric of \mathbb{R}^{3} we obtain the first and second fundamental forms on Σ expressed via X as

$$
g=\left(\begin{array}{cc}
g_{11} & g_{12} \tag{7}\\
g_{12} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\|X_{x}\right\|^{2} & \left\langle X_{x}, X_{y}\right\rangle \\
\left\langle X_{x}, X_{y}\right\rangle & \left\|X_{y}\right\|^{2}
\end{array}\right), \quad h=\left(\begin{array}{cc}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\langle X_{x x}, N\right\rangle & \left\langle X_{x y}, N\right\rangle \\
\left\langle X_{x y}, N\right\rangle & \left\langle X_{y y}, N\right\rangle
\end{array}\right),
$$

with unit normal N, which we consider as a field on Σ, or locally on X, which will be clear from the context. The mean curvature H then is

$$
\begin{equation*}
H=\frac{1}{2} \frac{h_{11} g_{22}-2 h_{12} g_{12}+h_{22} g_{11}}{g_{11} g_{22}-g_{12}^{2}} \tag{8}
\end{equation*}
$$

which is the mean of the minimal and maximal normal curvatures κ_{1} and κ_{2}. The Gaussian curvature is

$$
\begin{equation*}
K=\kappa_{1} \kappa_{2} \tag{9}
\end{equation*}
$$

The sign of H depends on the orientation of X, i.e., on the choice of N. A sphere has positive H iff N is the inner normal. The Gaussian curvature does not depend on N or any isometry of Σ (Gauß) Theorema egregium).

A generalization of the directional derivative of a function f to vector fields or tensors is the covariant derivative ∇_{Z} for some vector field Z on X. For a vector field Y, the covariant derivative in the j^{\prime} th coordinate direction is defined as $\nabla_{j} Y_{i}:=\frac{\partial Y_{i}}{\partial x_{j}}+\Gamma_{j k}^{i} Y_{k}$, and for a 1-form ω we have $\nabla_{j} \omega_{i}:=\frac{\partial \omega_{i}}{\partial x_{j}}-\Gamma_{j k}^{i} \omega_{k}$, with the Christoffel symbols $\Gamma_{j k}^{i}=\frac{1}{2} g^{i l}\left(\partial_{x_{j}} g_{k l}+\partial_{x_{k}} g_{j l}-\partial_{x_{l}} g_{j k}\right)$, where $g^{i j}$ are the entries of g^{-1}, and where we use Einstein's summation convention, i.e., summation over repeated indices. The covariant derivative is linear in the first argument, giving a general definition of $\nabla_{Z} Y$ with some vector field Z, and if f is a function on X, then

$$
\begin{equation*}
\nabla_{Z} f=\langle g \nabla f, Z\rangle_{\mathbb{R}^{2}} \tag{10}
\end{equation*}
$$

Throughout we are dealing with surfaces (2 dimensional manifold immersed into \mathbb{R}^{3}), hence the gradient ∇ is the surface gradient, i.e., the usual gradient $\nabla_{\mathbb{R}^{d}}$ in \mathbb{R}^{3} projected onto the tangent space,

$$
\begin{equation*}
\nabla f=\nabla_{\mathbb{R}^{3}} f-\left\langle\nabla_{\mathbb{R}^{3}} f, N\right\rangle N, \tag{11}
\end{equation*}
$$

which later will be needed to (formulate and) implement phase conditions, and, e.g., Neumann type BCs. This also gives the Laplace Beltrami operator via

$$
\Delta f=g^{i j} \nabla_{i} \nabla_{j} f
$$

which then also applies to general tensors. Using the Gauß-Weingarten relation $\frac{\partial^{2} X}{\partial x_{i} \partial x_{j}}=\Gamma_{i j}^{k} \frac{\partial X}{\partial x_{k}}+h_{i j} N$ we obtain

$$
\Delta X=g^{i j} \nabla_{i} \nabla_{j} X=g^{i j}\left(\frac{\partial^{2} X}{\partial x_{i} \partial x_{j}}-\Gamma_{j k}^{i} \frac{\partial X}{\partial x_{k}}\right)=g^{i j} h_{i j} N=2 H(X) N=2 \vec{H}(X)
$$

where $\vec{H}(X)$ is called the mean curvature vector, and

$$
\begin{equation*}
H(X)=\frac{1}{2}\langle\Delta X, N\rangle . \tag{12}
\end{equation*}
$$

The area of X is

$$
\begin{equation*}
A(X)=\int_{X} \mathrm{~d} S \tag{13}
\end{equation*}
$$

and, based on Gauß' divergence theorem, the (algebraic) volume is

$$
\begin{equation*}
V(X)=\frac{1}{3} \int_{X}\langle X, N\rangle \mathrm{d} S . \tag{14}
\end{equation*}
$$

If X is a closed manifold bounding $\Omega \subset \mathbb{R}^{3}$, i.e., $\partial \Omega=X$, and N the outer normal, then $V(X)=|\Omega|$ is the physical volume. If X is not closed, then we typically need to add a third of the flux of \vec{x} through the open ends to $V(X)$ (see the examples below).

We denote the set of all immersed surfaces with the same boundary γ by

$$
\begin{equation*}
\mathcal{N}_{\gamma}=\{X: X \text { is an immersed surface as above and } \partial X=\gamma\} . \tag{15}
\end{equation*}
$$

The following Lemma states that all immersions $Y \in \mathcal{N}_{\gamma}$ close to X are graphs over X determined by a function u as $Y=X+u N$, which justifies our numerical approach (4). The condition that Y has the same boundary as X in general cannot be dropped, as obviously motions of ∂X tangential to X cannot be captured in the form $X+u N$; see $\$ 3.2 .1$ for an illustration.

Lemma 2.1 KPP17. For $X \in C^{2, \alpha}\left(\Sigma, \mathbb{R}^{3}\right)$ with boundary $\partial X=\gamma$ there exists a neighborhood $U \subset C^{2, \alpha}\left(\Sigma, \mathbb{R}^{3}\right)$ of X such that for all $Y \in U \cap \mathcal{N}_{\gamma}$ there exists a diffeomorphism $\phi: \Sigma \rightarrow \Sigma$ and a $u \in C^{2, \alpha}(\Sigma)$ such that

$$
\begin{equation*}
Y \circ \phi=X+u N . \tag{16}
\end{equation*}
$$

Assume that a CMC surface X_{0} with boundary $\partial X_{0}=\gamma$ and volume $V\left(X_{0}\right)=V_{0}$ belongs to a family of CMC surfaces $X_{t}, t \in(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$. For example, the spherical caps S_{t} from Fig. 1 (a) with the boundary $\gamma=\left\{(x, y, 0) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$ are a family of CMC immersions fully described by the height $t \in \mathbb{R}$. By Lemma 2.1, the parameter t uniquely defines u in a small neighborhood, i.e., $X_{t}=X+u N$, and the system of equations for u reads

$$
\begin{equation*}
H(u)-H_{0}=0, \tag{17}
\end{equation*}
$$

for some $H_{0} \in \mathbb{R}$, where we abbreviate $H(u)=H(X+u N)$, etc. If we consider variational vector fields at X_{0} in the form $\psi=\left.\frac{\partial X_{t}}{\partial t}\right|_{t=0}=u N$, and additionally assume that $X_{t} \in \mathcal{N}_{\gamma}$, then necessarily

$$
\begin{equation*}
\left.u\right|_{\partial x}=0, \text { Dirichlet boundary conditions (DBCs). } \tag{18}
\end{equation*}
$$

Such X_{t} are called admissible variations in [Lóp13, §2.1], and we have the following results on derivatives of A and V.

Lemma 2.2 Lóp13, §2.1] For an admissible one parameter variation X_{t} of $X \in C^{2, \alpha}(\Sigma)$ and variational vector fields $\psi=\left.\frac{\partial X}{\partial t}\right|_{t=0}=u N$ the functions $t \mapsto A(t)=A\left(X_{t}\right)$ and $t \mapsto V(t)=V\left(X_{t}\right)$ are
smooth, and

$$
\begin{equation*}
V^{\prime}(0)=\int_{X_{0}} u \mathrm{~d} S, \quad A^{\prime}(0)=-2 \int_{X_{0}} H_{0} u \mathrm{~d} S, \text { and } A^{\prime \prime}(0)=-\int_{X_{0}}\left(\Delta u+\left\|S_{0}\right\|^{2} u\right) u \mathrm{~d} S, \tag{19}
\end{equation*}
$$

where $\left\|S_{0}\right\|^{2}=4 H_{0}^{2}-2 K_{0}$ with the Gaussian curvature K_{0}. Thus

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} H\left(X_{t}\right)\right|_{t=0}=-\Delta u-\left\|S_{0}\right\|^{2} u \tag{20}
\end{equation*}
$$

and the directional derivative (20) is given by the self-adjoint Fredholm operator L on $L^{2}\left(X_{0}\right)$ with

$$
\begin{equation*}
L=\partial_{u} H(0)=-\Delta-\left\|S_{0}\right\|^{2}, \quad \text { with } D B C s . \tag{21}
\end{equation*}
$$

Remark 2.3 a) The operator in (21) without BCs is called Jacobi operator, and a nontrivial kernel function is called a Jacobi field on $X=X_{0}$. An immersion X with a Jacobi field satisfying the BCs is called degenerate. The Fredholm property allows the use of the Crandall-Rabinowitz bifurcation result CR71]: Given a C^{1} branch $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \ni t \mapsto X_{t}$, if X_{t} is non-degenerate for $t \in\left(t_{0}-\varepsilon, t_{0}\right) \cup\left(t_{0}, t_{0}+\varepsilon\right)$, and if at t_{0} a simple eigenvalue $t \mapsto \mu_{0}(t)$ crosses transversally, i.e., $\mu\left(t_{0}\right)=0, \mu_{0}^{\prime}\left(t_{0}\right) \neq 0$, then a branch \widetilde{X}_{t} bifurcates at t_{0}.

See also [KPP17] for a formulation via Morse indices $\operatorname{ind}\left(X_{t}\right)=$ number of negative eigenvalues of L, counted with multiplicity, used to find bifurcation points in families of nodoids, which we shall numerically corroborate in $\$ 3.3 .2$. An equivariant version can be found in [KPS18, Theorem 5.4], applied to bifurcations of triply periodic minimal surfaces, for which linearizations always have a trivial 5 dimensional kernel due to translations and rotations, see $\$ 3.5$ for numerical illustration. See also [GS02, Hoy06, Kie12] and [Uec21, Chapters 2 and 3] for general discussion of Crandall-Rabinowitz type results, and of Krasnoselski type results (odd multiplicity of critical eigenvalues, based on degree theory), including equivariant versions.
b) Besides the (zero) DBCs (18) corresponding to a fixed boundary $\partial X=\gamma$, we shall consider so called free boundaries of Neumann type. This means that $\partial X \subset \Gamma$, where $\Gamma \subset \mathbb{R}^{3}$ is a fixed 2 D support manifold (e.g., a plane), and that X intersects Γ orthogonally. Following Ros08, we summarize the second derivative of A in this case as follows: if h_{Γ} is the second fundamental form of Γ, and $\psi=u N$, then $\left.N\right|_{\partial X}$ is tangent to Γ, such that $h_{\Gamma}(N, N)$ is well defined, and

$$
\begin{equation*}
A^{\prime \prime}(0)=-\int_{X_{0}}\left(\Delta u+\left\|S_{0}\right\|^{2} u\right) u \mathrm{~d} S-\int_{\partial X_{0}} h_{\Gamma}(N, N) u^{2} \mathrm{~d} s \tag{22}
\end{equation*}
$$

Note that the term $\int_{\partial X_{0}} \ldots$ in (22) vanishes if Γ is a plane and hence $h_{\Gamma} \equiv 0$.
c) The formulas (19)-21) translate to our discrete computational setting in a straightforward way, see $\$ 2.3 .1$. However, given some X_{0}, we compute $X=X_{0}+u N_{0}$ via Newton loops for iterates u_{n} with derivatives (of V, A and H) evaluated at $X_{n}=X_{0}+u_{n} N_{0}$, and hence the formulas are accordingly adjusted.

2.2 Default data and initialization of a pde2path struct p

Before explaining the modifications needed for the geometric problems, we briefly review the standard setup of pde2path, and as usual assume that all problem data is contained in the Matlab struct p as in problem. In the standard FEM setting this includes the object p.pdeo (with sub-objects fem and grid), which provides methods to generate FEM meshes, to code BCs, and to assemble FEM matrices M (mass matrix) and K (e.g., Laplacian), or directly a rhs G. Typical initializations and first continuation steps in the FEM setup (for semilinear problems) then run as follows, where steps 1,2 and 5 are usually combined into an init-function.

1. Call $p=s t a n p a r a m()$ to initialize most fields in p with default values (see source of stanparam.m for default fields and values).
2. Call a pdeo constructor, for instance p.pdeo=stanpdeo2D (p,vararg), where here and in the following vararg stands for variable arguments.
3. In a function oosetfemops (in the current directory), use p.pdeo.assema to generate a mass matrix p.mat.M and a stiffness matrix p.mat.K (typically corresponding to $-\Delta$), and possibly further FEM matrices, e.g., for BCs.
4. Use p.mat.M and p.mat.K in a function $r=s G(p, u)$ to encode the PDE, and optionally the Jacobian in $\mathrm{Gu}=\mathrm{sGjac}(\mathrm{p}, \mathrm{u})$ (usually recommended, but numerical Jacobians are also supported). The input argument u contains the "PDE unknowns" u and the parameters appended at the end. If required by the problem, similarly create a function $q=q f(p, u)$ for the constraints as in (3b), and a function $q u=q \operatorname{der}(p, u)$ for the derivatives of $q f$.
5. Initialize p.u with a first solution (or a solution guess, to be corrected in a Newton loop).
6. Call $p=\operatorname{cont}(p)$ to (attempt to) continue the initial solution in some parameter, including bifurcation detection, localization, and saving to disk.
7. Call $\mathrm{p}=$ swibra(dir, bpt, newdir) to attempt branch switching at branch point bpt in directory dir; subsequently, call $\mathrm{p}=$ cont (p) again, with saving in newdir.
8. Perform further tasks such as fold or branch-point continuation; use plotbra(dir, pt, vararg) to plot bifurcation diagrams, and plotsol (dir, pt, vararg) to plot sample solutions.

Remark 2.4 The rhs, Jacobian, and some further functions needed/used to run pde2path on a problem p, are interfaced via function handles in p.fuha. For instance, you can give the function encoding your rhs G any name, e.g., myrhs, with signature res=myrhs(p,u), and then set p.fuha.sG=@myrhs, but you can also simply keep the "standard names" sG and sGjac and encode these in the respective problem directory. For many handles in p.fuha there are standard choices which we seldomly modify, e.g., p.fuha.headfu=@stanheadfu (the header for printouts). Functions for which the "default choice" is more likely to be modified include, e.g.,

- p.fuha.outfu=@stanbra, signature out=stanbra(p,u), branch output;
- p.fuha.lss=@lss, signature $[\mathrm{x}, \mathrm{p}]=1 \mathrm{ss}(\mathrm{A}, \mathrm{b}, \mathrm{p})$, linear systems solver $x=A^{-1} b$.

Other options include, e.g., lssbel (bordered elimination) and lssAMG (preconditioned GMRES using ilupack [Bol11]).
During continuation, the current solution is plotted via plotsol(p), and similarly for a posteriori plotting (from disk). The behavior of plotsol is controlled by the subfields of p.plot (and possible auxiliary arguments), and if p.plot.pstyle=-1, then plotsol immediately calls a function userplot, to be user-provided. Such user functions naturally must be in the Matlab-path, typically in the current problem directory, which Matlab scans first when looking for a file. We sometimes also exploit this to overload pde2path library functions that need modifications for a given problem.

2.3 pde2path setup for discrete differential geometry

2.3.1 Discrete differential geometry FEM operators

We recall a few discrete differential geometry operators from MDSB03, Jac13, and shall use implementations of them from the gptoolbox [Jac22]. Given a triangulation $\mathrm{X} \in \mathbb{R}^{n_{p} \times 3}$ (point coordinates) and tri $\in \mathbb{R}^{n_{t} \times 3}$ (triangle corner indices) of X, and the piecewise linear element "hat" functions $\phi_{i}: X \rightarrow \mathbb{R}, \phi_{i}\left(X_{j}\right)=\delta_{i j}$, we have

$$
\begin{equation*}
\int \nabla \phi_{i} \nabla \phi_{j} \mathrm{~d} S=-\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)=: L_{i j} \tag{23}
\end{equation*}
$$

where $\alpha_{i j}$ and $\beta_{i j}$ are the angles opposite the edge $e_{i j}$ from point X_{i} to point X_{j}. For $u: X \rightarrow \mathbb{R}, u=$ $\sum_{i=1}^{n_{p}} u_{i} \phi_{i}$, this yields the FEM stiffness matrix $L u$ corresponding to the Laplace-Beltrami operator
$-\Delta u$ weighted by the mass matrix M. In [MDSB03] it is explained that for geometric problems, with possibly rather distorted triangles, instead of the full mass matrix $M^{\text {full }}$ with

$$
\begin{equation*}
M^{\text {full }}{ }_{i j}=\int \phi_{i} \phi_{j} \mathrm{~d} S, \tag{24}
\end{equation*}
$$

the Voronoi mass matrix

$$
\begin{equation*}
M=\operatorname{diag}\left(A_{1}, \ldots, A_{n_{p}}\right) \tag{25}
\end{equation*}
$$

should be expected to give better approximations, see also Fig. 3. Here, $A_{i}=\sum_{j=1}^{n_{i}} A_{m}\left(T_{j}\right)$ is the area of the Voronoi region at node i, where $T_{j}, j=1, \ldots, n_{i}$ are the adjacent triangles, and $A_{m}(T)$ is a "mixed" area: For non-obtuse $T, A_{m}(T)$ is the area of the rhomb with corners in X_{i}, in the midpoints of the edges adjacent to X_{i}, and in the circumcenter of T, while for obtuse T we let $A_{m}(T):=|T| / 2$ if the angle at X_{i} is obtuse, and $A_{m}(T):=|T| / 4$ else. Altogether, this yields the approximation

$$
\begin{equation*}
-\Delta u=M^{-1} L u, \tag{26}
\end{equation*}
$$

where M from (25) is diagonal, and L and M are evaluated very efficiently via cotmatrix and massmatrix from the gptoolbox, see Table 3 .

However, as we always consider our problems such as (3) in weak form, we let $\mathrm{H}=-\frac{1}{2}\langle L X, N\rangle$, where for the vertex normals N we can use per_vertex_normals, and the weak form of, e.g., $H-H_{0}=0$ then is

$$
\begin{equation*}
-\langle L X, N\rangle-2 M H_{0}=0 \tag{27}
\end{equation*}
$$

again with Voronoi M. Alternatively, we use $[\mathrm{k}, \mathrm{H}, \mathrm{K}, \mathrm{M}]=$ discrete_curvatures(X,tri), where K and $\mathrm{k}=\left(k_{1}, k_{2}\right)$ are the (weighted, i.e., weak) discrete Gaussian and principal curvatures per vertex; these are computed from a discrete version of the Gauß-Bonnet theorem. ${ }^{1}$ Namely

$$
\begin{equation*}
\mathrm{K}\left(X_{i}\right)=2 \pi-\sum_{j=1}^{n_{i}} \theta_{j}, \quad\left(\text { and } k_{1}=H+\sqrt{D} \text { and } k_{2}=H-\sqrt{D}\right), \tag{28}
\end{equation*}
$$

where the θ_{j} are the angles at X_{i}, and where the discriminant $D=H^{2}-K$ (which is non-negative in the continuous case) in the discrete case is set to 0 if negative. An approximations of K is then obtained (cheaply, since M is diagonal) from

$$
\begin{equation*}
K=M^{-1} \mathrm{~K} \tag{29}
\end{equation*}
$$

There are further schemes for H and K, with different convergence behaviors, see XX09] and the references therein. Numerical experiments in [Xu04 show that a variety of natural schemes for $-\Delta$ in general do not converge, but that $M^{-1} L=-\Delta+\mathcal{O}\left(h^{2}\right)$ with Voronoi M at valence 6 nodes (6 neighbors) Xu04, Theorem 2.1], where h is a suitable triangle diameter. In Fig. 3 we give an illustration of the error and convergence behavior of our discrete $H=-\frac{1}{2} M^{-1}\langle L X, N\rangle$ based on (26), and of K from (29) on (coarse) discretizations of the unit sphere, obtained via subdivided_sphere with 2 (a) resp. 3 (b) subdivisions, and with $N=$ outer normal. Therefore, $H=-1, K=1$ are the exact values, and the two left columns indicate the convergence for H, but also that the node valence

[^0](a)

Figure 3: Discrete H (and K) on (coarse) meshes of the unit sphere (plots cropped). Two left columns: Convergence for $H=-\frac{1}{2} M^{-1}\langle L X, N\rangle$ and $K=M^{-1} \mathrm{~K}$ with Voronoi M. Right column: No convergence for H (and similar for K) at valence 5 nodes when using $M^{\text {full }}$.
plays a role on these otherwise very regular meshes ${ }^{2}$ However, the last column shows that using $M^{\text {full }}$ in this example, i.e., $H_{\text {full }}=-\frac{1}{2} M^{\text {full }}{ }^{-1}\langle L X, N\rangle$ gives a significant error (and similarly in K), and in fact no convergence at the valence 5 nodes; see spheres/convtests.m for the source of these experiments.

2.3.2 The pde2path library Xcont

Table 3 lists the main (for us) functions from the gptoolbox Jac22], which we interface by functions from the pde2path library Xcont. The most important new data for continuation of a surface X are p.X and p.tri, which essentially replace the data in p.pdeo.grid. The most important switch, which also modifies the behavior of some standard pde2path functions, is

$$
\text { p.sw.Xcont }= \begin{cases}0 & \text { legacy setting (no X), } \tag{30}\\ 1 & \text { switch on X-continuation (default) } \\ 2 & \text { refined setting for X-continuation. }\end{cases}
$$

The difference between p.sw.Xcont $=1$ and $\mathrm{p} . \mathrm{sw} . \mathrm{Xcont}=2$ is as follows: For $\mathrm{p} . \mathrm{sw} . \mathrm{Xcont}=1$ we update p. X after convergence of the Newton loop, i.e., set $\mathrm{p} . \mathrm{X}=\mathrm{p} . \mathrm{X}+\mathrm{u} * \mathrm{~N} \mathbf{O}$, $\mathrm{p} . \mathrm{up}=\mathrm{u}$ (for plotting, see Remark 2.5 (b)), and $\mathrm{u}(1: \mathrm{p} . \mathrm{np})=0$ (zeroing out u for the next continuation step). For p.sw.Xcont=2 we do all this after each successful Newton-step, such that we obtain slightly different (more accurate) Jacobians as we also have a new N. A side-effect is that the last update in the Newton loop and hence the p.up may be very small and will in general not represent the "direction" of continuation. For p.sw.Xcont=1, p.up will contain the complete step, and therefore we choose this as default. For the spectral computations (bifurcation detection and localization) p.sw.Xcont=1 vs p.sw.Xcont=2 makes no difference as all spectral computations are done after convergence of the Newton loops, i.e., after the final update of p.X.

Some main functions from the pde2path library Xcont are listed in Table 4, and can be grouped as follows:

1. Functions directly interfacing the gptoolbox such as $N=\operatorname{getN}(\mathrm{p})$ which in the default setting
[^1]Table 3: Main functions used from Jac22 and Sch22, FS21, and some small additions/mods. Here $\mathrm{X} \in \mathbb{R}^{n_{p} \times 3}$ are the point coordinates of the triangulation, and tri $\in \mathbb{R}^{3 \times n_{t}}$ the triangulation as rows of point numbers of triangles.

function	remarks
```N=per_vertex_normals(X,tri) L=cotmatrix(X,tri) M=massmatrix(X,tri,type) K=discrete_gaussian_curvature(X,tri) [k,H,K,M]=discrete_curvatures(X,tri)```	normals; should be interfaced as $\mathrm{N}=\mathrm{getN}(\mathrm{p}, \mathrm{X})$, see Table 4 to possibly flip sign at one place; cotangent discrete Laplace-Beltrami mass matrix, with type 'full', 'barycentric' or 'voronoi'. Gaussian curvature $K$. principal curvatures $k=\left(k_{1}, k_{2}\right)$, and $H, K, M$.
$\begin{aligned} & \text { [X,tri,DBC,NBC] } \\ & \text { =TrefineRGB(X,tri, DBC, NBC, elist) } \end{aligned}$	refinement, with DBC/NBC the Dirichlet/Neumann boundary nodes, and elist the triangles to refine. Interfaced via $p=r e f i n e X(p, s i g)$; where sig is the usual factor of triangles to refine, and where after refinement p.u and p.tau are interpolated to the new mesh. See also TcoarsenRGB, with similar signature.

just calls $N=$ per_vertex_normals(p.X,p.tri). These are meant as easy-to-change interfaces, as for a given problem it may be desired to, e.g., change the orientation of $X$. For this, make a local copy of getN.m and there set $\mathrm{N}=-$ per_vertex_normals (p.X,p.tri).
2. "Template" functions to compute $V(u)$ (corresponding to $V(X)=V\left(X_{0}+u N_{0}\right)$ in (14)), and $A(u)$ from (13), and wrappers to use them in constraints such as $\mathrm{q}=\mathrm{qfV}(\mathrm{p}, \mathrm{u})=V(u)-V_{0}$, and their derivative, such as $\mathrm{qu}=\mathrm{qjacV}(\mathrm{p}, \mathrm{u})=\partial_{u} V$. (Since $V$ is a scalar function, here we use "jac" in a loose sense.)
3. Template convenience functions such as pplot for plotting p.X, and updX for updating $X=$ $X_{0}+u N_{0}$, cf. (4), and overloads of pde2path library function adapted to $X$ continuation, e.g., getGupde, and a prototype oosetfemops, which for $X$-continuation usually should only serve as a dummy needed by other pde2path functions.
4. Functions related to mesh handling such as refineX, coarsenX and degcoarsenX, and associated elements-to-refine-selectors such as e2rsA (based on triangle areas) and e2rshape (based on triangle shapes). Additionally there are retrigX and moveX, based on [PS04], see Remark 2.6.
5. The template geomflow for geometric flows such as MCF, interfaced in p.fuha.flowf.

All of these functions, in particular from 2. and 3. are "templates"; for a given problem it may be necessary or useful to make local copies of some of these functions in the problem directory and change them there. Additionally, there is convenience function $\mathrm{p}=$ stanparam X ( p ), which (re)sets some pde2path parameters to typical values for $X$-continuation. Another important interface to the gptoolbox is
6. $\operatorname{getM}(\mathrm{p})$, which for scalar problems should call $M=$ massmatrix( $\mathrm{p} . X, \mathrm{p} . \operatorname{tri}$, 'Voronoi'), and for vector valued problems should build the system mass matrix from such "scalar" M, cf. §4. However, for compatibility with the non- $X$-setting, getM is not part of Xcont, but needs a local copy in each ( $X$-continuation) problem directory.

Remark 2.5 a) As is, out=cmcbra(p,u) puts the data

$$
\begin{equation*}
\text { out }=[\text { pars } ; \mathrm{V} ; \mathrm{A} ; E ; \text { meshq }] \tag{31}
\end{equation*}
$$

into out, where pars of length $m=$ length $(\mathrm{u})-\mathrm{p} . \mathrm{nu}$ is the (user defined) parameter vector of the problem, $V$ and $A$ are volume and area of $X$, and $E=A+\operatorname{par}(1) V$, cf. (2), which assumes that $H_{0}$ is at $\operatorname{par}(1)$, and is an active continuation parameter. Next, meshq $=\left(\delta_{\operatorname{mesh}}, a_{\max }, a_{\min }, h_{\max }, h_{\min }\right)$ gives measures of the mesh, computed in meshq=meshqdat (p). Here,

$$
\begin{equation*}
\delta_{\text {mesh }}=\max (h / r)=\text { mesh distortion }, \tag{32}
\end{equation*}
$$

Table 4: Main functions from the library Xcont, which collects interfaces to functions from gptoolbox and [Sch22], and some additions/mods; see sources for argument lists and detailed comments, and Remark 2.5 for further comments..

function	remarks
p=stanparamX(p)	convenience function to set pde2path parameters to "standard" values for $X-$ continuation; to be called after $\mathrm{p}=$ stanparam() during initialization.
getN   getA, getV   qV, qjacV   qA, qjacA   c2P   cmcbra	interface to per_vertex_normals; to flip orientation, make local copy with function $N=\operatorname{getN}(p, X)$; $N=-$ per_vertex_normals(X,p.tri); end get area $A$ and volume $V$ according to (13) and (14). $V$ as a constraint $q$ for continuation, and its derivative $\partial_{u} q$. $A$ as a constraint $q$ for continuation, and its derivative $\partial_{u} q$. triangle center to point (nodes) interpolation matrix. default branch output in our demos below.
pplot   oosetfemops   updX   plotHK	plot of p.X, usually called from userplot; see Remark 2.5b). usually only needed as a dummy (since called by pde2path library functions). update p.X after successful Newton steps. given p. x, plot $H(X)$ and $K(X)$ (mostly for checking).
e2rsA, e2rsAi	element-to-refine-selector choosing triangles with large areas; e2rsAi chooses triangles with small areas, intended for coarsening.
e2rsshape 1   meshqdat   refineX	Select triangles according to (32). See also e2rsshape*. mesh quality data, see (33).   mesh refinement of p.X; selecting triangles via p.fuha.e2rs and calling TrefineRGB (or Trefinelong if $\mathrm{p} . \mathrm{sw} . \mathrm{rlong}==1$ for bisection of only longest edges of triangles).
coarsenX	coarsening of $\mathrm{p} . \mathrm{X}$, same syntax as refineX; i.e., selecting triangles via p.fuha.e2rs. Inverse to refineX, as only triangles from prior refinement can be coarsened (to their common ancestors).
degcoarsenX retrigX	coarsening of mesh by removing degenerate triangles (via gptoolbox). retriangulation of $X$, based on PS04; using the adjacency in p.trig to generate a new (Delauney) triangulation of $X$ while keeping the surface structure.
moveX	retriangulate and move points of $X$ based on [PS04] and the associated code.
geomflow	simple explicit time integrator for $\dot{X}=f N$, where $f=$ p.fuha.flowf, e.g., $f(X)=-H$ for mean curvature flow, implemented in mcff (with DBCs).

where, for each triangle, $h$ is the maximum edge-length, and $r$ the in-radius; $a_{\max }$ and $a_{\text {min }}$ are the $\max$ and min of the triangle areas, and $h_{\text {max, min }}$ are the largest and smallest edge lengths in the triangulation. Thus, $\delta_{\text {mesh }}$ is our default mesh-distortion measure (one of several possible), see, e.g., Fig. 4 and Fig. 12 for plots of $\delta_{\text {mesh }}$ along branches. For an equilateral triangle $\delta_{\text {mesh }}=6 / \sqrt{3} \approx 3.46$, and our experiments suggest that, as a rule of thump, triangles with $\delta_{\text {mesh }}<50$ are (still) of "reasonable shape".
out=p.fuha.outfu is appended to bradat ( $\mathrm{p}, \mathrm{u}$ ) = [count;type;ineg;lam;err;L2] $]_{3}$, and we list the component $c$ for branch plotting for $\mathrm{p} . \mathrm{fuha}^{\text {. outfu}}=@ \mathrm{cmcbra}$ (with $m$ the number of parameters):

$$
\begin{array}{c|c|ccc|ccccc}
\mathrm{c} & 1 \ldots \mathrm{~m} & \mathrm{~m}+1 & \mathrm{~m}+2 & \mathrm{~m}+3 & \mathrm{~m}+4 & \mathrm{~m}+5 & \mathrm{~m}+6 & \mathrm{~m}+7 & \mathrm{~m}+8  \tag{33}\\
\text { meaning } & \mathrm{pars} & V & A & E & \delta_{\mathrm{mesh}} & a_{\max } & a_{\min } & h_{\max } & h_{\min }
\end{array} .
$$

Thus, to plot, e.g., $V$ over the active bifurcation parameter from a computed branch b1 into figure fnr, use plotbra(b1,fnr, $\mathrm{m}+1$, varargin), where varargin gives many options for colors, labels, etc. Similarly, to plot $\delta_{\text {mesh }}$, use plotbra(b1,fnr , m+4, varargin). Moreover, c in plotbra(b1,fnr, c, varargin)

[^2]can be a vector, and to, e.g., plot $\delta_{\text {mesh }}$ over $V$ use $\mathrm{c}=[\mathrm{m}+1, \mathrm{~m}+4]$.
b) pplot (p,fignr) (or pplot (dir, pt,fignr), where pis loaded from dir/pt) colors p.X by p.up, which contains $u$ from the last continuation step and hence codes (together with $N$ ) the "continuation direction" (if p.sw.Xcont=1), or just the last Newton update (if p.sw.Xcont=2), see (30). The behavior of pplot can further be controlled by settings in the global structure p2pglob. ${ }_{-1}$ For instance, p2pglob.tsw controls the titles, e.g., $(V, H)$ for $\mathrm{tsw}=1$, and $(A, H)$ for $\mathrm{tsw}=2$, which assumes that the parameters are ordered as $(H, V, A)$. For flexibility, if tsw $>4$, then pplot searches the current directory for a function mytitle to generate a title, see, e.g., demo geomtut/enneper. Again, pplot is a template, if necessary to be modified in the problem directory for customized plots, but all demos from geomtut/ only use the given library version.
c) In all demos below we use indices $p . i d x$ and $p . i d N$ of boundary points to set boundary conditions. In this, p.idx should be thought as points for Dirichlet BCs and associated to p.DBC (the corresponding edges, updated in refineX and coarsenX), and p.idN as Neumann BCs with edges p. NBC. All of these can also be empty (for instance if $X$ is closed, or has only one type of boundary), and again, the use of p.idx, p.idN, p.DBC and p.NBC should only be seen as a template, for instance to be modified if a given problem has several different boundaries.

Remark 2.6 a) For surface meshes (X, tri), mesh adaptation, i.e., refinement and coarsening, seems even more important than for standard (non-parametric) problems, because well behaved initial triangulations (well shaped triangles of roughly equal size) may deteriorate as $X$ changes. The case of growing spherical caps in Fig. 1(a) is rather harmless as triangle sizes grow but shapes stay intact, and can easily be dealt with by refinement of the largest triangles. For this, in e2rsA we simply order the $n_{t}$ triangles of tri by decreasing size, and from these choose the first $\left\lfloor\sigma n_{t}\right\rfloor$ for refinement by refineX, i.e., we generally use $\sigma=\mathrm{p} . \mathrm{nc} . \operatorname{sig}$ as the parameter for the fraction of triangles to refine. The refinement can be either done as RGB if p.sw.rlong=0, or by refining only the longest edges of the selected triangles if p.sw.rlong=1. RGB is generally better if triangle shapes are crucial, but may result in rather long cascades to avoid hanging nodes (such that $\sigma$ is only a lower bound for the fraction of triangles actually refined). Refine-long gives more control as only the selected triangles are bisected (plus at most one more triangle for each one selected), but may lead to obtuse triangles, and it seems that as for standard FEM very obtuse triangles are more dangerous than very acute triangles. A short computation shows that, e.g., for a right-angled triangle refine-long increases $\delta=h / r_{\text {in }}$ by $45 \%$; however, this can often be repaired by combining refine-long with retrigX, see b). See also She02 for a very useful discussion of mesh quality (in the planar setting, and in 3D).

Conversely, coarsenX can be used to coarsen previously refined triangles, again from a list generated by p.fuha.e2rs, which should be reset from the one chosen for refinement. For instance, e2rsAi selects the $\left\lfloor\sigma n_{t}\right\rfloor$ triangles of smallest area, but these have to be from the list of previously refined triangles.
degcoarsenX works differently: It calls the modification rmdegfaces of the gptoolbox function rm_degenerate_faces, and essentially aims to remove obtuse and acute triangles by collapsing (short) edges. This works in many cases but may result in hanging nodes such that the FEM no longer works.

Both, refineX and degcoarsenX can be told to not refine/coarsen boundary triangles, which is crucial for the case of periodic BCs.
b) We also provide two small modifications of (actually interfaces to) code from [PS04. In retrigX.m we generate a new (Delauney) triangulation of $X$, keeping intact the surface structure of $X$. This is in particular useful if $X$ has been obtained from long refinement, which typically results in nodes having 8 adjacent triangles (valence 8), while "standard" triangulations (and the output of retrigX) have valence 5 and 6 , which generally seems to result in more robust continuations. In moveX we combine retrigX with motion of the points in $X$ due to "truss forces" of the triangulation,

[^3]aimed at more uniform edge lengths. Due to the similarity of the triangulation truss forces and surface tension, this works best for minimal surfaces $(H=0)$, or otherwise for surfaces with small $|H|$. $\rfloor$

## 3 Second order example implementations and results

Our demos are meant to show how to set up different geometric bifurcation problems, in particular with different BCs. They mostly deal with classical minimal or more generally CMC surfaces, for instance the Enneper and Schwarz-P surfaces, and so called nodoids (including physically relevant liquid bridges). Many demos start with CMC surfaces of revolution, and our main interest then are bifurcations breaking the rotational symmetry. The minimal surfaces in $\$ 3.2$ are motivated by Plateau's problem of soap films spanning a given wire, and in $\S 4$ we consider 4th order problems obtained from the Helfrich functional.

All demos come with a number of function files namely (at least, with * a placeholder, usually to be replaced by a short problem name, cf. \$2.3): sG*.m describing the rhs of the problem; *init.m for initialization; userplot.m and getM.m for technical reasons (downward compatibility). Additionally, in some demos we overload functions from libs/Xcont, e.g., cmcbra.m for branch output. Finally, there are script files cmds*.m with * a number if there is more than one script. In our descriptions of the first demos, we give tables listing the used files and their purpose (starting with the scripts), and we give a few listings of (parts of) pertinent files to discuss important points. This becomes less for the later more advanced demos, for which we rather put more comments into the m -files themselves.

### 3.1 Spherical caps

We start with the continuation in volume $V$ of spherical caps over the unit circle $\gamma$ in the $x-y$ plane, as previewed in Fig. 1 (a). It is known [ALP99], [KPP15, §2.6] that no bifurcations occur, and hence this only serves as an introductory toy model. Table 5 gives an overview of the used files, and Listings 1.2 show the initialization scinit.m, the rhs sGsc.m, and the first script cmds1.m. The BCs are $\partial X=\gamma=\left\{(x, y, 0) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$, which since they hold for the initial unit disk translate into

$$
\begin{equation*}
\left.u\right|_{\partial X}=0 \tag{34}
\end{equation*}
$$

Remark 3.1 a) We can as well continue directly in $H$, without any constraints, and starting from the disk again obtain the same branch (see lines 14,15 of $\mathrm{cmds} 1 . \mathrm{m}$ ). Our setup in cmds1.m is motivated by applications, where typically the volume is the external parameter. I.e., the setup is a template how to use the volume ( qfV ) or area ( qf A ) constraints, together with the derivatives ( qjacV and qjacA ). Note that p.nc.ilam $=[2,1]$ for using $V$ as the primary active parameter in cmds1, and p.nc.ilam $=[3,1]$ for using $A$, while $H=\operatorname{par}(1)$ is a secondary active parameter in both cases.
b) Only the active continuation parameters are updated in p.u; thus, when continuing only in $H$, say, then to plot, e.g., $A$ over $H$ we cannot choose p.plot.bpcmp $=3$ (the parameter index of $A$ ), but must take p.plot. $\mathrm{bpcmp}=3+2=5$. This is because the computed $A$ is put second after the parameters in the output function cmcbra, and here we have three parameters $(H, V, A)$. But again, $A=\operatorname{par}(3)$ is only updated if $3 \in$ p.nc.ilam, i.e., if $A$ is an active parameter.

```
1 function p=scinit(nx,par) % spherical cap, init
 p=stanparam(); p=stanparamX(p); % set stanparam, adapt to X; then reset some
 p.fuha.sG=@sGsc; p.fuha.sGjac=@scjac; p.sw.spcalc=0; p.sw.bifcheck=0;
 pde=diskpdeo2(1,nx,round(nx/2)); % disk preimage discretization, pde-object
 % not stored, only p.DBC, p.tri and p.X (generated below) used subsequently
6 p.np=pde.grid.nPoints; p.nu=p.np; p.nt=pde.grid.nElements; % store dimensions
 p.sol.xi=1/p.nu; p.n0=p.np; % u-vs-lam weight, initial mesh size (for coarsening)
p.nc.neq=1; p.sw.jac=0; % here, for simplicity, numerical Jacs
po=pde.grid.p; x=po(1,:)'; y=po(2,:)'; u=0*ones(p.np,1); % set ICs
```

Table 5: Files in pde2path/demos/geomtut/spcap1; the last two are typical examples of (small) local mods of library functions.

cmds1.m	continuation in $(V, H)$ and in $(A, H)$, respectively.
cmds2.m, cmds3.m	tests of different mesh refinement options, and MCF tests.
getM.m	standard (Voronoi) mass matrix.
scinit.m	Init, data stored in p.u (including computed $H, A$ and $V)$, and in p.X and p.tri.
sGsc.m, scjac.m	rhs based on $(23)$, and Jacobian based on $(20)$.   mcff.m
mean curvature flow rhs $f ;$ problem dependent via choice of getN.	
refufu.m	local copy and mod of library function cmcbra.m to put error $e(X)(36)$ on branch.   local copy and mod (and renaming) of stanufu.m to do adaptive mesh refinement
coarsufu.m	based on $e(X) ;$ "switched on" by setting p.fuha.ufu=@refufu.   similar to refufu.m, used for mesh coarsening of decreasing caps;

p.u=[u; par]; p. $X=[x, y, 0 * x] ; p . t r i=p d e . g r i d . t(1: 3,:)^{\prime} ; \%$ store initial $X$ and tri 11 p. DIR=pde.grid.e(1:2,:)'; p.idx=unique(p.DIR(:)); \% edges, and points for BCs p=oosetfemops(p); p.plot.auxdict=\{'H', 'V', 'A'\}; \% dummy oosetfemops! p.u(p.nu+2) $=\operatorname{getV}(p, p . u) ; p . u(p . n u+3)=\operatorname{get} A(p, p . u) ; \%$ get initial vol \& area p.nc.lammax $=200$; p.nc.dsmax $=3$; p.nc.dlammax=3; p.file.smod=10;

Listing 1: spcap1/scinit.m; the pde-object pde in line 4 is generated in a legacy pde2path setup but only used to generate the initial p.X, with initial triangulation stored in p.tri (line 10).

During init, we call pde=diskpdeo2 to generate a temporary FEM object from which we extract the initial mesh to generate the initial p.X and store p.tri as the triangulation. Additionally we extract p.DBC as the (Dirichlet) boundary edge index vectors, and p.idx as the boundary point indices. This is in principle redundant, but it makes the setup of the DBCs in sGsc shorter.

```
 function r=sGsc(p,u) % spherical cap PDE (more generally: any CMC with DBCs)
 par=u(p.nu+1:end); H0=par(1); u=u(1:p.np); % split into PDE-u and parameters
 NO=getN(p,p.X); X=p.X+u.*NO; N=getN(p,X); % base normal, new X, new normal
 M=getM(p,X); LB=cotmatrix(X,p.tri); % mass matrix and Laplace-Beltrami
 r=-0.5*dot(LB*X,N,2)+M*(H0*ones(p.np,1)); % rhs-PDE, i.e., -H(X)+H0=0
6 r(p.idx)=u(p.idx); % Dirichlet BCs
 p2pglob.tsw=1; p2pglob.vi=[20,40]; p2pglob.edc='k'; % plotting controls
 %% init; pars will be overwritten in scinit
 nx=12; h0=0; v0=0; a0=0; par=[h0; v0; a0]; % initial pars
4 p=scinit(nx,par); p=setfn(p,'cap1'); p.sol.ds=0.1;
 p.sw.jac=0; % numerical (0) or functional (1) jacs for G, speed no problem
 p.sw.qjac=1; % numerical (0, too slow), hence functional (1) derivative for q
 p.nc.ilam=[2 1]; p.nc.nq=1; p.fuha.qf=@qfV; p.fuha.qfder=@qjacV; % cont in V,
 p.plot.bpcmp=1; p.nc.usrlam=[2 4]; % cmp for branch-plot, vals for forced output
9 p=cont(p,5); % go
%% alternate cont and mesh refinement based on triangle areas
p=loadp('cap1','pt5','cap1r'); p.sw.nobdref=0; p.sw.rlong=1; p.file.smod=2;
sig=0.2; for i=1:10; p=refineX(p,sig); p=cont(p,5); end
%% just cont in H (no constraints)
14 p=loadp('cap1','pt0','Hcont');p.nc.nq=0;p.nc.ilam=1;p.sol.ds=-0.1;p.plot.bpcmp=5;
sig=0.2; for i=1:4; p=cont(p,5); p=refineX(p,sig); end % alternate ref. and cont
```

Listing 2: spcap1/sGsc.m, and start of cmds1.m (omitting plotting).
In cmds1.m we then continue the initial disk (with $V=0$ and $A=\pi$ ) in $V$. For this we switch on the constraint $V(u)=V$ via p.nc.nq=1, p.fuha.qf=@qfV; p.fuha.qfder=@qjacV, with the Xcont library functions qfV and qjacV , and set p.nc.ilam=[2,1], cf. Remark 3.1. For mesh adaptation we use the triangle areas on $X$ as selector, and refineX also updates p.DBC and p.idx, leading to Fig. 1(a), where we use repeated mesh refinement every 5 th step. This way we can accurately continue to arbitrary large $V$, i.e., arbitrary large "cap radius" $R$, where $H=1 / R$ asymptotes to $H=0$. In the second part of cmds1.m we continue in $A$ and hence set p.nc.ilam=[3,1]; p.fuha.qf=@qfA;
and p.fuha.qfder=@qjacA. This yields exactly the same branch as the continuation in $V$, and all this works very robustly and fast.

Remark 3.2 The numerical Jacobians of (for p.sw.jac=0 in line 5 of Listing 2) are sufficiently fast to not play a role for the speed of the continuation, at least for $n_{p}<2000$, say, because MatLab's numjac can efficiently exploit the known sparsity (structure) of $\partial_{u} G$, given by the sparsity structure of the Laplacian $K$, or equivalently, by the sparsity structure of the (full, not Voronoi) mass matrix $M$. On the other hand, if $q$ implements some integral constraints, e.g., area or volume, then $\partial_{u} q(u) \in$ $\mathbb{R}^{n_{q} \times n_{p}}$ is dense, and numerical derivatives for $\partial_{u} q$ are a serious bottleneck. For illustration, in cmds1.m we use the commands jaccheck and qjaccheck, which are rather important for "debugging" when numerical Jacobians become too slow. Both return relative errors between functional and numerical Jacobians, and as a rule of thump, in $\partial_{u} G$ relative errors $\leq 10^{-3}$ should be achieved, and do not affect the continuation or bifurcation results, and for $\partial_{u} q$ even somewhat larger relative errors are usually no problem.


Figure 4: Results from spcap1/cmds2.m. (a) Error $e(X):=\|H-H(V)\|_{2} /|H(V)|$ for refinement each 15th step (capr1, black) (starting at step 10), when $e(X)>$ p.nc.errtol $=0.05$, using p.fuha.ufu=@refufu (capr3, red), and when $\max (A)>0.3$ using p.fuha.ufu=@refufumaxA with $\sigma=0.3$ (capr4, magenta). At $V=200, n_{p}=1452$ on capr1, $n_{p}=1486$ on capr3, and $n_{p}=636$ on capr4. (b) Mesh distortion $\delta_{\text {mesh }}=\max (h / r)$ (edge-length over in-radius). (c) Illustration of meshes before/after refinement at pt25; plots cropped at $y=0$ for better visibility of the meshes, and the boundary at $z=0$ marked in red.

In cmds2.m we test different options for mesh adaptation, see Listing 3 and Fig. 4$]^{5}$ The black line capr1 in (a), starting from cap1/pt10, corresponds to adaptation each 15 th step, with "refinement factor" $\sigma=0.3$ (fraction of triangles marked for refinement). As we choose p.sw.rlong=1 we only bisect the longest edge of a selected triangle, and the actual fraction of refined triangles is between $\sigma$ and $2 \sigma{ }^{6}$ For capr3 (red) we refine when the "error" $e(X)$ exceeds p.nc.errbound $=0.04$, where $e(X)$ is also used for plotting and defined as follows: For given $V$ we compute the (exact) $H(V)$ of the associated (exact) spherical cap $C(V)$ as

$$
\begin{equation*}
H(V)=-\frac{\pi^{1 / 3}\left(3 V+s-\pi^{2 / 3}\right)(s-3 V)^{1 / 3}}{s(3 V+s)^{1 / 3}}, \quad \text { where } \quad s=\sqrt{9 V^{2}+\pi^{2}} \tag{35}
\end{equation*}
$$

[^4]We then define the "relative $L^{2}$ error"

$$
\begin{equation*}
e(X)=\|H(X)-H(V)\|_{L^{2}(X)} /|H(V)|, \tag{36}
\end{equation*}
$$

and put $e(X)$ on the branch in the modified local copy cmcbra.m of the standard (library) cmcbra.m. 7 $e(X)$ can then be plotted like any other output variable, and, moreover, can be used (without recomputing) in p.fuha.ufu (user function), which is called after each successful continuation step. The default (library) setting p.fuha.ufu=@stanufu essentially only gives printout, and to switch on the adaptive meshing we rename and modify a local copy as refufu.m, and set p.fuha.ufu=@refufu. Since $e(X)$ is at position 13 in (our modified) out=cmcbra (p,u), and since out is appended to the six values from bradat, cf. Remark 2.5 ), in refufu.m we then simply add the commands

$$
\text { if brout }(6+13)>\text { p.nc.errbound; p=refineX(p,p.nc.sig); end. }
$$

Another "natural" alternative is to refine when

$$
\begin{equation*}
a_{\max }=\max \left(a_{1}, \ldots, a_{n t}\right)>\mathrm{p} \cdot \operatorname{maxA}, \tag{37}
\end{equation*}
$$

i.e., when the maximum area of the nt triangles exceeds a chosen bound. This is not an error estimator in any sense (as a plane can be discretized by arbitrary large triangles), but an ad hoc criterion, with typically an ad hoc choice of p.maxA, which could be correlated to $H$. It is implemented in refufumaxA.m which, if max $A>p . m a x A$, calls refineX with e2rsmaxA to select all triangles with $A>(1-\sigma)$ p.maxA. With p.maxA $=0.3$ and $\sigma=0.2$ this yields the magenta line in Fig. 4 (a).

The samples in Fig. 4 (c) illustrate a refinement step on the black branch, yielding a "reasonable" mesh also at large $V$. However, this naturally depends on the choice of steps between refinements (and on the refinement fraction sig and continuation stepsize ds). For the red line in Fig. 4 (a), the refinement when the error $e(X)$ exceeds the chosen bound p.nc.errbound is more genuinely adaptive, and this similarly holds for capr4 based on (37), see also cmds2.m for various further plots. (b) shows that the long-refinement generally yields a (mild) increase of the mesh distortion $\delta_{\text {mesh }}$, but overall the mesh-quality stays very good.

```
%% tests of mesh-refinement, preparation: set rlong=1 and dsmax,dlammax
p=loadp('cap1','pt10'); p.sw.rlong=1; p.nc.dsmax=4; p.nc.dlammax=4; p0=p;
%% alternate refine and cont, here ref.each 15th step; single steps for saving
p=p0; p=setfn(p,'capr1'); sig=0.3; nsteps=13;
for i=1:5; p=refineX(p,sig); p=cont(p,1); p=cont(p,1); p=cont(p,nsteps); end
%% refine when error exceeds errbound, using refufu
10 p=p0; p=setfn(p,'capr3'); p.fuha.ufu=@refufu; p.nc.errbound=0.04; p=cont(p,100);
%% refine when max A exceeds p.maxA, using refufumaxA
p=p0; p=setfn(p,'capr3'); p.fuha.ufu=@refufumaxA; p.fuha.e2rs=@e2rsmaxA;
p.maxA=0.5; p=cont(p,100);
%% error plots; error appended at end of cmcbra, component c=13
15 lab=[25 27]; c=13; mclf(8); plotbra('capr1','pt71',8,c,'lab',lab,'fp',11);
plotbra('capr3',8,c,'lab',[],'cl','r','fp',11);
```

Listing 3: Selection from spcap1/cmds2.m, refinement each 15th step, $e(X)$-dependent refinement via setting p.fuha.ufu=@refufu and p.nc.errbound=0.04, and refinement based on (37).

In cmds3.m and Fig. 5 we decrease $V$ from $V \approx 150$ (running the branch capr1 from Fig. 4 backwards), and test the MCF from a spherical cap at $V \approx 15$. For both, because the shrinking of the caps gives mesh distortions, the main issue is that we now need to alternate continuation/flow and

[^5]mesh-coarsening. For the continuation we give two options: similar to the refinement for increasing $V$ in Fig. 4 , we either coarsen after a fixed number of steps (black branch), or when $\delta_{\text {mesh }}>8$ (magenta branch). Both here work efficiently only until $V \approx 35$, after which new parameters for the coarsening should be chosen. For the MCF in (d) we similarly coarsen after a given number of time steps. With this we can flow back to the disk, more or less reached at $t=3$, but the last plot in (d) shows that along the way we have strongly distorted meshes, which are somewhat repaired in the coarsening steps, and the final distortion with $\delta_{\text {mesh }} \approx 30$ is not small but OK.

```
 %% go branch backwards, cont-coarsening loop
 p=loadp('capr1','pt56','capr1b'); p.sol.ds=-3.2; p=resetc(p);p.fuha.e2rs=@e2rsAi;
 p.file.smod=5; p0=p; sig=0.5; for i=1:8; p=coarsenX (p,sig); p=cont(p,5); end
 %% coarsen via coarsufu
5 p=p0;p=setfn(p,'capr1d');p.fuha.ufu=@coarsufu; p.nc.errbound=8; p=cont(p,40);
 %% MCF, with initial large V; to handle meshing, alternate flow and coarsening
15% this may require trial and error to balance dt, flow-length nf, and
% coarsening sigc. First some graphics settings, then load and prepare:
p2pglob.cut=0; p2pglob.vi=[30,40]; p2pglob.cm='spring'; p2pglob.tsw=4;
p=loadp('cap1r','pt15','mcf'); sigc=0.1; dt=0.0005; nf=500; nplot=100;
p.sw.nobdcoarsen=0; p.t=0; plotHK(p); figure(1); title('t=0'); % prepare MCF
20 p.fuha.flowf=@mcff; t=0; ts=[]; p.fuha.e2rs=@e2rsAi;
%% the MCF/coarsening loop; repeat this cell as desired
for i=1:4; [p.X,t,ts]=geomflow(p,t,ts,dt,nf,nplot); p=coarsenX(p,sigc); end
```

Listing 4: Selection from spcap1/cmds3.m; decreasing $V$ by going backwards, and MCF; both need to be combined with coarsening. Omission between lines 5 and 14 deal with plotting, and further experiments are at the end of cmds3.m.


Figure 5: Results from spcap1/cmds3.m. (a)-(c) continuation backwards in $V$ from $V \approx 150\left(n_{p}=1452\right)$; coarsening each 5th step (capr1b, black, $n_{p}=644$ at $V=40$ ) vs coarsening when $\delta_{\text {mesh }}>8$ (magenta, $n_{p}=650$ at $V=40)$ ). (d) MCF from the spherical cap at $V \approx 15$. time series of $A$ and $V$, sample plots, and time series of $\delta_{\text {mesh }}$ (last plot). Coarsening at times $t=0.25 j$, altogether from $n_{p}=773$ at $t=0$ to $n_{p}=450$ at $t=3$.

Remark 3.3 The performance of the MCF as in Fig. 5. based on our simple explicit Euler stepping, depends on the choice of flow parameters, i.e., step size dt, number $n_{f}$ of steps before coarsening, and coarsening factor $\sigma$. With too weak coarsening (large $n_{\mathrm{f}}$, or small $\sigma$ ), triangles may degenerate. Too aggressive coarsening (large $\sigma$ ) may lead to wrong identification of boundary edges. Altogether, at this point we must recommend trial and error. We also tested the use of degcoarsenX instead of coarsenX (see cmds3.m) for backward continuation and for MCF, but this here does not give good results; see Fig. 12 for a successful use of degcoarsenX in a related problem, and $\$ 4.1$.

### 3.2 Some minimal surfaces

Plateau's problem consists in finding soap films $X$ spanning a (Jordan) curve (a wire) $\gamma$ in $\mathbb{R}^{3}$, and minimizing area $A$. Mathematically, we seek a minimal surface $X$, i.e., $H(X) \equiv 0$, with $\partial X=\gamma$. Such problems have a long history, and already Plateau discussed non-uniqueness and bifurcation issues, called "limits of stability" in Pla73].

A classical example for which a bifurcation is known is Enneper's surface, see 3.2 .3 . However, in the demo bdcurve we first start with other BCs, meant to illustrate options (and failures) for prescribing boundary values in our numerical setup. We introduce parameters $\alpha \in \mathbb{R}$ and $k \in \mathbb{N}$ (angular wave number) and a switch p.bcsw, and consider BCs of the form

$$
\begin{align*}
& \left.u\right|_{\partial X}=0, \quad(\text { for } \mathrm{p} \cdot \mathrm{bcsw}=0)  \tag{38}\\
& \left.X_{3}\right|_{\partial X}=\alpha \sin (k \phi), \quad \phi=\arctan (y / x) \quad(\text { for } \mathrm{p} \cdot \mathrm{bcsw}=1),  \tag{39}\\
& \partial X=\gamma(\cdot ; \alpha, k) \quad(\text { for } \mathrm{p} \cdot \mathrm{bcsw}=2) \tag{40}
\end{align*}
$$

where $\gamma$ in (40) is a prescribed boundary curve, depending on parameters $\alpha, k$. Specifically, in $\S 3.2 .2$ we choose

$$
\gamma(\phi ; \alpha, k)=\left(\begin{array}{c}
\beta \cos (\phi)  \tag{41}\\
\beta \sin \phi \\
\alpha \cos (k \phi)
\end{array}\right), \quad \phi \in[0,2 \pi), \quad \beta=\sqrt{1-\alpha^{2} \cos ^{2}(k \phi)} .
$$

For (39), $\partial X$ is not uniquely determined by the parameter $\alpha$ (and fixed $k$ ), and this illustrates how our scheme (4) can fail, and that the condition $Y \in \mathcal{N}_{C}$ in general cannot be dropped in Lemma 2.1. Relatedly, for (39) the continuation can genuinely depend on the continuation stepsize ds, as different predictors give different BCs (39). In other words, the problem is under-determined and the continuation algorithm itself "chooses" the BCs. Thus, (39) is a cautionary example, though it produces interesting minimal surfaces. On the other hand, (40) is a genuine DBC with unique continuation, which however requires a modification of the "standard" updX.m, and careful mesh handling. Together, (39) and (40) are meant to illustrate options.

The condition on $\beta$ in 41 yields that $\|\gamma\|_{2}=1$, i.e., that $\gamma$ lies on the unit sphere, for $\alpha \in[0,1]$. Moreover, the projection of $\gamma$ into the $x-y$ plane is injective, and this is useful since we then can extract $\phi$ from $\partial X$. In $\$ 3.2 .3$ we treat a variant of 41 , associated to the Enneper surface, where the discretization of $\gamma$ requires a further trick. On the other hand, $\gamma$ from (41) becomes singular at $\phi=j \pi / k$ as $\alpha \rightarrow 1$, which is useful to test mesh-handling. Thus, $\$ 3.2 .2$ and $\$ 3.2 .3$ are quite related, but illustrate different effects.

Table 6 shows the used files, Listing 5 shows sGbdcurve, and Listing 6 the "new" (compared to spcap1/) files needed to run the BCs (40). The other files are essentially as in spcap1/, except that we now have altogether five parameters ( $H, V, A, \alpha, k$ ), and that we use the additional parameter p .bcsw.

```
function r=sGbdcurve(p,u) % PDE rhs, discrete mean curvature
if p.bcsw==2; Xbc=bcX(p,u); p.X(p.idx,:)=Xbc; end % set Bdcurve
par=u(p.nu+1:end); H0=par(1); N=getN(p,p.X); X=p.X+u(1:p.np).*N;
```

Table 6: Files in pde2path/demos/geomtut/bdcurve.
cmds1a.m $\quad$ continuation in $\alpha($ and $H)$ for 39 , see Fig 6 . MCF tests in cmds1b.
cmds2.m
bdcurveinit.m
sGbdcurve.m
updX.m
bcX.m
continuation in $\alpha$ for 40), see Fig. 7 .
Initialization, very similar to scinit.
very similar so sGsc, except for the BCs. mod of standard updX; for p.bcsw=2 setting the boundary curve. user function to give $\gamma$, here implementing (41).

```
M=getM(p,X); LB=cotmatrix(X,p.tri); N=getN(p,X);
r=-0.5*dot(LB*X,N,2) +M*(H0*ones(p.np,1)); % PDE-rhs, i.e., H-HO=0
switch p.bcsw % BCs
 case 1; % X_3=al*sin(k*phi)
 al=par(4); k=par(5); phi=angle(X(p.idx,1) +1i*X(p.idx,2));
 r(p.idx)=X(p.idx,3)-al*sin(k*phi);
 otherwise; r(p.idx)=u(p.idx); % \pa X=\ga (boundary curve)
end
```

Listing 5: bdcurve/sGbdcurve.m, with BCs depending on p.bcsw.

```
function Xbc=bcX(p,u) % set BCs; called in sGbdcurv, with u=0 on bdry there
par=u(p.nu+1:end); al=par(4); k=par(5); phi=angle(p.X(p.idx,1)+1i*p.X(p.idx, 2));
b=sqrt(1-(al*cos(k*phi).^2)); Xbc=[b.*cos(phi), b.*sin(phi), al*cos(k*phi)];
function [p,u]=updX(p,u) % local mod of updX.m, with update of BCs.
if p.bcsw==2; Xbc=bcX(p,u); p.X(p.idx,:)=Xbc; end
N=getN(p,p.X); np=p.nu/p.nc.neq; p.up=u; p.X=p.X+u(1:np).*N; u(1:np)=0;
```

Listing 6: bcX.m and updX.m from bdcurve/, needed to run with the BCs 40 .

### 3.2.1 Prescribing one component of $X$ at the boundary

In cmds1a.m (Listing (7) we continue (39) in $\alpha$, starting with $\alpha=0$ at the flat disk, and first with angular wave number $k=2$. Some results are shown in Fig. 6 .

```
%% cont in alpha, BCs X_3-alpha*sin k\phi=0; MUST fail when X gets 'vertical'
2 nx=15; h0=0; v0=0; a0=0; al=0; k=2; par=[h0; v0; a0; al; k];
p=bdcurveinit(nx,par); p=setfn(p,'b2'); p.nc.ilam=4; p.bcsw=1; ds=0.05;
p.sol.ds=ds; p.nc.dsmax=ds; p.nc.lammax=1.5; p.nc.lammin=-1.5; p=cont(p,13);
```

Listing 7: Start of bdcurve/cmds1a.m, running BCs 39.
As we increase $\alpha$, the surface lifts at $\phi=\pi / 4$ and $\pi=5 \pi / 4$ according to $X_{3}=\alpha \sin (2 \phi)$, and sinks at $\phi=3 \pi / 4$ and $\phi=7 \pi / 4$. Near $\alpha=0.5$ (b2/pt12), $X$ becomes vertical at these angles, and hence our scheme (4) can no longer continue to fulfill the BCs. To better resolve the boundary we use some mesh-refinement only at the boundary. For this we choose p.fuha.e2rs=@e2rsbdry at b2/pt6 and obtain the blue branch (with a sample top view as last plot in (b)), which however naturally runs into the same continuation failure at $\alpha \approx 0.5$. Although this was on quite coarse meshes, none of this changes on finer meshes, and hence this mainly serves as an example of necessary failure of the algorithm (4), and as an example of mesh refinement with e2rsbdry.

The red branch in (a) together with sample (c) shows that here the branches are continuation stepsize ds dependent. In (d) we choose finer meshes and wave numbers $k=1$ (blue branch b1) and $k=4$ (b4, grey), and get analogous results up to continuation failure. In (e,f) we switch back to continuation in ( $H, A$ ) from b1/pt6, in both directions of positive (black branch) and negative (grey branch) $H$. As $\alpha$ is now fixed again, $\partial X$ stays fixed even with the BCs (39). The branches are dsindependent again, and $H$ asymptotes to nonzero $\pm H_{\infty}$ as $A \rightarrow \infty$. In cmds1b.m we run MCF (not shown) from selected solutions from (f), where again we need to undo the refinement which happened, e.g., during the continuation $H$ from $\mathrm{b} 2 \mathrm{Hb} / \mathrm{pt0}$ to pt 30 , and thus we alternate between geomflow and coarsenX as in spcap1/cmds2.m and Fig.5.


Figure 6: Results from bdcurve/cmds1a.m. (a) Continuation in $\alpha$ with BCs 34, $k=2$ : black and red branches with $n_{p}=945$ mesh points and fixed ds=0.05 (black) and ds=0.1 (red), illustrating the step-length dependence of the continuation; blue branch b2r via refinement at boundary. Samples in (b) and (c), partly with cropping. (d) Like (a,b) but on finer meshes, with $k=1$ and $k=4$, and with marking $\partial X$ in red. All of (a-d) are minimal surfaces, i.e., $H \equiv 0$. (e,f) Switching back to continuation in $H$ at b2/pt6.

### 3.2.2 A Plateau problem

In cmds2.m we choose the BCs (40) with $\gamma$ from (41). We again continue in $\alpha$, for $k=2,3$, starting at $\alpha=0$ with the unit disk. The basic idea (Listing 6) to implement (40), (41) is to

$$
\begin{equation*}
\text { set } \partial X=\gamma \text { in updX, and }\left.u\right|_{\partial X}=0 \text { in sGbdcurv. } \tag{42}
\end{equation*}
$$

```
1%% genuine bdcurve, first with k=2, 5 initial steps
 nx=15; al=0; h0=0; v0=0; a0=0; k=2; par=[h0; v0; a0; al; k];
 p=bdcurveinit(nx,par); p=setfn(p,'d2'); p.nc.ilam=4; p.bcsw=2; p=cont(p,5);
 %% some boundary refinement and coarsening, trial and error to choose sig
 p=loadp('d2','pt5'); % reload point (easier for trial and error)
6 sigr=0.1; sigc=0.1; p=refineX(p,sigr); p=cont(p,2); p=degcoarsenX(p,sigc);
 %% continuation alternating with moveX, and refine and coarsen, parameters:
 nis=15; ncs=1; % #inner steps (before ref/coars), #cont-steps (before more)
 dt=0.1; nit=5; % stepsize and iterations in moveX
 for i=1:3; % outer loop,
11 for j=1:nis; % inner loop, alternate moveX and cont
```

```
 p=moveX(p,dt,nit); pplot(p,20); p=cont(p,ncs);
 end
 p=refineX(p,sigr); p=degcoarsenX(p,sigc); % refine and coarsen
end
```

Listing 8: First 15 lines from bdcurve/cmds2.m, using the BCs (40).
Figure 7 shows some results from cmds2.m. The crucial points are that as we increase $\alpha$ (in particular beyond $\alpha=0.2$, say) we

- move mesh points via moveX(p,dt,it) after ncs continuation steps (here ncs=1);
- after nis=15 "inner" steps refine $X$ (introduce new points), here near the boundary, and coarsen $X$, here via degcoarsen $X$ ( $\mathrm{p}, \mathrm{sigc}$ ), to remove "bad" triangles.
The parameter dt in moveX is the Euler step size to balance the "truss forces" PS04] (nit gives the number of iterations), while sigc in degcoarsenX has a similar meaning as in refineX and coarsenX, i.e., giving the fraction of triangles to coarsen 8 Again, the parameters ncs, nis, sigr and sigc are generally highly problem dependent and it may require (educated) trial and error to find good values. In summary, Fig. 7 shows that with a good combination of moveX, refineX and degcoarsenX we can continue rather complicated minimal surfaces $X$ ( $X$ with complicated boundary curve $\gamma$ ) with reasonable meshes ${ }^{9}$


Figure 7: Results from cmds2.m for BCs (40) with $k=2$ (black branch d2) and $k=3$ (blue branch d3). Along the way in, e.g., d2 we do 3 refinements and coarsenings, and the total number of mesh points only increases mildly from $n_{p}=945$ to $n_{p}=1177$. These are really two different ( $k=1 \mathrm{vs} k=2$ ) continuation problems, out of inifinitely many $(k \in \mathbb{N})$, and hence the two branches in (a) are from different problems and are both stable.

### 3.2.3 Bifurcation from the Enneper surface

The Enneper surface is a classical minimal surface. Bounded parts of it can be parameterized by ${ }^{10}$

$$
X_{E}=X_{E}(r, \vartheta)=\left(\begin{array}{c}
r \cos (\vartheta)-\frac{r^{3}}{3} \cos (3 \vartheta)  \tag{43}\\
-r \sin (\vartheta)-\frac{r^{3}}{3} \sin (3 \vartheta) \\
r^{2} \cos (2 \vartheta)
\end{array}\right), \quad(r, \vartheta) \in D_{\alpha}=[0, \alpha) \times[0,2 \pi),
$$

[^6]see Fig. 8 . We start by reviewing some basic facts, see BT84 and the references therein. For $\alpha \leq 1 / \sqrt{3}$, the boundary curve
\[

$$
\begin{equation*}
\gamma(\vartheta ; \alpha)=\left(\alpha \cos (\vartheta)-\frac{\alpha^{3}}{3} \cos (3 \vartheta),-\alpha \sin (\vartheta)-\frac{\alpha^{3}}{3} \sin (3 \vartheta), \alpha^{2} \cos (2 \vartheta)\right), \quad \vartheta \in[0,2 \pi) \tag{44}
\end{equation*}
$$

\]

has a convex projection to the $x-y$-plane, and for $1 / \sqrt{3}<\alpha \leq 1$ the projection is still injective. This yields uniqueness (of the minimal surface spanning $\gamma$ ) for $0<\alpha \leq 1$ (see Ruc81 for $\alpha \in(1 / \sqrt{3}, 1]$ ). For $\alpha>1$ uniqueness of $X_{E}$ fails, i.e., at $\alpha=1$ we have a (pitchfork, by symmetry) bifurcation of different minimal surfaces spanning $\gamma_{\alpha}$ [Nit76]. This has been analyzed in detail in [BT84] as a two-parameter bifurcation problem, showing a so called cusp catastrophe $\sqrt{11}$


Figure 8: Bifurcation from the Enneper surface $X_{E}, A$ over $\alpha(\mathrm{a})$, and $V$ over $\alpha$ (d). At $\alpha=1$ (e1/pt10 in (b)), the branch e1b (blue) with smaller $A$ bifurcates from e1 (black), samples in (b,c) and (e,f). (g,h) MCF from perturbation of e1/pt23 to e2/pt30, samples showing $H$.

In the demo enneper we simply choose $\alpha$ as a continuation/bifurcation parameter for

$$
\begin{equation*}
H(X)=0, \quad \partial X=\gamma_{\alpha}, \tag{45}
\end{equation*}
$$

[^7]and get the pitchfork bifurcation at $\alpha=1$. The used files bcX.m, cmds1.m, cmds2.m, enninit.m, sGenn.m, updX.m are very similar to those from the demo bdcurve, but we also include a Jacobian sGjacenn.m, a function mytitle.m for customized titles, and thinterpol.m, discussed next.

The problem (45) is "easy" in the sense that we have the explicit parametrization (43) which we can use at any $\alpha$, but like in $\$ 3.2 .2$ it does require care with the meshing, and compared to (41) it requires an additional trick to update $\vartheta$ on $\partial X$ after mesh adaption (at the boundary): Since we cannot in general extract $\vartheta$ from (44) from the projection to the $x-y$ plane (which is not injective for $\alpha>1$ ), we keep a field $\vartheta=\mathrm{p}$.th associated to p.idx (the indices of $\partial X$ ) in the given discretization. Then, if $\mathrm{p} . \mathrm{X} 1$ is obtained from refining $\mathrm{p} . \mathrm{X}$ with new mesh-points $\mathrm{p} . \mathrm{nX}$ on $\partial X$, then we need to update the $\vartheta=\mathrm{p}$.th values of $\mathrm{p} . \mathrm{nX}$. This is done in $\mathrm{p}=$ thinterpol ( p , idxold,thold) by

- finding the (old-point) neighbors of the new points on $\partial X$;
- linear interpolation of the neighbors' $\vartheta$ values to the new points.

This is a question of indexing, and we refer to the source of thinterpol.m for comments. A refinement step thus takes the form

```
idold=p.idx; thold=p.th; p=refineX(p,sigr); p=thinterpol(p,idold,thold);
```

see cmds1.m which produces Fig. 8 . The other files in enneper/ are very much like in bdcurve/.
At $\alpha=1$ we find a supercritical pitchfork bifurcation from $X_{E}$, branch e1 (black), to a branch e2 (blue) which breaks the $(x, y, z) \mapsto(-y, x,-z)$ symmetry of $X_{E}$ (rotation by $\pi / 2$ around the $z$ axis and mirroring at the $z=0$ plane). The solutions "move up" (or down) in the middle, which decreases $A$ compared to $X_{E}$, cf. (c) vs (f). (d) illustrates that the (algebraic) volume $V$ of $X_{E}$ is always zero. The numerical continuation of e1 to large $\alpha$ is no problem, using suitable mesh-adaption, even as $\gamma(\cdot ; \alpha)$ self-intersects for $\alpha>\sqrt{3}$, because the associated parts of $X_{E}$ do not "see" each other, cf. (e) for an example. The continuation of e2 to larger $\alpha$ is more difficult, and fails for $\alpha>1.5$, as for instance shortly after e1b/pt30 we can no longer automatically adapt the mesh near the top.

However, physically the change of stability at the symmetry breaking pitchfork at $\alpha=1$ is most interesting. Using suitable combinations of geomflow, refineX, degcoarsenX and moveX we can use MCF to converge for $\alpha>1$ and $t \rightarrow \infty$ to e2, from a variety of ICs, for instance from perturbations of e1, see Fig. $8(\mathrm{~g}, \mathrm{~h})$, and enneperflow. avi in MU23. After convergence we can then again continue the steady state, see cmds2.m.

### 3.3 Liquid bridges and nodoids

Weightless liquid bridges are CMC surfaces with prescribed boundary usually consisting of two parallel circles wlog centered on the $z$-axis at a fixed distance $l$ and parallel to the $x-y$ plane. Additionally there is a volume constraint, which makes the problem different from Plateau's problem. See for instance [SAR97] and the references therein for physics background and results (experimental, numerical, and semi-analytical).

We consider liquid bridges between two fixed circles $C_{1}$ and $C_{2}$ of

$$
\begin{equation*}
\text { radius } r=r^{*}=1 \text {, parallel to the } x-y \text { axis and centered at } z= \pm l= \pm 1 / 2 \text {. } \tag{46}
\end{equation*}
$$

A trivial solution $X_{0}$ is the cylinder, with $H=1 / 2$, volume $V=2 \pi l$ and area $A=4 \pi r l$ (without the top and bottom disks). Further explicit solutions are known in the class of surfaces of revolution, for instance nodoids. We first review some theory for nodoids with DBCs, and then continue basic liquid bridges (embedded nodoids), with bifurcations to non axial branches, see Figures 9 and 10. In Figure 11 we then start directly with nodoids with one "inner loop". Nodoids with "periodic" BCs are studied in MP02], and numerically in $\$ 3.4$, where we also comment on the theory for these.

### 3.3.1 Nodoid theory

In [KPP17], a family of nodoids $\mathcal{N}(r, R)$ is parameterized by the neck (smallest) radius $r$ and the buckle (largest) radius $R$. Let $l \in \mathbb{R}$ and $C_{1}, C_{2} \subset \mathbb{R}^{3}$ be two circles of radius $r^{*}$ centered at heights $z= \pm l$ and parallel to the $x-y$ plane. With the two parameters $a, H \in \mathbb{R}$ the nodoids are parameterized by the nodary curve

$$
\begin{equation*}
(x, z):\left[-t_{0}, t_{0}\right] \rightarrow \mathbb{R}^{2}, \quad t \mapsto(x(t), z(t))=\left(\frac{\cos t+\sqrt{\cos ^{2} t+a}}{2|H|}, \quad \frac{1}{2|H|} \int_{0}^{t} \frac{\left.\frac{\cos \tau+\sqrt{\cos ^{2} \tau+a}}{\sqrt{\cos ^{2} \tau+a}} \cos \tau \mathrm{~d} \tau\right), ~}{\text { a }}\right. \text {, } \tag{47}
\end{equation*}
$$

which is then rotated around the $z$ axis, i.e.,

$$
\begin{equation*}
\mathcal{N}_{t_{0}}: M \rightarrow \mathbb{R}^{3}, \quad(t, \theta) \mapsto(x(t) \cos \theta, x(t) \sin \theta, z(t)) \tag{48}
\end{equation*}
$$

where $M=\left[-t_{0}, t_{0}\right] \times[0,2 \pi)$. Thus, in terms of $\$ 2.1$ these nodoids are immersions of cylinders. While (47) only gives nodoids with an even number of self intersections (or none), shifting $t_{0}$ also gives odd numbers of self intersections. From the immersion $\mathcal{N}_{t_{0}}$, we can determine geometric quantities by evaluating the parametrization at the endpoints. For example the height and the radius are given by

$$
\begin{equation*}
2 l=\frac{1}{|H|} \int_{0}^{t_{0}} \frac{\cos t+\sqrt{\cos ^{2} t+a}}{\sqrt{\cos ^{2} t+a}} \cos t \mathrm{~d} t, \quad r^{*}=\frac{\cos t_{0}+\sqrt{\cos ^{2} t_{0}+a}}{2|H|} \tag{49}
\end{equation*}
$$

and the buckle radius (at $t=0$ ) is $R=\frac{1+\sqrt{1+a}}{2|H|}$. Implicitly, the equations in (49) define $a\left(t_{0}\right)$, hence also the mean curvature $H$, and thus $t_{0}$ parameterizes a family of nodoids $t_{0} \mapsto \mathcal{N}_{t_{0}}$. Conversely, given $r, l$ in (46), the implicit equation

$$
\begin{equation*}
\frac{l}{2 r}\left(\cos t_{0}+\sqrt{\cos ^{2} t_{0}+a}\right)-\left(\sin t_{0}+\int_{0}^{t_{0}} \frac{\cos ^{2} \tau}{\sqrt{\cos ^{2} \tau+a}} \mathrm{~d} \tau\right)=0 \tag{50}
\end{equation*}
$$

defines all possible combinations of $a$ and $t_{0}$ satisfying the boundary condition, which we exploit to relate our numerics to results from [KPP17], see Remark 3.6.

In order to detect bifurcations from the family (48), we search for Jacobi fields vanishing on the boundary, cf. (21). The unit normal vector (field) of $\mathcal{N}_{t_{0}}$ is

$$
N=(\cos t \cos \theta, \cos t \sin \theta, \sin t), \quad t \in\left[-t_{0}, t_{0}\right), \vartheta \in[0,2 \pi),
$$

and for every fixed vector $\vec{x} \in \mathbb{R}^{3}$, the function $\langle\vec{x}, N\rangle$ is a solution to 20 . So the task is to find $\vec{x}$ and $t_{0}$ such that the Dirichlet BCs are fulfilled. The components of $N$ have zeros if the nodoid meets the boundary horizontally (parallel to the $x-y$ plane), which happens at $t_{0}=\frac{\pi}{2}+n \pi$, or vertically, which happens at $t_{0}=n \pi$ for $n \in \mathbb{N}$. Choosing the unit basis $\left(e_{i}\right)_{i=1,2,3}$, we have in the horizontal case that $\left.\left\langle e_{i}, N\right\rangle\right|_{\partial \mathcal{N}_{t_{0}}}=0$ for $i=1,2$, and in the vertical case $\left.\left\langle e_{3}, N\right\rangle\right|_{\partial \mathcal{N}_{t_{0}}}=0$.

Lemma 3.4 KPP17, Lemma 3.4 and Proposition 3.6] Consider the one parameter family $\mathcal{N}_{t_{0}}$. If for some $t_{0} \in \mathbb{R}_{+}$the normal vector at $\partial \mathcal{N}_{t_{0}}$ is

1. $N=(0,0, \nu(x))$, then $L=\partial_{u} H(u)$ has a double zero eigenvalue.
2. $N=\left(\nu_{1}(x), \nu_{2}(x), 0\right)$ then $L=\partial_{u} H(u)$ has a simple zero eigenvalue.

The immersions are isolated degenerate, i.e., there exists an $\varepsilon>0$ such that $\left(\mathcal{N}_{t}\right)_{t \in\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right]}$ has a jump in the Morse index. In 1. this occurs for $t_{0}=\frac{\pi}{2}+k \pi$, and in 2. for $t_{0}=k \pi$, for every $k \in \mathbb{N}$.

Now general bifurcation results (see the discussion after Lemma 2.2) yield the existence of bifurcation points at the horizontal and vertical cases presented in Lemma 3.4.

Theorem $3.5 \sqrt{K P P 17, ~ P r o p o s i t i o n s ~} 3.5$ and 3.6] In cases 1. and 2. in Lemma 3.4 we have bifurcation points for the continuation in $H$. Moreover,

1. if $\psi=\left\langle e_{i}, N\right\rangle \in \operatorname{ker} L$ for $i=1,2$, then the bifurcating branch breaks the axial symmetry;
2. if $\psi=\left\langle e_{3}, N\right\rangle \in \operatorname{ker} L$, then the bifurcating branch breaks the $z \mapsto-z$ symmetry.

### 3.3.2 Nodoid continuation with fixed boundaries

Nodoids with DBCs at the (fixed) top and bottom circles are treated in the demo nodDBC. Table 7 lists the pertinent files. We treat two cases:

- Short embedded nodoids (liquid bridges) in cmds1.m, starting from the cylinder (eventually continued to self-intersecting nodoids).
- Long nodoids (with self-intersections from the start) in cmds2.m.

Table 7: Files in pde2path/demos/geomtut/nodDBC;


For solutions without axial symmetry we additionally need to set a rotational phase condition (PC): If $X$ is a solution to (3), so is $R_{\phi} X$, where $\phi$ is the angle in the $x-y$ plane, and

$$
R_{\phi} \vec{x}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0  \tag{51}\\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \vec{x} .
$$

Thus, if $\left.\partial_{\phi}\left(R_{\phi} X\right)\right|_{\phi=0}=\frac{1}{x^{2}+y^{2}}\left(-y \partial_{x} X+x \partial_{y} X\right) \in \mathbb{R}^{3}$ is non-zero, then it gives a non-trivial kernel of $L$, which makes continuation unreliable and bifurcation detection impossible. See, e.g., [Uec21, §3.5] for further discussion of such continuous symmetries. Here, to remove the kernel we use the PC

$$
\begin{equation*}
q(u):=\int_{X}\left\langle\partial_{\phi} X_{0}, X_{0}+u N_{0}\right\rangle \mathrm{d} S=\int_{X}\left\langle\partial_{\phi} X_{0}, N_{0}\right\rangle u \mathrm{~d} S=: \int_{X} \mathrm{~d} \phi u \mathrm{~d} S \stackrel{!}{=} 0 \tag{52}
\end{equation*}
$$

where $X_{0}$ is from the last step, with normal $N_{0}$, where $\phi$ is the angle in the $x-y$ plane, and hence $\partial_{\phi} X=-X_{2} \nabla_{X_{1}} X+X_{1} \nabla_{X_{2}} X$, where $\nabla_{X_{j}}$ are the components of the surface gradient, cf. (10). On the discrete level we thus obtain the linear function

$$
\begin{equation*}
q(u)=(\mathrm{d} \phi)^{T} u, \text { with derivative } \partial_{u} q=(\mathrm{d} \phi)^{T}, \tag{53}
\end{equation*}
$$

$\mathrm{d} \phi=\left\langle-X_{2} \nabla_{X_{1}} X+X_{1} \nabla_{X_{2}} X, N\right\rangle$, node-wise, i.e., $\nabla_{X_{j}} X$ is interpolated to the nodes via c2P, with Voronoi weights. We then add $s_{\text {rot }} q(u)$ to $E$ from (2) with Lagrange multiplier $s_{\text {rot }}$, and thus modify
the PDE to $G(u):=H(u)-H_{0}+s_{\text {rot }} \mathrm{d} \phi \stackrel{!}{=} 0$. This removes the $\phi$-rotations of non-axisymmetric $X$ from the kernel of $\partial_{u} G(u)$, and, moreover, $\left|s_{\text {rot }}\right|<10^{-8}$ for all the continuations below.

Since the (algebraic) volume $V$ of self-intersecting nodoids is not intuitive, here we use continuation in area $A$ and $H$. Thus, we start with the constraint qfA with derivative qjacA. For non-axisymmetric branches we set up qfArot and its derivative, where we put (52) as a second component of qfA, and similarly for the derivatives, and when we bifurcate to a non-axisymmetric branch, we set p.nc.nq=2 ( 2 constraints, area and rotational phase) and p.fuha.qf=@qfArot.

### 3.3.3 Short nodoids

Listing 9 shows how we initialize by either a cylinder (icsw=0) or parametrization (48). Here, pde. grid is a 2 D rectangular FEM mesh, of which we use the second component as $\phi \in[-\pi, \pi]$. Lines $16-20$ implement (47) and (48) with twice the line $\phi= \pm \pi$ where the rotation around the $z$-axis closes. To obtain a mesh without duplicate points from this, in the last line of Listing 9 we use clean_mesh from the gptoolbox.

```
h=par(1); a=par(4); po=pde.grid.p; x=po(1,:)'; phi=po(2,:)';
if icsw==0; p.X=[a.* cos(phi), a.*sin(phi),x]; % just cylinder
else % KPP17 parametrization of nodoids
 x1=(cos(x)+sqrt(a+cos(x). '2))/(2*abs(h)); x2=zeros(size(x)); xl=size(x,1);
 for i=1:xl
 y=@(t) 1./(2*abs(h)).*(cos(t)+sqrt(cos(t).^2+a)).*\operatorname{cos}(t)./sqrt(cos(t).^2+a);
 x2(i)=integral(y,0,x(i));
 end
 p.X=[x1.*cos(phi), x1.*sin(phi), x2]; % initial X
end
par(7)=max(p.X(:,3))-min(p.X(:,3)); % needed in getV
[p.X,p.tri]=clean_mesh(p.X,p.tri,'SelfIntersections','ignore');
```

Listing 9: From nodDBC/nodinit.m; setting initial p.X as a cylinder (icsw==0) or via the parametrization (47) and (48) with ( $\mathrm{x}=\mathrm{t}$ ) and subsequent removal of duplicate points.
$10 \% \% 1$ st $B P$, double, use gentau to choose bif direction aux.besw=0; aux.m=2; p1=qswibra('N','bpt1', aux);
$\mathrm{p}=$ gentau( p 1 , [1 0],'N1'); p.sol.ds=0.125; p.nc.tol=1e-5; p.sw.bifcheck=0;
$\mathrm{p}=$ cont $(\mathrm{p}, 2)$; $\% 2$ steps without PC , and with bifcheck=0,
p.nc.nq=2; p.nc.ilam=[3 1 6]; p.fuha.qf=@qfArot; p.fuha.qfder=@qjacArot;

15 p.sw.bifcheck=1; p.nc.tol=1e-8; p.sw.jac=0; p=cont (p,20) ;
Listing 10: From nodDBC/cmds1.m; branch switching at double BP, and continuation with rotational PC.
Figure 9 shows results from cmds1.m (see also the movie nodDBCs.avi from MU23 to go step by step through the bifurcation diagram). We start at the cylinder and first continue to larger $A$ (black branch N ). The first BP at $(A, H) \approx(12.24,1.29)$ is double with angular wave number $m=1$. We simply select one of the kernel vectors to bifurcate, and do two steps without PC (blue branch N1, lines 11-13 of Listing 10). Then we switch on the rotational PC in line 14 and continue further. As predicted, BP1 occurs when $X$ meets the lower and upper boundary circles horizontally, and the stability changes from N to $\mathrm{N} 1{ }^{[12}$ The second BP yields the $m=2$ branch N 2 (red). These results fully agree with those from [Bru18]. The branch Nb (grey, with pt3) is the continuation of N to smaller $A$ (and $V$ ), where the cylinder curves inward.

The third BP on N is simple with $z \mapsto-z$ symmetry breaking, yielding branch N3 (brown). On N3 there are secondary bifurcations, and following the first we obtain N3-1 (magenta). The 4th BP on N again has $m=2$ but is different from the 2 nd BP on N as the nodoid has already "curved in" at the boundary circles, which is inherited by the bifurcating branch N4 (orange). The 5th BP on N yields

[^8]

Figure 9: Bifurcation diagram of (mostly) embedded nodoids (a), with samples in (b,c) cut open at the $x-z$ plane $(y=0)$. Branches N (black), Nb (grey), N1 (blue), N2 (red), N4 (orange), N5 (green), N6 (light blue), N3-1 (magenta), and Nr1, Nr2 and Nr3 ("restarts" of N, grey). See text for details, and Fig. 10 for plots of N/pt52, Nr1/pt2, and Nr2/pt12.
a skewed $m=2$ nodoid N5 (green). ${ }^{13}$ After the fold, the mesh in $N$ becomes bad at the necks, see N/pt52 in Fig. 10. Thus, for accurate continuation we use (48) to remesh, see $\mathrm{Nr} 1 / \mathrm{pt} 2$ and Remark 3.6 (a) and Fig. 10(a-c), yielding the branch Nr1 (grey) in Fig. 9 (a). Nr1/pt12 in Fig. 10 shows that as after a number of steps the nodoid bulges further in, the mesh at the neck deteriorates again, and so we remesh again to Nr 2 (light grey). The nodoid then self-intersects at $(A, H) \approx(22.9,1.05)$, and at $\mathrm{Nr} 2 / \mathrm{pt} 10$ we do the next restart to Nr 3 . Using such remeshing we can continue the branch N (as $\mathrm{Nr} 1, \mathrm{Nr} 2, \mathrm{Nr} 3, \ldots$ ) to many loops and self-intersections, with many further BPs as predicted in Lemma 3.4. In any case, although by branch switching from $\mathrm{Nr} 1 / \mathrm{bpt} 1$ instead of from $\mathrm{N} / \mathrm{bpt} 6$ we use a somewhat adapted mesh to compute branch N6 (red), we only compute a rather short segment of N6 because on N6 we quickly run into bad meshes again. See also $\$ 3.3 .4$ for further comments/experiments on the meshing of nodoids. In Fig. 10(d) we illustrate the correspondence of our numerical results for the continuation in $A$ to Theorem 3.5, see Remark 3.6(b).
Remark 3.6 a) For axi- and $Z_{2}$ symmetric nodoids, we can easily extract $a=(2 H R-1)^{2}-1$ from our numerical data, with $R$ the radius on the $z=0$ plane. We can then numerically solve the second

[^9]

Figure 10: Continuation of Fig. 9 ( $\mathrm{a}-\mathrm{c}$ ) $(1 / 8 \mathrm{th}$ of) solutions on N before and after remeshing. (d) Comparison to analytical results, see Rem. 3.6(b).
equation in 49 , i.e., $1=r^{*}=\frac{\cos t_{0}+\sqrt{\cos ^{2} t_{0}+a}}{2|H|}$ for $t_{0}$, and use this for restarts with a new mesh, for instance from $\mathrm{N} / \mathrm{pt52}$ to $\mathrm{Nr} 1 / \mathrm{pt} 1$ in Fig. 10 .
b) Similarly, given $r^{*}=1$ and $l=0.5$, we can solve for $a$ and $t_{0}$ in a continuation process, see cmds1A2t.m. Then computing $A=A\left(a, t_{0}\right)$ gives the black curve in Fig. 10(d), and intersecting the $A$ values of our numerical BPs gives the $t_{0}$ values for $\mathrm{BP} 1, \mathrm{BP} 3$ and BP 6 as predicted, and explains the folds FP1 and FP2. In summary, the BPs on N, their multiplicities, and their relation to Theorem 3.5 (if applicable) are

BP number	BP 1	BP 2	BP 3	BP 4	BP 5	BP 6
multiplicity	2	2	1	2	2	2
Theorem 3.5	1.	NA	2.	NA	NA	1.
$t_{0}$	$\pi / 2$	1.995	$\pi$	3.377	3.622	$3 \pi / 2$

where NA means not applicable, and where for $\mathrm{BP} 1, \mathrm{BP} 3$ and BP 6 we give the exact values, with as indicated in Fig. 9(c) very good agreement of the numerics.${ }^{14}$

### 3.3.4 Long nodoids

In nodDBC/cmds2a.m and Fig. 11 (see also nodDBCs.avi from [MU23]) we consider "long" nodoids with self-intersections ${ }^{15}$ As a slightly more explicit alternative to (48), in nodinitl.m we now parameterize

[^10]an initial axisymmetric nodoid $\tilde{\mathcal{N}}_{r, R}$ following Mla02 by
\[

X:[-\pi / 2, \pi / 2] \times[0,2 \pi] \rightarrow \mathbb{R}^{3}, \quad(x, \varphi) \mapsto\left($$
\begin{array}{c}
\frac{r}{\delta(x, k)} \cos (\varphi)  \tag{55}\\
\frac{r}{\delta(x, k)} \sin (\varphi) \\
R E(x, k)-r F(x, k)-R k^{2} \frac{\sin (x) \cos (x)}{\delta(x, k)}
\end{array}
$$\right),
\]

where $r$ and $R$ are the neck and the buckle radius, $F$ and $E$ are the elliptic integrals of the first and second kind, $k=\sqrt{\left(R^{2}-r^{2}\right) / R^{2}}$, and $\delta(x, k)=\sqrt{1-k^{2} \sin (x)}$. It turns out that here we again need to be careful with the meshes, and besides adaptive mesh refinement we also use suitable initial meshes. We discretize the box $[-\pi / 2, \pi / 2] \times[0,2 \pi]$ (pre-image in (55)) by Chebychev nodes in $x$ and equidistant nodes in $y$. This is implemented in a slight modification of stanpdeo2D.m in the current directory, and adapted to the parametrization (55), which "contracts" the mesh for the loop in the middle.


Figure 11: (a) Bifurcation diagram of self-intersecting nodoids; branch 1NA (black) starts near $(A, H)=$ $(9,1.3)$ and shows four BPs to lNA1 (blue, broken $z$-symmetry), 1NA2 (red, $m=2$ ), 1N3A (magenta, $m=1$ ), and 1NA4 (green, $m=4$ ). Samples in (b).

As we continue the axisymmetric branch INA (black) to larger $A$, the inner loop "contracts and moves out", cf. 1NA/pt2 vs 1NA/pt20 in Fig. 11(b). Along the way we find several BPs, the first yielding a branch lNA1 (blue) with broken $z \mapsto-z$ symmetry. The next three BPs yield branches with angular wave numbers $m=2, m=1$, and $m=3$. As we continue these branches to larger $A$, the mesh quality deteriorates due to very acute triangles where the inner loop strongly contracts. This suggests coarsening by removing degenerate triangles, which we exemplarily discuss in Fig. 12, see also the end of cmds2.m. The red line in (a) shows the mesh-distortion along lNA2, and (b) shows a zoom of $1 \mathrm{NA} 2 / \mathrm{pt10}$; the very acute triangles on the inner loop ( $\delta_{\text {mesh }} \approx 400$ at pt10) lead to stepsize reduction and eventual continuation failure. The brown line in (a) and the samples in ( $\mathrm{c}, \mathrm{d}$ ) show results from the degcoarsenX-cont loop

```
for i=1:6; p=degcoarsenX(p,sigc,nit,keepbd); p=cont(p,4); end;
```

with $\operatorname{sigc}=0.5, i t=6$, keepbd=1 (cf. footnote 8) starting at $1 N A 2 / \mathrm{pt3}$. The distortion stays smaller (with $\delta_{\text {mesh }} \approx 50$ actually at the boundary), and the continuation runs faster and more robustly (larger stepsizes feasible) than on the original mesh. The magenta line is from setting p.fuha. ufu=@coarsufu
which adaptively coarsens (cf. refufu.m for refinement in Fig.4) when $\delta_{\text {mesh }}$ exceeds 100. Both here yield quite similar results, and naturally, similar use of degcoarsenX is also useful for the other nodoids from Fig. 11, and for those from Fig. 9, in addition to the very specific remeshing used there, which is only possible because of the explicit formulas. Nevertheless, we remark again that the parameters for degcoarsenX need trial and error for robustness and efficiency.


Figure 12: Results from the end of cmds2.m, example of a degcoarsenX-cont loop (lNA2c, brown), and adaptive coarsening (lNA2cc, magenta) for 1NA2. (a) mesh quality $\delta_{\text {mesh }}=\max (h / r)$ over $A$, original 1NA2 in red. (b) original 1NA2/pt10 (cut open), $n_{p}=3430$; (c,d) samples from 1NA2c with $n_{p}=2744$ and $n_{p}=2347$.

### 3.4 Nodoids with pBCs in $z$

In MP02], bifurcations of axisymmetric to non-axisymmetric nodoids are studied with the period (the "height") along the axis of revolution (wlog the $z$-axis) as the continuation/bifurcation parameter. This uses a different parametrization of the nodoids than (48) or (55), which we do not review here, as we shall again use (48) for the initialization. For fixed $H=1$, MP02] proves that there is a $r_{0}>0$ such that for neck radii $r>r_{0}\left(r<r_{0}\right)$ there are (are not) bifurcations from nodoids, and gives detailed asymptotics of bifurcation points in a regime ( $\tau \rightarrow-\infty$ in [MP02] which corresponds to $(R-r) / R \rightarrow 0$ with outer radius $R$, see below. In particular, the 2 nd variation of the area functional around a given nodoid $\mathcal{N}_{\tau}$ is analyzed with $z \in \mathbb{R}$, i.e., for the full non-compact nodoid, not just for one period cell. This proceeds by Bloch wave analysis, and first establishes the band structure of the spectrum. Using a parametrization similar to (55), a detailed analysis of the second variation of the area functional, and ultimately two different numerical methods, [Ros05] shows that $r_{0}=1 / 2$, and the first bifurcation (i.e., at $r_{0}$ ) leads to non-axisymmetric nodoids with angular wave number $m=2$ and same periodicity in $z$, i.e., Bloch wave number $\alpha=0$ in [MP02].

Here we also consider periodic (in $z$ ) nodoids with fixed $H=1$ using the height $\delta$ as continuation/bifurcation parameter. We recover the primary bifurcation at $r=r_{0}=1 / 2$ from Ros05, and further bifurcations, see Figs. 13 and 14 .

Remark 3.7 Similar to $\S 3.3 .2$ we distinguish between "short" and "long" nodoids. Here, this merely corresponds to computing on one respectively two period cells in $z$, and the main distinction is as follows: All 1 -periodic solutions are naturally $n$-periodic for any $n \in \mathbb{N}$. With respect to bifurcations, the 1-cell computations then correspond to Bloch wave numbers $\alpha=0$ in [MP02]. For $n \geq 2$ periods cells we obtain further discrete Bloch wave numbers, e.g., additionally $\alpha=\pi$ for $n=2$. This then allows bifurcations which simultaneously break the $S^{1}$ and the $Z_{2}$ symmetry of the symmetric nodoid, and this is illustrated in Fig. 14, which only gives a basic impression of the extremely rich bifurcation picture to be expected when the computational domain is expanded further in $z$. To avoid clutter we refrain from putting the cases $n=1$ and $n=2$ in one figure.

Numerically, to set up "periodic boundary conditions in $z$ ", we proceed similar to the pde2path setup for periodic boundary conditions on fixed (preimage) domains, see [Uec21, §4.3]. The basic idea is to identify points on $\partial X$ at $z= \pm \delta$. Thus, before the main step $X_{0} \mapsto X_{0}+u N_{0}$ for all our computations, we transfer the values of $u$ from $\left\{X_{3}=-\delta\right\}$ to $\left\{X_{3}=\delta\right\}$ via a suitable "fill" matrix p.mat.fill, which has to be generated at initialization and regenerated after mesh-adaptation. The essential command is box2per, which calls getPerOp to create p.mat.fill (and p.mat.drop which is used to drop redundant variables), and which rearranges $u$ by dropping the (redundant) nodal values at points which are filled by periodicity.

Similar to $\$ 3.3 .2$ we need a rotational PC for non-axisymmetric branches, but here for all computations we additionally need translational PCs in $x, y$ and $z$ directions, i.e. $S_{i} \vec{x}=\vec{x}+e_{i}$. These translations act infinitesimally in the tangent bundle as $S_{i} X_{0}=\nabla_{i} X_{0}$, and hence the pertinent PCs are

$$
\begin{equation*}
q_{i}(u)=\left\langle\nabla_{i} X_{0}, X_{0}+u N_{0}\right\rangle=\left\langle\nabla_{i} X_{0}, N_{0}\right\rangle u, \quad i=1,2,3, \tag{56}
\end{equation*}
$$

with derivatives $\partial_{u} q_{i}(u)=\left\langle\nabla_{i} X_{0}, N_{0}\right\rangle$. Like (53), they are implemented node-wise, and their derivatives are added to $G$ with Lagrange multipliers $s_{x}, s_{y}, s_{z}$. Table 8 comments on the files used, and Listings $11-14$ show the main new issues from the otherwise typical function and script files.

Table 8: Files in pde2path/demos/geomtut/nodpBC; similar to nodDBC, and we mainly comment on the differences.

```
cmds1.m 汻 script for Fig. 13 (single period cell); experiments with mesh-adaptions in cmds1b.m.
cmds2.m
lnodpBCmov.m
cmds2b.m
nodbuckinit.m
sGnodpBC.m
qf.m, qjac.m
qfrot.m
getN.m
getM.m
getMf.m
getA.m
mytitle.m
```

script for Fig. 13 (single period cell); experiments with mesh-adaptions in cmds1b.m. script for Fig. 14 (double period cell). script to make a movie of Fig. 14, see also [MU23]. experiments with trying to solve quadratic(cubic) bifurcation equations at BP 2 , and checking mode crossing at BP2 by varying $H_{0}$.
initialization, using parametrization (48), extracts initial height $\delta$, and sets the "fill" and "drop" matrices for the pBCs.
rhs with pBCs; here using numerical Jacobians.
3 translational constraints (for $S^{1}$ symmetric branches), and derivative.
qf.m extended by rotational phase condition, derivative in qjacrot.m.
flips $N$, and additionally forces horizontal normals at bottom and top.
mod of standard getM with subsequent filltrafo for reduction to active nodes.
renaming of standard getM to get $M$ for the full $X$ (no dropping of per. boundaries).
small mod of standard getA to work on full $X$.
helper function for plots, called in pplot since p2pglob.tsw=5.

```
% pdeo etc only needed once, so here make dummy q, later discarded
25 q=p; q.pdeo=pde; q.pdeo.grid.p=q.X'; q.pdeo.grid.t=p.tri;
p=box2per(q,3); % generate (initial) p.mat.fill and p.mat.drop
```

Listing 11: Initializing pBCs in nodpBC/nodbuckinit.m via box2per, which automatically generates the pertinent drop and fill matrices to deal with the pBCs in direction 3 ( $=z$-direction).

```
 function r=sGnodpBC(p,u) % nodoids with pBCs
 par=u(p.nu+1:end); H0=par(1); del=par(6); % height
 sx=par(7); sy=par(8); sz=par(9); sphi=par(10);% Lag.for translations & rotation
4 u=u(1:p.nu); uf=p.mat.fill*u; NO=getN(p,p.X); X=p.X+uf.*NO; % fill, then as usual
```

Listing 12: Start of nodpBC/sGnodpBC.m, 14 fills $u$, and afterwards we proceed as before.

```
1 function q=qf(p,u) % constraints: 3 translations
 u=u(1:p.nu); N0=getN(p,p.X); grX=grad(p.X,p.tri);
 grXx=grX(1:p.nt,:); grXy=grX(p.nt+1:2*p.nt,:); grXz=grX(2*p.nt+1:3*p.nt,:);
 I=c2P(p.X,p.tri); % I interpolates from triangle centers to points
 grXx=I*grXx; grXy=I*grXy; grXz=I*grXz; % grXx, grXy, grXz now act on nodal u
6 dx=grXx*p.X; dx=dot(dx,NO,2); % x-translations
dy=grXy*p.X; dy=dot(dy,NO,2); % y-translations
dz=grXz*p.X; dz=dot(dz,NO,2); % z-translations
qx=(p.mat.fill'*dx)'*u; qy=(p.mat.fill'*dy)'*u; qz=(p.mat.fill'*dz)'*u;
```

Listing 13: nodpBC/qf.m, implementing the three translational PCs; the gradient matrices are computed on the full $\mathrm{p} . \mathrm{X}$, and their periodic parts are dropped for their actions on $\mathrm{u}(1: \mathrm{p} . \mathrm{nu})$ (line 8). For non axi-symmetric nodoids we extend $q f$ in qfrot by a rotational PC as an additional 4th line.

```
5 p2pglob.tsw=3; p2pglob.pbctol=1e-3; % weak tol to identify boundaries
VO=0; A0=0; h0=1; a=2.4; r=0.2; del=1; sx=0; sy=0; sz=0; sphi=0;
par=[h0; VO; AO; a; r; del; sx; sy; sz; sphi]; % del=height, 10=rot
lx=pi; ly=pi; sym=0; p=[]; ny=70; nx=30; %start with rather coarse mesh
p=nodbuckinit(p,lx,ly,nx,ny,par,sym); p=setfn(p,'bN'); pplot(p); p.sw.Xcont=1;
10%% 1st step
p.nc.ilam=[6 7 8 9]; p.nc.nq=3; % 3 translational constraints
p.fuha.qf=@qf; p.fuha.qfder=@qjac; p.sw.qjac=1; p.sol.ds=-0.01; p=cont(p,1);
%% refine initial mesh (twice), in particular at boundary
sig=0.2; p=loadpp('bN','pt1'); p.sw.rlong=1; p.sw.nobdref=0;
15 p=refineX(p,sig); sig=0.25; p=refineX(p,sig);
```

Listing 14: Start of nodpBC/cmds1.m. Initialization, first step, and initial mesh refinements.
Fig. 13 shows some results from cmds1.m. For robustness (essentially due to the strong contractions at the inner loops later in the branches) it turns out to be useful to initialize with a rather coarse mesh and after 1 or 2 steps refine by area. As we then decrease $\delta$ from the initial $\delta \approx 0.88$, we find the first BP at $\delta \approx 0.82$ and with $r=0.5$, corroborating [Ros05], to the angular wave number $m=2$ branch bN1. Using suitable mesh refinement along the way we can continue bN1 to small $\delta$, where in particular we have multiple self-intersections; first, the inner loops extend the "height" $\delta$ for $\delta<\delta_{0} \approx 0.78$, and second the inner loops intersect in the plane $z=0$ for $\delta<\delta_{1} \approx 0.43$ (not shown), making the inner radius $r=0$ (or rather undefined). The branch bN 2 from the next BP at $\delta \approx 0.54$ has $m=3$, and otherwise behaves like the $m=2$ branch. All these branches are rather strongly unstable, with $\operatorname{ind}(X)>4$, and Footnotes 12 and 15 again apply.

As indicated in Remark 3.7, the branching behavior of the periodic nodoids very much depends on which period cell in $z$ we prescribe, with Fig. 13 corresponding to one cell. To illustrate the richness that can be expected for larger cells, in cmds2.m and Fig. 14 we consider twice the minimal cell, see also nodpBCl.avi from [MU23]. This yields the same primary nodoid branch, and as a subset of bifurcations the bifurcations from Fig. 13, with two stacked copies of the solutions from Fig. 13 along all these branches. Additionally we have a new BP2 around $\delta=1.44$, with small eigenvalues $\mu_{1,2} \approx 0.0003$ and $\mu_{3,4} \approx 0.004$, and the next eigenvalues are $\mu_{5} \approx-0.67$ (simple) and $\mu_{6,7} \approx 0.87$. The (approximate) kernel vectors associated to $\mu_{1,3}$ are $\phi_{1}, \phi_{3}$ given in Fig. 144(d,e), and additionally we have $\phi_{2}=R_{\pi / 2} \phi_{1}$ and $\phi_{4}=R_{\pi / 2} \phi_{1}$ (rotation around the $z$ axis). From the 4 small eigenvalues separated from the rest of the spectrum we might guess that BP2 is fourfold, which should have important consequences for the branching behavior at BP2, in the sense of "mixed modes", see [Uec21, §2.5.4]. However, $\phi_{1}$ and $\phi_{3}$ do not seem related by any symmetry, and, moreover, using


Figure 13: (a) Bifurcation diagram of nodoids parametrized by height $\delta$, fixed $H=1$. The axisymmetric branch bN (black) starts near $\delta=0.88$ via (48), and in direction of decreasing $\delta$ shows a sequence of BPs to nodoids with broken $S^{1}$ symmetry, here bN1 (blue, $m=2$ ) and bN2 (red, $m=3$ ). Samples in (b-f), with bN 1 r and bN 2 r after some refinement.
qswibra and cswibra (see cmds2b.m) to search for solutions of the algebraic bifurcation equations at BP2 only yields the "pure" modes $\phi_{1}$ and $\phi_{3}$ (and their rotations). Thus we conclude that BP2 is not fourfold, but corresponds to two double BPs close together ${ }^{16}$

To further corroborate this, in cmds2b.m we compute the " 1 N " branches for $H_{0}=0.8$ and $H_{0}=1.1$. In both cases we find a similar spectral picture at the pertinent BPs as at BP2 for $H_{0}=1(4$ small eigenvalues, well separated from the rest of the spectrum, with kernel vectors similar to Fig. 14(d,e)), but the two pertinent pairs are themselves more clearly separated, and $\phi_{1}, \phi_{3}$ flip order between $H_{0}=0.8$ and $H_{0}=1.1$. If BP 2 at $H_{0}=1$ was fourfold, then we would expect this to be due to symmetry, and hence to also hold for $H_{0} \neq 1$. That this is not the case suggests that near $H_{0}=1$ we rather have a "mode crossing" at BP2, and moreover do not expect bifurcating branches of "mixed modes".

[^11]

Figure 14: (a) Branching from the $S^{1}$ nodoid from Fig. 13 on twice the minimal cell, see text for details.

Therefore, in cmds2.m we simply do a branch switching in direction of the modes $\phi_{1}$ (see Listing 15 and $\phi_{3}$ separately, and obtain the branches 1N2a (red) and 1N2b (green). ${ }^{17}$ In detail, we do an initial step in direction $\phi_{1}$ (resp. $\phi_{3}$ ), and then switch on the rotational PC as before. The branch 1N2a continues to small $\delta$ without problems. The branch 1 N 2 b folds back near $\delta=1.18$, and after pt25 continuation fails, due to mesh degeneration in the inner bends. This can be fixed to some extent by careful mesh adaptation (yielding later continuation failure), but we do not elaborate on this here as Fig. 14 is mostly intended as an illustration of the rich bifurcation behavior over larger period cells.
$\% \%$ 2nd BP possibly double, but algebraic bifurcation equations (ABEs) only yield

[^12]```
    % pure modes (see cmds2b). Hence, here switch off ABEs for speed.
    % For small ds, two separate BPs may also be detected; but treating them
30 % via the qswibra-trick should always work
aux.besw=0; % switch off ABE computations, just compute kernel
aux.mu2=0.01; aux.m=4; aux.ali=[]; p1=qswibra('lN','bpt2',aux);
%% go on 1st
p=gentau(p1,1,'lN2a', 2); p.sol.ds=0.1; p.nc.tol=1e-4; p.sw.bifcheck=0;
35 p=cont (p,2); % two steps without rotational PC; then switch on and cont further
p.nc.nq=4; p.nc.ilam=[\begin{array}{ccccc}{6 8 10]; p.fuha.qf=@qfrot; p.fuha.qfder=@qjacrot;}\end{array}]={
p.file.count=p.file.count+1; p.nc.tol=1e-4; p.sol.ds=-0.01; p=cont(p,15);
```

Listing 15: Selection from nodpBC/cmds2.m. Branch switching from BP2 via qswibra and gentau.

3.5 Triply periodic surfaces

Triply periodic surfaces (TPS) are CMC surfaces in \mathbb{R}^{3} which are periodic wrt three independent (often but not always orthogonal) directions. Triply periodic minimal surfaces (TPMS) (this implicitly also means embedded, sometimes abbreviated as TPEMS) have been studied since H.A. Schwarz in the 19th century, and have found renewed interest partly due to the discovery of new TPMS by A. Schoen in the 1970ies, and due to important (partly speculative) applications of TPMS (and their nonzero H TPS companions) in crystallography, mechanics and biology. See for instance AHLL88 and STFH06, and Bra23 for a long list of TPMS.

From the PDE point of view, TPS solve (3) with periodic BCs on a bounding box. Some families of TPMS were studied as bifurcation problems in KPS18], using a cell length (period) in one direction as continuation/bifurcation parameter, and combined with numerical results from [ES18]. Much of the theory of TPMS is based on Enneper-Weierstraß representations. See Remark 3.9, where we relate some of our numerical results for the Schwarz P surface family to results from KPS18 obtained via Enneper-Weierstraß representations. A way to approximate TPS is as zeros of Fourier expansions of the form

$$
F(\vec{r})=\sum_{k \in \mathbb{Z}^{3},|k| \leq N} F(k) \cos (2 \pi k \vec{r}-\alpha(\vec{r})) .
$$

A simple first order approximation of the Schwarz P surface (cf. Fig.1(b)) is

$$
\begin{equation*}
\text { Schwarz P surface } \approx\left\{(x, y, z) \in \mathbb{R}^{3}: \cos (x)+\cos (y)+\cos (z)=0\right\}, \tag{57}
\end{equation*}
$$

Better approximations with some higher order terms are known, also for many other "standard" TPS, see, e.g., [GBMK01] for a quantitative evaluation of such approximations. In the demo TPS we focus on the Schwarz P family, and some CMC companions. ${ }^{18}$

Table 9: Selected files in TPMS/, others (getA.m, qf.m, qjac.m, updX.m) are rather standard, with minor mods to account for the "filling" of the periodic boundaries.
cmds1.m
cmds2.m
Pinit.m
getN.m
getper0pX.m

Schwarz P family, relation to Weierstrass representation in cmdsaux.m, Figs. 15 and 16 . CMC companions of Schwarz P, Fig. 17 Initialization, based on (57) and distmesh. mod of standard getN, applying corrections at the boundaries of X, see Remark 3.8. here we also fill X; see also Xfillmat.m.

[^13]
3.5.1 The Schwarz P minimal surface (family)

In TPS/cmds1.m we study continuation (and bifurcation) of the Schwarz P surface in the period δ in z-direction, focusing on one period cell, i.e., the box

$$
\begin{equation*}
B_{\delta}:=[-\pi, \pi)^{2} \times[-\delta / 2, \delta / 2) . \tag{58}
\end{equation*}
$$

To get an initial (approximate) X on $B_{2 \pi}$, we use (57) and the mesh generator distmesh [PS04], on one eighth of $B_{2 \pi}$, which we then mirror to $B_{2 \pi}$. The continuation in δ proceeds similar to 3.4 , by first scaling $X=S_{\delta}$ p.X to period δ in z and then setting $X=X+u N$ and solving for (u, δ). Subsequently, the same scaling is applied in updX to set the new p.X. As in $\$ 3.4$ we have translational invariance in x, y and z, and hence exactly the same PCs, implemented in qf.m, with derivatives in qjac.m.

Somewhat differently from $\$ 3.4$ we now also "fill" X by taking the ∂X values from the left/bottom/front of the box to the right/top/back of the box. While u is stilled filled via $u=$ p.mat.fill $* u$, for filling X we compute matrices p.Xfillx, p.Xfilly, p.Xfillz (in Pinit.m, via Xfillmat, which calls getPerOpX) similar to p.mat.fill, but with -1 (instead of 1) where we want to transfer X values from one side of the box to the opposite side (assuming symmetry wrt the origin). Finally, it turns out that the continuation is slightly more robust if in getN we correct N at the boundaries to lie in the boundaries of B_{δ}, see Remark 3.8 .

Figure 15 shows some results from cmdsP.m. Decreasing δ from 2π ($\mathrm{P} / \mathrm{pt} 1$ in (b) at $\delta=6.2732$), X gets squashed in z direction, and at $\delta=\delta_{1} \approx 5.9146$ we find a D_{4} symmetry breaking pitchfork bifurcation (with the two directions corresponding to interchanging the x and y axis wrt shrinking and expansion) to a branch P1, which then extends to large δ. On the other hand, increasing δ from 2π (branch pB , grey), we find a fold on the P branch at $\delta=\delta_{f} \approx 6.408$. Both δ values agree well with results from [KPS18] based on the Enneper-Weierstrass representation, summarized in Fig. 15(h), see Remark 3.9.

Figure 15: (a) Bifurcations in the Schwarz P family, black (P) and grey (Pb) branch; bifurcating magenta branch (P1) breaks D_{4} symmetry. Samples in (b-g). Comparison with [KPS18] in (h), cf. Remark 3.9 .

Remark 3.8 a) The results from Fig. 15 can also be obtained by choosing "Neumann" BCs on ∂B_{δ}. However, for other TPMS we need the pBCs. For instance, we can also continue the H surface family on a suitable (almost minimal) rectangular box, where however solutions fulfill pBCs but not Neumann BCs. Due to the necessary larger period cell, and due to branch points of higher multiplicity, the numerics for the H family are more elaborate, and these results will be presented elsewhere.
b) In fact, in the local copy TPS/getN.m we apply a trick and zero out N_{1} at $x= \pm \pi, N_{2}$ at $y= \pm \pi$ and N_{3} at $z= \pm \delta / 2$. Thus, N is forced to always lie in the cube's faces, yielding a "combination of NBCs and pBCs" in the sense that the trick forces X to meet the cube's faces orthogonally, while the pBCs keep X on opposite faces together. However, the trick is for convenience as without it we get the same branches but in a less robust way, i.e., requiring finer discretizations and smaller continuation stepsizes.

Remark 3.9 The Enneper-Weierstrass representation of a minimal surface is

$$
\begin{equation*}
(x, y, z)=\operatorname{Re}\left[\mathrm{e}^{\mathrm{i} \vartheta} \int_{p_{0}}^{p}\left(1-z^{2}, \mathrm{i}\left(1+z^{2}\right), 2 z\right) R(z) \mathrm{d} z\right], \tag{59}
\end{equation*}
$$

$p_{0}, p \in \mathcal{M}$ with \mathcal{M} a Riemannian surface, where ϑ is called Bonnet angle, and $R: \mathcal{M} \rightarrow \mathbb{C}$ is called Weierstraß function. The Enneper surface E from $\$ 3.2 .3$ is given by the data $\mathcal{M}=D_{\alpha}$ (disk of radius α) and $R(z) \equiv 1$. For TPMS, R is a meromorphic function, and \mathcal{M} consists of sheets connected at branch points given by poles of R. See, e.g., [Oss14, §8] for a very readable introduction to Weierstrass data and the connection of minimal surfaces and holomorphic functions. Hof90 for a basic discussion of the Weierstrass data of TPMS, Ros92 for identifying the Riemannian surface \mathcal{M} for the Schwarz P surface with $S^{2} \times S^{2}$ by stereographic projection, where S^{2} is the unit sphere, and [FW14] for further examples for construction of TPMS from Weierstraß data.

Following [KPS18], we consider \mathcal{M} a double cover of \mathbb{C}, and, for $a \in(2, \infty)$, let

$$
\begin{equation*}
R(z)=1 / \sqrt{z^{8}+a z^{4}+1} \tag{60}
\end{equation*}
$$

where the Schwarz P surface with period cell $[-\pi, \pi)^{3}$ is obtained for $\vartheta=0$ and $a=14{ }^{19}$ See also [GK00] for the explicit computation of a fundamental patch of Schwarz P based on (59) and (60) with $a=14$ and a small planar preimage $\subset \mathbb{C}$.

In [KPS18], a is taken as a bifurcation parameter along the Schwarz P family with the periods for Schwarz P given by [KPS18, §7.3]

$$
\begin{align*}
& E=2 \int_{0}^{1} \frac{1-t^{2}}{\sqrt{t^{8}+a t^{4}+1}} \mathrm{~d} t+4 \int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{16 t^{4}-16 t^{2}+2+a}} \quad(\text { periods in } x \text { and } y) \tag{61}\\
& F=8 \int_{0}^{1} \frac{t}{\sqrt{t^{8}+a t^{4}+1}} \mathrm{~d} t \quad(\text { period in } z) \tag{62}
\end{align*}
$$

up to homotheties (uniform scaling in all directions). We have $\delta=2 \pi F / E$ for our δ, and evaluating E, F numerically (or as elliptic integrals) and plotting $\delta(a):=2 \pi F / E$ as a function of a we get the blue curve in Fig. 15 (h), which corresponds to KPS18, Fig.13]. In particular, $\delta(a)$ has a maximum at $a=a_{2} \approx 28.778$, and $\delta\left(a_{2}\right)=\delta_{f}$ agrees with our fold position in Fig. 15(a). On the other hand, with suitable mesh adaptation the branch P1 continues to at least $\delta=10$. Next, [KPS18] based on [ES18] gives a bifurcation from the P family at $a=a_{1} \approx 7.4028$, and again we find excellent agreement $\delta\left(a_{1}\right)=\delta_{1}$ with our BP at δ_{1}.

[^14]Remark 3.10 a) The fact that P does not extend to "large" δ (but folds back) has also been explained geometrically in Hof90, without computation of the fold position.
b) The stability of Schwarz P (and hence also Schwarz D) on a minimal period cell and wrt volume preserving variations is shown in Ros92]. However, "larger pieces" of P, e.g., P on $[-\pi, \pi)^{2} \times[-2 \pi, 2 \pi$) are always unstable, even wrt volume preserving variations. See also [Bra96, §8] for a useful discussion, and illustrations. Numerically, in Fig. 15 we find: $\operatorname{ind}(X)=2$ except on the segment \mathcal{S} of P (and Pb) between the fold and the BP at δ_{1}, where $\operatorname{ind}(X)=1$. However, the most (and on \mathcal{S} only) unstable eigenvector has a sign, see Fig. 16, and hence the solutions on \mathcal{S} are stable wrt volume preserving variations.
(a)

(b)

(c)

Figure 16: Selected eigenvectors at points as indicated, cf. Remark 3.9p). Top: the most unstable direction, which does not change sign. Bottom: the second eigenvector; in (a) this approximately spans the kernel.

3.5.2 CMC companions of Schwarz P

In TPS/cmds2.m we compute some CMC companions of the Schwarz P surface, see Fig. 17, where all we have to do is set ilam=[1,5,6,7] as H sits at position 1 in the parameter vector (and the translational Lagrange multipliers at $[5,6,7]$). Continuing first to smaller H (black branch PH), X (the volume enclosed by X and the boundaries of the cube) "shrinks" and we find a BP at $H \approx-0.1$. In the other direction (grey branch PHb), X (the volume enclosed by X) "expands", with a BP at $H \approx 0.1$. The continuation of both these branches fails at $H \approx-0.3$ and $H \approx 0.3$ (respectively), though they can be continued slightly further with careful mesh adaptation.

Our main purpose here is to show how symmetry considerations and some tricks can help to avoid numerical pitfalls. By symmetry, the $\mathrm{BP} \mathrm{PH} / \mathrm{bpt} 1$ (and similarly PHb/bpt1) must be double, although the smallest (in modulus) eigenvalues reported at $\mathrm{PH} / \mathrm{bpt} 1$ are $\mu_{1} \approx 0.005$ and $\mu_{2}=0.02{ }^{20}$ See Fig. 17(b) for PH/bpt1, and (c) for the (approximate) kernel vectors ϕ_{1}, ϕ_{2}. In fact, the plot in (b) (stronger correction along the z-axis) shows that at least the last step in the localization of $\mathrm{PH} / \mathrm{bpt} 1$ violated the S_{4} symmetry of the (now fixed) cube, which explains the rather significant splitting of the in principle double eigenvalue $\mu_{1}=0$. Clearly, we expect $\phi_{1,2}$ to approximate two bifurcation

[^15]

Figure 17: Some results from TPS/cmds2.m. Continuation of Schwarz P in H at fixed $\delta=2 \pi$. BD in (a): PH (black), PHb (grey), za (dark green) and zb (lighter green), and za2 and zb 2 (orange), but altogether these are just two different branches. BP1 on PH and approximate kernel vectors in (b,c), and further samples in (d). See text for details.
directions, with D_{4} symmetry along the x axis $\left(\phi_{1}\right)$ and y axis $\left(\phi_{2}\right)$. By symmetry we then must have at least one more bifurcating branch, with D_{4} symmetry along the z axis. To find this bifurcation direction, we can use qswibra with numerical derivation and solution of the algebraic bifurcation equation (ABE) [Uec21, §3.2.2]. However, this is expensive and not always reliable. Here, the three bifurcation directions (oriented along x, along y, and along z) are returned, but we have to relax the tolerance isotol for identifying solutions of the ABE as isolated. Alternatively, cf. also Footnote 17 , we can use qswibra with aux.besw $=0$ (bifurcation equation switch $=0$) to let qswibra just compute and plot the (approximate) kernel ϕ_{1}, ϕ_{2}. This lets us guess to approximate the third direction as $\phi_{3}=0.2 \phi_{1}+\phi_{2}$. This turns out to be sufficiently accurate and gives the transcritical branch(es) za (dark green) and zb (other direction, lighter green).

On za, the continuation fails after $\mathrm{pt} 6 . \mathrm{zb} / \mathrm{pt} 6$ is at $H=0$ and corresponds to $\mathrm{Pb} / \mathrm{pt} 7$ from Fig. 15. Subsequently, zb continues to $\mathrm{PHb} / \mathrm{bpt}$, and is indeed identical to the branch(es) za2 (and zb 2), transcritically bifurcating there. In particular, $\mathrm{PHb} / \mathrm{bpt1}$ is again double, and we can compute the three branches oriented along x, y or z as above (see cmds2.m). zb2 (light orange) then continues back to PH/bpt1, while zb2 fails after pt6 (last sample in (d)). The continuation failures of za and za2 after pt6 are due to poor meshes as the different boundaries of X come close to each other, like after $\mathrm{PH} / \mathrm{pt} 16$ and $\mathrm{PHb} / \mathrm{pt} 15$, and it seems difficult to automatically adapt these meshes.

4 Fourth order biomembranes

The (dimensionless) Helfrich (or spontaneous curvature (SC)) functional Hel73] is

$$
\begin{equation*}
E=\int_{X}\left(H-c_{0}\right)^{2}+b K \mathrm{~d} S \tag{63}
\end{equation*}
$$

where $c_{0} \in \mathbb{R}$ is called spontaneous curvature, and $b \in \mathbb{R}$ is called saddle-splay modulus. The motivation of (63) are the shapes of closed vesicles with a lipid bilayer membrane, for instance red blood cells (RBCs), for which E is to be minimized under the constraints of fixed area $A(X)-A_{0}=0$ and enclosed volume $V(X)-V_{0}=0$. This motivated much work, e.g., [SBL90, Sei97, NT03, VDM08, OYT14, aiming to understand the various shapes of RBCs ${ }^{21}$, mostly in the axisymmetric case. Applying our algorithms to closed vesicles (without a priori enforcing any symmetry) we recover many of the results from the above references. See also [LWM08, KIPM ${ }^{+}$20] for further biological and mechanical background, JQJZC98 for non-axisymmetric shapes (under different constraints), and [FVKG22] for the related problem of 1D radial wrinkling of arteries, with an additional restoring force due to the surrounding tissue, and a very rich bifurcation structure.

The Lagrangian for (63) is

$$
\begin{equation*}
L=\int_{X}\left(H-c_{0}\right)^{2}+b K \mathrm{~d} S+\lambda_{1}\left(A-A_{0}\right)+\lambda_{2}\left(V-V_{0}\right) \tag{64}
\end{equation*}
$$

where λ_{1} (corresponding to a surface tension [Lip14) and λ_{2} (corresponding to a pressure difference between outside and inside) are Lagrange multipliers for area and volume constraints. For closed X, the term $b \int_{X} K \mathrm{~d} S$ in (63) can be dropped due to the Gauß-Bonnet theorem, cf. Footnote 1, as $\int_{X} K \mathrm{~d} S=2 \pi \chi(X)$ is a topological constant, and the Euler-Lagrange equation for normal variations $X=X_{0}+u N$ is

$$
\begin{equation*}
\Delta H+2 H\left(H^{2}-K\right)+2 c_{0} K-2 c_{0}^{2} H-2 \lambda_{1} H-\lambda_{2}=0 \tag{65}
\end{equation*}
$$

If X is not closed, then often one or both of the constraints $A-A_{0}=0$ and $V-V_{0}=0$ is (are) dropped, and the associated Lagrange multipliers $\lambda_{1,2}$ are treated as external parameters, often with $\lambda_{2}=0$. If in the Gauss-Bonnet formula

$$
\begin{equation*}
\int_{X} K \mathrm{~d} S=2 \pi \chi(X)-\int_{\partial X} \kappa_{g} \mathrm{~d} s \tag{66}
\end{equation*}
$$

we assume $\gamma=\partial X$ to be parameterized by arclength, then the geodesic curvature κ_{g} is the projection of the curvature vector $\gamma^{\prime \prime}(\vec{x})$ onto the tangent plane $T_{\vec{x}}(X)$, see, e.g., Tap16, §4.3]. If we restrict to normal variations $\psi=u N$ which fix the boundary, i.e.,

$$
\begin{equation*}
\left.u\right|_{\partial X}=0, \tag{67}
\end{equation*}
$$

then

$$
\partial_{\psi} L=\int_{X}\left(\Delta H+2 H\left(H^{2}-K\right)+2 c_{0} K-2 H c_{0}^{2}-2 \lambda_{1} H\right) u \mathrm{~d} S+\int_{\partial X}\left(H-c_{0}+b \kappa_{n}\right) \partial_{n} u \mathrm{~d} s,
$$

where $\kappa_{n}=\left\langle\gamma^{\prime \prime}, N\right\rangle$ is the normal curvature of $\gamma=\partial X$, i.e., the projection of the curvature vector

[^16]onto the normal plane, see, e.g., [PP22] and the references therein. Thus we again obtain (65) (with $\lambda_{2}=0$), and additionally to (67) we can consider either of
\[

$$
\begin{align*}
\partial_{n} u & =0 \text { on } \partial X \text { (clamped BCs, or Neumann BCs), } \tag{68}\\
H-c_{0}+b \kappa_{n} & =0 \text { on } \partial X \text { (stress free BCs). } \tag{69}
\end{align*}
$$
\]

In the case of (68) we have $\int_{\partial X} \kappa_{g} \mathrm{~d} s=0$ in (66), and hence $\int b K \mathrm{~d} S$ again becomes constant and can be dropped from (63).

Remark 4.1 a) With N the inner normal, the stability for (65) refers to the Helfrich flow (see, e.g., KN06] for the existence theory near spheres) $\langle\dot{X}, N\rangle=-\left(\Delta H+2 H\left(H^{2}-K\right)+2 c_{0} K-2 c_{0}^{2} H-2 \lambda_{1} H\right)$, with BCs (67) and (68) or (69) for non-closed vesicles.
b) Biological vesicles can undergo topological transitions which are important for their biological function, e.g., fission of a small bud from the vesicle, or fusion of two vesicles. We cannot capture such transitions in our setup of steady state continuation. Some examples of splitting in DNS for a phase field model are given in, e.g., DLW06] ; see also [BGBC22] and the references therein for a state of the art discussion of phase field modeling of vesicles.
c) In a certain continuum limit, and with different interpretations of the Lagrange multipliers $\lambda_{1,2}$, (65) can also be derived as the shape equation for carbon nanostructures, see MDHV13.
d) Besides the Helfrich functional (63), a number of related models exist, for instance the so-called bilayer-coupling (BiC) model [SZ89],

$$
\begin{equation*}
E=\int_{X} H^{2} \mathrm{~d} S, \quad L=E+\mu_{1}\left(A-A_{0}\right)+\mu_{2}\left(V-V_{0}\right)+\mu_{3}\left(M-M_{0}\right) \tag{70}
\end{equation*}
$$

where $M=\int_{X} H \mathrm{~d} S$ is the integrated mean curvature, M_{0} is an external parameter, $\mu_{1,2}$ are the Lagrange multipliers for the area and volume constraints, and μ_{3} is the Lagrange multiplier for the constraint of fixed area difference between the outer and inner lipid monolayer, expressed via Taylor expansion around a virtual middle layer as $q=M-M_{0}=0$. By identifying $\mu_{1}=\lambda+c_{0}^{2}, \mu_{2}=\lambda_{2}$ and $\mu_{3}=-c_{0}$ this yields the same shape equation (65) as (64), but the additional constraint $M-M_{0}=0$ drastically changes the phase diagram of minimizers for (70) compared to those for (63). In particular, for (70) non-axisymmetric minimizers of spherical topology are known to exist, but not for (63).

Another model is the so called area difference elasticity (ADE) model, where the area difference is not a hard constraint but added as an energy penalization, i.e.,

$$
\begin{equation*}
E=\int_{X} H^{2} \mathrm{~d} S+\frac{\alpha}{2}\left(M-M_{0}\right)^{2}, \quad L=E+\mu_{1}\left(A-A_{0}\right)+\mu_{2}\left(V-V_{0}\right), \tag{71}
\end{equation*}
$$

$\alpha>0$. This again allows stable non-axisymmetric minimizers which moreover compare well to some experimental results; see WDS96, DEK ${ }^{+}$97] and Sei99, including a discussion of the shortcomings of the SC model and the relations between the $\mathrm{SC}, \mathrm{BiC}$ and ADE models.

Additionally, there are mechanochemical models which couple bending energies $E=\int_{X}\left(H-c_{0}\right)^{2} \mathrm{~d} S$ with a scalar morphogen on the surface which aggregates in regions of high mean curvature and which in turn increases c_{0} MMCRH13], or with for instance Brusselator type reaction-diffusion systems on the surface, where at least one species again increases c_{0} TN20. Most of these models are not gradient systems and somewhat phenomenological, but easily lead to stable non-axisymmetric vesicle shapes, and also to persistent wave-like behavior. However, to the best of our knowledge the (numerical) study of these models so far was restricted to DNS. See also [ES13, BGN15] and the references therein for FEM discretizations of the dynamics of a variety of models, including the SC , the BiC and the ADE models, and, moreover considering the dynamics of vesicles in a fluid.

From the variety of models related to (63), here we opt for the 'classical' Helfrich SC model, while results including non-axisymmetric minimizers for the BiC model, and some bifurcation study for MMCRH13 type models will be presented elsewhere. In $\$ 4.1$ we present some basic results for closed topologically spherical vesicles, and 4.2 deals with biomembrane caps (topological disks) with stress-free BCs (69), while "bio-cylinders" with clamped BCs are relegated to App. B.

4.1 Closed Vesicles of spherical topology

We start with closed topologically spherical vesicles. Following [NT03] we set $\lambda_{1}=-\tilde{\lambda}_{1} / 2$ where $\tilde{\lambda}_{1}$ is the Lagrange multiplier for the area constraint, and write the shape equations (65) as

$$
\begin{equation*}
\Delta H+2 H\left(H^{2}-K\right)+2 c_{0} K-2 c_{0}^{2} H+\lambda_{1} H-\lambda_{2}=0 \tag{72a}
\end{equation*}
$$

together with the volume and area constraints

$$
\begin{equation*}
q_{1}(X)=V(X)-V_{0}=0 \quad \text { and } \quad q_{2}(X)=A(X)-A_{0}=0 \tag{72b}
\end{equation*}
$$

The bending energy $E=\int_{X}\left(H-c_{0}\right)^{2} \mathrm{~d} S$ is scaling $X \mapsto \gamma X$ invariant, and hence a useful dimensionless quantity to characterize solutions of (72) is the reduced volume

$$
\begin{equation*}
v=V / V_{0} \tag{73}
\end{equation*}
$$

where for given $A=4 \pi R_{0}^{2}$ (hence $R_{0}=\sqrt{A / 4 \pi}$), $V_{0}=4 \pi R_{0} / 3$ is the volume of the equivalent sphere. At $v=1$, the sphere is the only solution, and for decreasing v we may expect more and more solutions of various shapes.

The unit sphere is a solution of (72) if (for N the inner normal and hence $H \equiv 1$),

$$
\begin{equation*}
\lambda_{1}=-2 c_{0}+2 c_{0}^{2}+\lambda_{2} \tag{74}
\end{equation*}
$$

By [NT03, Thm3.1], bifurcations from the sphere occur at

$$
\begin{equation*}
\lambda_{1}=n(n+1)-4 c_{0}+2 c_{0}^{2}, \quad \lambda_{2}=n(n+1)-2 c_{0} \tag{75}
\end{equation*}
$$

$n \geq 2$, with kernels of dimension $2 n+1$ spanned by the spherical harmonics $Y_{n m}, m=-n, \ldots, n$. Already from Pet83] it is known that branches originating from spherical harmonics with $n \geq 3$ are never stable, at least near $v=1$, while some of the branches bifurcating at the first BP with $n=2$ contain stable solutions, again see also [NT03. The bifurcation (unique branch modulo symmetry, see below) is trancritical (in λ_{1}), with one direction yielding oblates (oblate ellipsoids, disk like, turning into biconcave RBC shapes, see below for sample plots and more specific classifications), and the other direction yielding prolates (prolate ellipsoids). In particular, these are axisymmetric shapes.

An extensive largely numerical study of axisymmetric vesicles is given in SBL90, including phase and energy diagrams, where our use of c_{0} differs from the one in SBL90 by a factor $1 / 2$, i.e., our $c_{0}=\frac{1}{2} c_{0,[\text { SBL90] }}$. In a nutshell, the results in [SBL90, Fig.8,10, 11,13,17] are:

- In the $v-c_{0}$ phase diagram [SBL90, Fig.10], there is a line $(0,1] \ni v \mapsto c_{0}(v)$ decreasing in v and with $c_{0}(1)=-5 / 6$ such that near $v=1$, either oblates (for spontaneous curvature $c_{0}<c_{0}(v)$) or prolates $\left(c_{0}>c_{0}(v)\right)$ have minimal E.
- For decreasing v, the prolates lose stability to pears, and the oblates lose stability to stomatocytes. These transitions are discontinuous, i.e., occur via subcritical bifurcations, where the bifurcating branches (pears from prolates, stomatocytes from oblates) gain stability after one (or more) fold(s).
- Some regions in the $v-c_{0}$ phase diagram remain unstudied, but in particular for $v>0.5$ and
moderate $\left|c_{0}\right|$, say, there is strong evidence that all local minimizers of spherical topology of E are axially symmetric.
Given the above results, here we mostly also focus on the first BP ($n=2$ in (75)) and axisymmetric solutions, and only compute a few secondary bifurcations from the axisymmetric branches and some bifurcations from the sphere with $n=3$. In this, we fix three values of c_{0}, namely $c_{0}=0, c_{0}=-1$, and $c_{0}=1.4$, then first continue in λ_{1} along the spherical branch to prepare branch switching at the respective BPs from (75), and after branch-switching to non-spherical solutions continue in v, see Remark 4.2. The BDs are then plotted as E over v, and agree with [SBL90, Fig.8, 11, 13, 17] for the axisymmetric branches in the v-ranges we can reach. Additionally, our stability information is wrt general normal variations, not just axisymmetric ones.

Before we embark on this program we briefly comment on the numerical challenges and solutions to these. The basic setup again consists in setting $X=X_{0}+u N_{0}$ (with here N the inner normal), and then writing (65) as a system of two second order equations for $\left(u_{1}, u_{2}\right)=(u, H)$, namely

$$
\begin{equation*}
G(u):=\binom{L u_{2}+M f\left(u_{1}, u_{2}\right)}{M u_{2}-H}=\binom{0}{0} . \tag{76}
\end{equation*}
$$

As before, L is the cotangent Laplacian, M the (Voronoi) mass matrix, and

$$
f\left(u_{1}, u_{2}\right)=2 u_{2}\left(u_{2}^{2}-K\right)-2 \lambda_{1} u_{2}+2 c_{0} K-2 c_{0}^{2} u_{2} .
$$

The mean curvature $H=H\left(u_{1}\right)$ is computed as $H=\frac{1}{2}\langle L X, N\rangle$, and the Gaussian curvature $K=$ $K\left(u_{1}\right)$ is obtained from discrete_curvatures, cf. (28). The reason for the reformulation of (72a) as two second order equations (76) is that this way we can easily implement the two BCs (67) and (68) or (69) when required.

For the closed vesicles, i.e., without any BCs, we always need the three linear translational PCs

$$
\begin{equation*}
q_{i}(X):=\int_{X_{0}}\left\langle u, N_{i}\right\rangle \mathrm{d} X \stackrel{!}{=} 0, \quad i=1,2,3 \tag{77}
\end{equation*}
$$

cf. (56), where N_{i} is the i th component of the (here inner) normal N of X_{0}. For (non-spherical) surfaces of revolution (axisymmetric branches), we need two rotational PCs (omitting the axis of revolution). For this, let $\vec{l}_{1}=\left(l_{1}, l_{2}, l_{3}\right)^{T}$ with $\left\|\vec{l}_{1}\right\|=1$ be the rotational axis, which we find as

$$
\begin{equation*}
\overrightarrow{l_{1}}=X_{i_{0}} /\left\|X_{i_{0}}\right\| \tag{78}
\end{equation*}
$$

with either $i_{0}=\operatorname{argmax}_{i}\left\|X_{i}\right\|$ (prolates) or $i_{0}=\operatorname{argmin}_{i}\left\|X_{i}\right\|$ (oblates), and take $\overrightarrow{l_{1}}, \overrightarrow{l_{2}}, \overrightarrow{l_{3}}$ with

$$
\tilde{l}_{2}=\left(\begin{array}{c}
-l_{2} \\
l_{1} \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
-l_{3} \\
l_{2}
\end{array}\right)+\left(\begin{array}{c}
-l_{3} \\
0 \\
l_{1}
\end{array}\right), \quad \vec{l}_{2}=\frac{\tilde{l}_{2}}{\left\|\tilde{l}_{2}\right\|}, \text { and } \vec{l}_{3}=\vec{l}_{1} \times \vec{l}_{2}
$$

as an orthonormal basis of \mathbb{R}^{3}. Then the normal variations of rotations around $\overrightarrow{l_{2}}$ and $\overrightarrow{l_{3}}$ are spanned by $\left\{\left\langle\vec{l}_{2} \times X, N\right\rangle,\left\langle\vec{l}_{3} \times X, N\right\rangle\right\}$, and the natural rotational PCs are

$$
\begin{equation*}
q_{3+i}(u):=\int_{X}\left\langle\vec{l}_{i+1} \times X, N\right\rangle u \mathrm{~d} S \stackrel{!}{=} 0, \quad i=1,2 \tag{79}
\end{equation*}
$$

For non-axisymmetric X we additionally use the third rotational PC $q_{6}:=\int_{X}\left\langle\vec{l}_{1} \times X, N\right\rangle u \mathrm{~d} S \stackrel{!}{=} 0$,
and we add $\eta_{i} \partial_{u} q_{i}(u)$ to the first component of G from (76), with Lagrange multipliers η_{i}. See Table 10 for a summary. Technically, after branch-switching from the sphere we first do two steps without rotational PCs. For axisymmetric solution branches we then detect the rotational axis via (78) and switch on the two rotational PCs around \vec{l}_{2}, \vec{l}_{3}. After a secondary bifurcation to a non-axisymmetric branch, or for primary bifurcations to non-axisymmetric branches from the trivial branch (present for $n \geq 3$ in (75) we switch on the third rotational PC.

Table 10: Contraints and active parameters for different branch types; the parameters s_{*} and r_{*} are the Lagrange multipliers for the translational and rotational constraints, and stay $\mathcal{O}\left(10^{-6}\right)$ during all continuations.

| type | active parameters | constraints |
| :--- | :--- | :--- |
| trivial (sphere) | $\lambda_{1}, \lambda_{2}, s_{x}, s_{y}, s_{z}$ | area A and volume $V, 3$ translational PCs |
| axisymmetric | $v, \lambda_{1}, \lambda_{2}, s_{x}, s_{y}, s_{z}, r_{1}, r_{2}$ | A and $V, 3$ translational and 2 rotational PCs |
| non-axisymmetric | $v, \lambda_{1}, \lambda_{2}, s_{x}, s_{y}, s_{z}, r_{1}, r_{2}, r_{3}$ | A and $V, 3$ translational and 3 rotational PCs |

Remark 4.2 The eigenvalues for the linearization around a steady state are computed from the extended system

$$
\left(\begin{array}{cc}
M_{d} & 0 \tag{80}\\
0 & M_{q}
\end{array}\right) \partial_{t} V=-\left(\begin{array}{cc}
G_{u}(U) & G_{w}(U) \\
q_{u}(U) & q_{w}(U)
\end{array}\right) V,
$$

where $U=(u, w)$ is the steady state including the active parameters w but without the primary active (genuine continuation) parameter, where $V=(v, z)$ is the considered perturbation, and where $M_{d} \in$ $\mathbb{R}^{N \times N}$ and $M_{q} \in \mathbb{R}^{n_{q} \times n_{q}}$ are the pertinent dynamical mass matrices. For 76 we have $N=2$ and $M_{d}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ from the rewriting as a 2nd order system, and $M_{q}=0 \in \mathbb{R}^{6 \times 6}$ (axisymmetric case) or $M_{q}=0 \in \mathbb{R}^{7 \times 7}$ (non-axisymmetric case). Importantly, to obtain the correct stability information we cannot use one of the Lagrange multipliers as primary active parameter, because the Lagrange multipliers are in general not fixed for the flow, and hence we use V for the continuation of the nontrivial branches.

The initial discretization of the sphere is obtained by standard subdivision and projection (like in Fig(3) with $n_{p}=2562$ nodes and $n_{t}=5120$ triangles. Many of the interesting solutions show narrow necks, and hence adaptive mesh-refinement and coarsening will play a vital role. See Table 11 for a list of the pertinent files and further comments. Suitable choices of the parameters of refufu allow the resolution and robust continuation of rather challenging solutions. Nevertheless, here we restrict to $n_{p} \leq n_{\max }=6000$ nodes in the mesh, and remark that of course for axisymmetric solutions a 1D setting as in SBL90 is more efficient and allows yet finer meshes (for the generatrix) and hence the resolution of narrower necks.

- $c_{0}=0$. Fig 18(a) shows a basic BD for $c_{0}=0$. As already said, we always start with the unit sphere at some $\lambda_{1}<6-4 c_{0}+2 c_{0}^{2}$, cf. (75), and initially continue to larger λ_{1} to obtain the BPs from the sphere, although we know them explicitly from (75). This gives the black trivial branch in the 3rd plot in Fig. 18(a). However, for the nontrivial branches we use v as the primary parameter (see Remark 4.2), and get the BD in the first plot in (a), with a zoom in the second.

For the BPs in (75) we have $\lambda_{1}=6$ for $n=2$ and $\lambda_{1}=12$ for $n=3$; at the first BP $\lambda_{1}=6$ we have a 5 dimensional kernel of spherical harmonics, but modulo rotations the only bifurcating branch we find bifurcates transcritically in λ_{1} and consists of prolates (orange, stable) in one direction and oblates (red, initially unstable) in the other direction, see the samples in (b), with the oblate of the typical RBC shape. The oblates gain stability at $v \approx 0.76$ where the green (non-axisymmetric)

Table 11: Selected files from geomtut/vesicles; sG.m and sphinit.m as usual, some convenience functions (to shorten scripts) at bottom.

| cmds0.m | continuation of the basic nontrivial branches in V_{0} for $c_{0}=0$, see Fig. 18, plotting in
 cmdsOplot.m. |
| :--- | :--- |
| $\mathrm{cmdsm} 2 . \mathrm{m}$
 $c_{0}=-1$, plotting in cmdsm2plot.m, see Fig. 19 | |
| hvesbra.m | local copy and mod of library function cmcbra.m to also put, e.g., the bending energy E
 $c_{0}=1.4$, plotting in cmds2lot.m, see Fig. 20 |
| refufu.m | and the reduced volume v onto the branch for later plotting.
 local copy and mod (and renaming) of stanufu.m for mesh-adaptation; "switched on" by
 setting p.fuha.ufu=@refufu. Proceeds in 3 steps:
 1: refines all triangles of area larger than p.nc.Ab (the base triangle size of the initial
 discretization of the sphere, or user set) |

2: If $\delta_{\text {mesh }}>$ p.nc.errbound (user set, typically 10) then call degcoarsen to remove triangles with poor mesh-quality.
3: refine the mesh according to e2rsshape4, and call retrigX

| qAV.m | area-, mass-, and three translational constraints (77), derivative in qAVder.m |
| :--- | :--- |
| qAV2rot | qAV.m augmented by 2 rotational constraints, derivative in qAV2rotder.m |
| qAVfrot | |\quad qAV.m augmented by all three rotational constraints, derivative in qAVfrotder.m,\(~\left(\begin{array}{l}find rotational axis for axi-symmetric state, see also showaxis.m

\hline rotax.m

stan2rot.m

\end{array} $$
\begin{array}{l}\text { switch on 2 rotational PCs for axi-symmetric state; calls rotax.m (convenience function). } \\
\text { stanfullrot.m switches on all three rotational PCs }\end{array}
$$\right.\)
branch bifurcates, on which solutions first look like elongated RBCs (pt15) and then become similar to prolates (pt42). The oblates (RBCs) lose stability at $v \approx 0.51$ (and shorty after become non-physical due to self intersections) to a subcritical branch of stomatocytes, which stabilizes in a fold at $v \approx 0.66$, after which solutions at low v take the shape of two spheres, the inner one called an inverted sphere, connected by a narrow neck [SBL90]. See the last sample in (c), after which we cannot continue the branch further without refining to more than $n_{\max }=6000$ nodes. Importantly, the stomatocytes have lower E than the oblates for $v \leq v_{o s} \approx 0.57$, and this corresponds to the discontinuous transition from oblates to stomatocytes in [SBL90, Fig.10].

- $c_{0}=-1$. For $c_{0}=-1<-5 / 6$ the first BP is at $\lambda_{1}=12$, and the stabilities of prolates and oblates near $v=1$ flips, i.e., the oblates are now stable near $v=1$, and the prolates unstable, and remain so for all $v \in(0,1)$. See Fig. 19, corresponding to [SBL90, Fig.17]. Near $v=v_{s} \approx 0.7$ stomatocytes bifurcate subcritically from the oblates. According to [SBL90, Fig.17] these stomatocytes stabilize in a fold near $v=0.95$, but in our numerics we can only reach $v \approx 0.92$. The red oblates become unphysical near $v=0.55$ due to self intersections, but the branch folds back near $v=0.5$ and turns into discocytes with two invaginations, see o/pt70. Again according to [SBL90, Fig.17] the branch stabilizes in a fold near $v \approx 0.85$, but again we cannot continue it sufficiently far and stop at pt70.

Instead, in Fig 19 we additionlly show two branches bifurcating from the 2nd BP at $\lambda_{1}=20$, and a number of non-axisymmetric branches. The branch c (magenta) from BP2 is axisymmetric with a roughly conical shape near $v=1$, which elongates for smaller v, with several 2 ndary bifurcations. Another branch d from BP2 has tetrahedral symmetry, with four invaginations, and again with 2ndary bifurcations. Moreover, we show the green branch which bifurcates from the first BP on the orange prolates branch. This also folds back, and connects to d at $v \approx 0.55$, see panel (c). While all branches shown in (a) are unstable, except the oblates for $v>v_{s}$, we believe that our selection gives a useful first impression of the extremely rich bifurcation structure, in particular showing that and how 2ndary bifurcations from the $n=2$ primary branches may connect to $n \geq 3$ branches.

- $c_{0}=$ 1.4. According to SBL90, Fig.10], for $c_{0}>c_{p} \approx 1$ and decreasing v, prolates lose stability to pears. This is illustrated in Fig 20 for $c_{0}=1.4$, together with some secondary bifurcations from

Figure 18: $c_{0}=0$. (a) BDs, E over v, with zoom, and E over λ_{1}; prolates (orange), oblates (red), and two secondary branches o-1 (green), and o-2 (stomatocytes, violet). (b) samples of one prolate and one oblate. (c) samples along secondary branches bifurcating from oblates.
the oblates to D3 and D4 "starfish vesicles" o-1 and o-2, and a tertiary bifurcation to o-1-1, which can be thought of as an analogue of pears.

In detail, at $v=v_{p} \approx 0.73$ the green pear branch bifurcates subcritically from the prolates, gains stability in a fold near $v=0.88$, and shows lower E than the prolates for $v<v_{p p} \approx 0.8$, which hence gives the discontinuous transition from prolates to pears in [SBL90, Fig.10]. Again, the D_{k} branches with samples in (b) only contain unstable solutions for the SC model. However, some solutions of this type are in fact stable in the BiC model (70), which yields the same Euler-Lagrange equation (65) as (63), but with a different energy E in (70), and with different constraints, which change the stability properties. Therefore we find it useful to show the branches o-1 and o-2 and associated sample solutions in Fig 20, but a detailed bifurcation analysis of the BiC model will be given elsewhere.

4.2 Biocaps

In the demo biocaps we fix the boundary circle $\partial X=\left\{x^{2}+y^{2}=\alpha^{2}\right\}$ in the $x-y$ plane. Thus,

$$
\begin{align*}
& \Delta H+2 H\left(H^{2}-K\right)+2 c_{0} K-2 c_{0}^{2} H-2 \lambda_{1} H=0 \text { on } X, \text { and } \tag{81a}\\
& u=0 \text { and } H-c_{0}+b \kappa_{n}=0 \text { on } \partial X . \tag{81b}
\end{align*}
$$

In our experiments we fix $\alpha=1$ and $\lambda_{1}=1 / 4$, and first $c_{0}=1 / 2$ and vary b, and want to start with the upper unit hemisphere. Then $H=K=1$ (choosing the inner normal for the hemisphere) and
(a)

(b)

(c)

Figure 19: $c_{0}=-1$; oblates (red) which turn into discocytes with two stomas; stomatocytes o-1 (violet); cone branch c (magenta) bifurcating from BP2; prolates (orange), and secondary branch p-1 (green) which connects to (rotation of) diamond d (blue) from BP2; the last sample shows the 4 stomas on d .
$\kappa_{n}=1$ and hence (81b) requires $b=-1 / 2$.
Remark 4.3 a) For X not closed it is an open problem for what parameters, and boundaries and BCs, the minimization of L from (64) is a well-posed problem. In Nit93, the following conditions on c_{0}, b and λ_{1} are posed for L with $\lambda_{2}=0$ to be definite in the sense that $L \geq C_{0}$ for some $C_{0}>-\infty$ for all connected orientable surfaces X of regularity C^{2} with or without boundary:
(i) $\lambda_{1} \geq 0$,
(ii) $-1 \leq b \leq 0$,
and (iii) $-b c_{0}^{2} \leq \lambda_{1}(1+b)$.

This proceeds as in Nit91 by scaling properties of E for various surfaces composed of planes (of area A), cylinders (of lengths l and radius r_{c}), and (hemi)spheres (of radius r_{S}), and considering the asymptotics of L as $A, l \rightarrow \infty$ and/or $r_{c}, r_{s} \rightarrow 0$. For instance, the condition $\sqrt{82}$ (i) arises most naturally by considering X to contain a plane with $A \rightarrow \infty$, which for $\lambda_{1}<0$ gives $L \rightarrow-\infty$.

On the other hand, in the physics literature no restrictions on $c_{0}, b \in \mathbb{R}$ are given, and in a given problem a fixed ∂X and the BCs (68) or (69) may make L definite for much larger ranges than given in (82). In our experiments below we do take parameters to rather extreme values, e.g., $b=-4$ in Fig. 22, where we find interesting solutions.
b) For $\partial X \neq \emptyset$, and in particular for the cases of caps considered below, we are not aware of analytic bifurcation results, except [PP22] which presents some results for caps in a slightly different setting.

Fig 21(a) shows the continuation of the initial hemisphere in b. This is mainly intended for subsequent continuation in c_{0} at negative b, and (b) shows the case of $b \approx-1.66$. The problem is symmetric under $\left(c_{0}, X_{3}\right) \mapsto-\left(c_{0}, X_{3}\right)$, and in particular at $c_{0}=0$ we have the flat disk as an exact solution (for any b). See $\mathbf{c} 00 \mathrm{~b} / \mathrm{pt} 11$ for a nearby solution with $c_{0} \approx-0.07$, which lies between two folds with

Figure 21: Initial results for 65 , (69) from biocaps/cmds1.m. In (a) we continue in b starting at b/pt1 from the unit hemisphere with $\left(\alpha, \lambda_{1}, c_{0}, b\right)=(1,1 / 4,1 / 2,-1 / 2)$, to increasing b (branch b , black) and decreasing b (branch bb , grey). On b we go to the flat disk (last sample), while on bb the hemisphere bulges out. This is mainly intended for later continuation in c_{0}, and in (b) we do so starting from $\mathrm{bb} / \mathrm{pt9}$ at $b \approx-1.66$. This gives the double well shape for E, with a short unstable segment between the two folds at $c_{0} \approx \pm 0.33$. See Fig. 22 for the cases of $b \approx-3.4$ (bb/pt20) and $b \approx-4$.
(or more, for even lower b) BPs between the left fold and $c_{0}=0$, with azimuthal wave numbers $m=1$ and $m=2$. As before, these bifurcations are double by S^{1} symmetry, and to continue the bifurcating branches we set the usual rotational PC after two steps. The blue $m=1$ branch then behaves similarly in (a) and (b), i.e., it becomes stable after a fold at $c_{0} \approx-0.2(b=-3.4)$ resp. $c_{0} \approx-0.27(b=-4)$. However, the $m=2$ branch behaves differently: For $b=-3.4$ it connects to the symmetric BP at $c_{0}>0$. For $b=-4$, the red branch $\mathrm{c} 02 \mathrm{~b}-2 \mathrm{q}$ first shows a secondary BP to a branch ($\mathrm{c} 02 \mathrm{~b}-2 \mathrm{q}-1$, green) with broken \mathbb{Z}_{2} symmetry, and then shows a fold at $c_{0} \approx-0.21$ where it becomes stable. The branch $\mathrm{c} 02 \mathrm{~b}-2 \mathrm{q}-1$ also shows a fold, at $c_{0} \approx-0.11$, after which however one unstable eigenvalue remains, i.e., $\operatorname{ind}(X)=1$ at, e.g., c02b-2q-1/pt20 (last sample in (c)). The somewhat non-smooth shape of the red and green branches is due to repeated and heavy mesh refinement, to, e.g., $n_{p}=5560$ at c02b-2/pt30.

Figure 22: Continuation of Fig. 21. (a,b) Continuation in c_{0} from $\mathrm{bb} / \mathrm{pt} 20,\left(\alpha, \lambda_{1}, b\right)=(1,0.25,-3.4)$, starting from $c_{0}=0.5$, branches c01b (black, to decreasing c_{0}) and c01 (grey, to increasing c_{0}). There are two BPs on the unstable part of c 01 b for $c_{0}<0$, and the symmetric BPs for $c_{0}>0$. The blue branch $\mathrm{c} 01 \mathrm{~b}-1 \mathrm{q}$ has azimuthal wave number $m=1$ and is stable after its fold. The red branch $\mathrm{c} 01 \mathrm{~b}-2 \mathrm{q}$ has $m=2$ and connects to the symmetric BP at $c_{0}>0$. The 2 nd plot in (a) shows where the part $b \int K \mathrm{~d} S$ of E becomes dominant, taking into account the rather large $|b|$. (c) Similarly starting at $\mathrm{bb} / \mathrm{pt} 24$ with $b \approx-4$; zoom of BD near upper left fold of the branch c02b (black) similar to c01b from (a). The blue branch is qualitatively as in (a), but now the $m=2$ branch c02b-2q (red) also folds back giving stable solutions, and there is a secondary BP on it, giving the green branch c02b-2q-1.

In Fig. 23 we continue some $m=1$ solutions from the blue branch in Fig. 22(b) in b and in λ_{1}, with fixed c_{0}. The unstable black solutions with $c_{0} \approx-0.35$ in (a) continue to $b \approx-1.8$, where the branch bifurcates from the axisymmetric branch. This is in contrast to Fig. 21 where for the continuation in b at $c_{0}=1 / 2$ no bifurcations from the axisymmetric branch were found. The blue branch in Fig.23(a) with $c_{0} \approx-0.24$ shows a fold at $b \approx-3.11$. From these and similar experiments, $m=1$ solutions do not seem to exist for b somewhat larger than -2 , and no stable ones for b larger than -3 . In Fig. 23(b), the black unstable branch continues to large λ_{1}, but the stable blue branch again shows a fold, at moderate $\lambda_{1} \approx 0.44$. This indicates that solutions of this type also do not continue to "large" λ_{1}. Nevertheless, while the physical (biological) significance of the parameter regimes and solutions in Figs. 21,23 certainly needs to be discussed, mathematically we have obtained some stable non-axisymmetric solutions.
(a)

Figure 23: cmds2.m, experiments with continuation of $m=1$ solutions from Fig. 22 in b (a), and in λ_{1} (b). The starting points in (a) are from $c \approx-0.35$ for the black branch bc 1 , and from $c \approx-0.24$ for the blue branch bc 2 (this is the same solution as $\mathrm{c} 01 \mathrm{~b}-1 \mathrm{q} / \mathrm{pt} 16$). The continuation in λ_{1} in (b) has the same starting points and the same colors. The unstable branch (now with fixed $\left.\left(c_{0}, b\right)=(-0.35,-3.4)\right)$ continues to large λ_{1}, but the blue branch with fixed $\left(c_{0}, b\right)=(-0.24,-3.4)$ has a fold at $\lambda_{1} \approx 0.44$.

5 Summary and outlook

We explained the basic setup of the pde2path extension library Xcont for continuation of 2D submanifolds X (surfaces) of \mathbb{R}^{3}, and gave a number of examples. These were partly introductory, e.g. the spherical caps in $\S 3.1$, partly classical, e.g., Enneper's minimal surface in $\S 3.2 .3$, the nodoids in $\S 3.3 .2$ and $\S 3.4$, the TPS in $\S 3.5$, and the closed vesicles in $\S 4.1$, and partly rather specific such as the Plateau problem in $\$ 3.2 .2$ or the 4th order Helfrich type caps in $\$ 4.2$ (and cylinders in $\$$ B. Besides [Bru18], and to some extent [Bra96], there seem to be few numerical continuation and bifurcation experiments for such geometric problems for 2D surfaces, i.e., without imposing some axial symmetry, and we are not aware of a general software for such tasks.

The basic setup for all our problems (except those of 4th order) is similar: We consider CMC surfaces, which mainly differ wrt constraints and/or boundary conditions. Along the way we explained a number of techniques/tricks which we expect to be crucial in many applications. A major problem for continuation (over longer parameter regimes) is the mesh handling as X changes and hence the mesh distorts. We explained how this (often) can be abated via moving of mesh points (moveX), refinement (refineX which sometimes should be combined with re-triangulation by retrigX) and coarsening (coarsenX), and coarsening of degenerate triangles (degcoarsenX), although the choice of the parameters controlling these functions often requires some trial and error. In any case, X bulging out is usually harmless, but bulging in (the development of necks) is more challenging.

This is a first step. With the demos we hope to give a pool of applications which users can use as templates for their own problems, and we are curious what other applications users will consider, and of course are happy to help if problems occur. As indicated above, our own further research, to be presented elsewhere, includes:

- Further classical minimal surfaces (and CMC companions) such as Schwarz H and Scherk surfaces (surface families);
- Alternate models for closed vesicles, which in contrast to the SC model from $\$ 4.1$ show non-
axisymmetric minimizers;
- Coupling of membrane curvature and morphogen dynamics or reaction-diffusion equations as in, e.g., MMCRH13, TN20].

A Spheres, hemispheres, VPMCF, and an alternative setup

A. 1 Spheres

The demo spheres, containing only the (somewhat minimally necessary) files sphereinit.m, sG.m, getM.m, and cmds1.m, is mostly meant to illustrate volume preserving mean curvature flow (VPMCF) near spheres, see Fig. $24{ }^{[2]}$ We refer to sphereinit.m and cmds1.m for comments (and to geomflow.m and vpmcff.m from libs/Xcont for the VPMCF) and here only note:

Figure 24: Results from sphere/cmds1.m. (a) Continuation of a sphere in V, with comparison of A and V. (b) An IC for VPMCF from a perturbation of $\mathrm{S} 3 / \mathrm{pt30}$, with (c) solutions at $t=1$ and $t=5$, and a time-series for $V, A ; V$ is conserved to within 0.5%.

1. The comparison between $r A / 3$ and V in Fig. 24(a) shows a very small error which indicates that the solutions are good approximations of spheres.
2. For convex closed initial X (meaning that $X=\partial \Omega$ for a convex domain $\Omega \subset \mathbb{R}^{3}$), the VPMCF converges to a sphere. See also, e.g., ES98 for theoretical background. This also holds for "slightly" non-convex initial X as in Fig. $24(\mathrm{~b}){ }^{23}$
3. Our (explicit Euler) implementation of the VPMCF does not conserve V exactly, but with "reasonable accuracy", i.e.: Even for quite "non-spherical" initial $X(0)$, the error $\left|1-V_{\infty} / V_{0}\right|<0.01$, where $V_{\infty}=\lim _{t \rightarrow \infty} V(t)<V_{0}$ in all our tests, i.e., V_{∞} is always slightly smaller than $V_{0}{ }^{24}$

[^17]4. During continuation, the position of X is not fixed, i.e., we have the threefold (in the discrete setting approximate) translational invariance in x, y, z, and hence always a three-dimensional (approximate) kernel. This could be removed by suitable translational PCs (see the demo hemispheres). However, the approximate kernel is not a problem for the continuation here since in the Newton loops the right hand sides are orthogonal to this kernel. As here we are mostly interested in the VPMCF, for which the translational invariances are irrelevant, we refrain from these PCs to keep the demo sleek and simple.

A. 2 Hemispheres

In the demo hemispheres we continue in volume V hemispheres X sitting orthogonally on the $z=0-$ plane, i.e.,

$$
\begin{equation*}
\partial_{r} X_{3}=0 \text { where } r=\sqrt{x^{2}+y^{2}}, \tag{83}
\end{equation*}
$$

and test VPMCF for perturbations of such hemispheres, see Fig.25. Additionally we use the PCs

$$
\begin{equation*}
\int_{X} N_{1} \mathrm{~d} S=\int_{X} N_{2} \mathrm{~d} S=0, \quad X=X_{0}+u N_{0} \tag{84}
\end{equation*}
$$

to fix the translational invariance.

Figure 25: Results from hemisphere/cmds1.m. (a) Continuation of hemisphere in V, with sample at end. (b) Comparison of A and V for (a). (c) A perturbation of hsr1/pt50 as IC for VPMCF. (d) Solutions at $t=1$ and $t=2$, and time-series for V, A from ($\mathrm{c}, \mathrm{d}) ; V$ conserved to within 0.8%.

Compared to the spheres in \S A. 1 this requires a few more files, listed in Table 12 . The PCs (84) (and u-derivatives) are implemented in qf 2 , qjac 2 , and the rhs $G(u)=H-H_{0}$ in sGhs is augmented to $\widetilde{G}(u)=H-H_{0}+s_{x} N_{1}+s_{y} N_{2}$ with multipliers s_{x}, s_{y}. These stay $\mathcal{O}\left(10^{-6}\right)$ during continuation, and the only effect of the construction is that the 2D kernel of translational invariance of $\partial_{u} G$ is removed

Table 12: Files in pde2path/demos/geomtut/hemispheres.

| cmds1.m | continuation in V, and VPMCF flow test. |
| :--- | :--- |
| hsinit.m, sGhs.m | init and rhs |
| qf2.m, qjac2.m | PC (84), and derivative |
| getN.m | mod of getN, correction at $z=0$
 diskpdeo2.m |
| mod of (pde2path-)default diskpdeo2.m to have a finer mesh at $r=1$. | |

from the linearization of the extended system (\widetilde{G}, q). See the end of cmds1.m for further comments ${ }^{25}$
The BCs (83) allow motion of ∂X in the "support-plane" $z=0$, and are implemented as

$$
r(i d x)=\operatorname{gr} X z *\left(X(i d x, 1) \cdot{ }^{\wedge} 2+X(i d x, 2) \cdot{ }^{\wedge} 2\right)(!!
$$

in sGhs, where as usual idx are the boundary indices, and grXz is the z-derivative (operator) on X, as before obtained from $\operatorname{grX}=\operatorname{grad}(\mathrm{X}, \mathrm{p} . \operatorname{tri})$ and interpolation to the nodes. This forces the $x, y-$ coordinates of the points on X directly above the $z=0$ layer to also fulfill $x^{2}+y^{2}=1$, i.e., we obtain a "cylindrical socket" for the hemispheres. To mitigate this effect, in hsinit we initialize with a somewhat specialized mesh over the unit disk D with higher density towards ∂D, which is then mapped to the unit hemisphere via $z=\sqrt{1-x^{2}-y^{2}}$. Nevertheless, after continuation to larger V, which is combined with some mesh-adaptation by area, we obtain a mismatch between $r A / 3$ and V, see Fig.25(a,b), and compare Fig.24(b).

In Fig. 25 (c, d) we give an example of VPMCF from a perturbation of $\mathrm{hs} 1 \mathrm{r} / \mathrm{pt} 50$, here of the form $\left.X\right|_{t=0}=X+0.4(\cos (\vartheta)(\max (z)-z+0.1($ rand -0.5$)) N$, where ϑ is the angle in the $z=0$ plane. We do not use any $B C s$ in the rhs vpmcff.m. Instead, we use the correction

$$
\begin{equation*}
N(p . i d x, 3)=0 ; N=n o r m a l i z e r o w(N) ; \tag{85}
\end{equation*}
$$

in getN.m, to let N lie in the $x-y$-plane, cf. Remark 3.8(b) for a similar trick. Without (85), the continuation of hemispheres works as before, but the solutions of the VPMCF start to (slowly) lift off the $z=0$ plane, and then (quickly) evolve towards a planar X such that also $V \rightarrow 0$. With (85), the solutions flow back to hemispheres, and V is again conserved up to 0.5%, and "after convergence" (e.g., from $\left.X\right|_{t=2}$) we can start continuation again, showing consistency.

A. 3 Spherical caps via 2D finite elements

For the sake of completeness and possible generalization, we show how the spherical caps with DBCs can be treated in a classical FEM setting. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain and X_{0} be a surface with parametrization $\phi_{0}: \Omega \rightarrow \mathbb{R}^{3}$, and as before define a new surface via $X=X_{0}+u N_{0}, u: \Omega \rightarrow \mathbb{R}$. Then (1) reads

$$
\begin{equation*}
G(u, H, V)=\binom{H(X)-H}{V(X)-V}=0, \text { with }\left.u\right|_{\partial \Omega}=0 \tag{86}
\end{equation*}
$$

This is a quasilinear elliptic equation for $u: \Omega \rightarrow \mathbb{R}$, and after solving (86) we can again update $X_{0}=X_{0}+u N_{0}$ and repeat. To discretize (86) we now use the FEM in Ω. The main issue is how to compute H (and A and V and similar quantities) without the gptoolbox, and Table 13 lists the pertinent files.

[^18]Table 13: Overview of files in geomtut/spcap2.
cmds1 \mid Main script; initialization, continuation, plotting.
spcapinit
oosetfemops
sG, qV
getN
getA, getV
getmeancurv
e2rs
cmcbra, pplot
getGupde

Initialization, rather standard, except for $\mathrm{p} . \mathrm{x}=[\mathrm{x}, \mathrm{y}, 0 * \mathrm{x}]$ for the initialization of X.
Setting mass matrix M, and first order differentiation matrices which are used to compute H in $\mathbf{s G}$ (via getmeancurv).
rhs and volume constraint.
compute normal vector.
compute $A(X)$ and $V(X)$, overload of Xcont functions.
H from (8), see also get1ff, get2ff for 1st and 2nd fundamental forms.
ElementToRefineSelector function, based on triangle areas.
like Xcont/cmcbra and Xcont/pplot, but overloaded since p.tri not present here. overload of library function to deal with larger bandwidth.

To implement $H(X), X=X_{0}+u N$, we here directly use the definition

$$
H=\frac{1}{2} \frac{h_{11} g_{22}-2 h_{12} g_{12}+h_{22} g_{11}}{g_{11} g_{22}-g_{12}^{2}}
$$

of the mean curvature based on the fundamental forms of X. This is brute force and in particular neither confirms to a weak (FEM) formulation nor allows simple Jacobians, see Remark A.1.

Remark A. 1 a) In getN and get1ff we compute the nodal values for X_{x} and X_{y} (via weighted averages of the adjacent triangles), and the corresponding nodal values of N and $g_{i j}$; this is needed here as X_{x} and X_{y} appear nonlinearly in N, and similarly $g_{i j}$ appear nonlinearly in H. On the other hand, the second derivatives $h_{i j}$ only appear linearly in H, and hence we take the second derivatives in get2ff using the element differentiation matrices Kx and Ky . Thus, H in $\mathrm{r}=-2 * \mathrm{H}+\mathrm{p}$. mat. $\mathrm{M} *$ (HO*ones ($\mathrm{p} . \mathrm{nu}, 1$)) in $s G$ is (an approximation of) the element wise mean curvature, and hence H0 must also be multiplied by the mass matrix p.mat.M.
b) Since G as implemented uses products of differentiation matrices, the associated Jacobian $\partial_{u} G$ has more bandwidth than before, i.e., the sparsity pattern S of $\partial_{u} G$ is that of M^{2}, rather than that of M, and thus we use $S=M^{2}>0$ in getGupde.

```
    function p=spcapinit(nx,par) % spherical cap, init, legacy setup
    p=stanparam(); p.sw.spcalc=0; p.sw.bifcheck=0; % set stanparam, overwrite some
3 pde=diskpdeo2(1,nx,round(nx/2)); % disk preimage discretization
    p.pdeo=pde; p.np=pde.grid.nPoints; p.nu=p.np; p.nt=pde.grid.nElements;
    p.sol.xi=1/p.nu; p.nc.neq=1; p.sw.sfem=-1; % store dimensions
    p.fuha.outfu=@cmcbra; p.fuha.e2rs=@e2rs; % branch data, refinement selector
    p.sw.Xcont=1; p.plot.pstyle=-1; % call userplot for plotting
8 po=getpte(p); x=po(1,:)'; y=po(2,:)'; u=0*ones(p.np,1); % initial soln
p.u=[u; par]; p.X=[x,y,0*x]; % set IC, including X
p=oosetfemops(p); % here constant mass and stifness matrices (until mesh changes)
p.plot.auxdict={'H','V','alpha','A'}; p.u(p.nu+4)=getA(p,p.u); % initial area
function p=oosetfemops(p) % legacy setting, precompute FEM matrices
gr=p.pdeo.grid; fem=p.pdeo.fem; [~ ,p.mat.M, ~]=fem.assema(gr,1,1,1); % mass
E=center2PointMatrix(gr); % to map elem differentiation matrices to nodal ones
4 ~ p . m a t . p 2 c = p o i n t 2 C e n t e r M a t r i x ( g r ) ; ~ \% ~ t o ~ i n t e r p o l a t e ~ f r o m ~ n o d e s ~ t o ~ e l e m ~ c e n t e r s
[Dx,Dy]=fem.gradientMatrices(gr); p.mat.Dx=E*Dx; p.mat.Dy=E*Dy;
p.mat.Kx=fem.convection(gr, [1;0]); p.mat.Ky=fem.convection(gr, [0;1]);
p.idx=unique(p.pdeo.grid.e(1:2,:)); % store bdry-indizes for DBCs
function r=sG(p,u) % PDE rhs
par=u(p.nu+1:end); H0=par(1); u=u(1:p.nu); al=par(3); % split in par and PDE u
3 NO=getN(p,p.X); X=p.X+u.*NO; H=getmeancurv(p,X); % mean curv.based on FEM
r=-2*H+p.mat.M*(H0*ones(p.nu,1)); r(p.idx)=u(p.idx)-al; % residual, and DBCs
```

```
l function H=getmeancurv(p,X) % mean curv based on 1st and 2nd fundamental form
    [E,F,G]=get1ff(p,X); [L,M,N]=get2ff(p,X); H=0.25*(L.*G-2*M.*F+N.*E)./(E.*G-F.^2);
    function V=getV(p,u)
    u=u(1:p.nu); NO=getN(p,p.X); X=p.X+u.*N0;
N N=cross(p.mat.Dx*X,p.mat.Dy*X,2); % normal at X, NOT normalized
V=sum(p.mat.M*(dot (X,N,2)))/3;
```

Listing 16: spcapinit, oosetfemops, sG, getmeancurv and getV from spcap1. See sources for, e.g., get1ff, get2ff, and the Element2RefineSelector function e2rs used for mesh adaptation.

Despite the caveats in Remark A.1, we can now set up a simple script (Listing 17) and produce a continuation diagram and sample plots fully analogous to $\S 3.1$. For mesh-refinement, to select triangles to refine we use the areas on X, see e2rs, but otherwise the adaptive mesh refinement works as usual in the legacy setting of pde2path via oomeshada.

```
1 %% cmc spherical caps, init; pars will be overwritten in spcapinit
    nx=10; al=0; h0=0; v0=0; a0=0; par=[h0; v0; al; a0]; % initial pars
    p=spcapinit(nx,par); plotsol(p); p=setfn(p,'cap1'); p.sol.ds=0.01;
    p.nc.dsmax=0.2; p.nc.usrlam=[2 4]; p.plot.bpcmp=1;
    p.nc.ilam=[2 1]; p.nc.nq=1; p.fuha.qf=@qV; p.fuha.qfder=@qVjac; % cont V, free H
6 p.sw.jac=0; p.sw.qjac=1; % using numerical Jacs for G, and approximate q_u
    p=cont(p,10); % go
    %% example of mesh-adaption; loading soln useful for testing parameters
    % such as ngen (number of adaption loops) and sig (frac of triangles to refine)
    p=loadp('cap1','pt10','cap1r'); p.nc.ngen=1; p.nc.sig=0.2; p=oomeshada(p);
11 p=cont(p,20); % continue refined solution
```

Listing 17: Short script cmds1.m from geomtut/spcap.
As already said, the main advantage of this setup is simplicity in the sense that the function getmeancurv (based on get1ff and get2ff) is a direct translation of the differential geometric definition. Moreover, we can work with fixed preassembled differentiation matrices (independent of X) as long as the mesh (in Ω) is fixed. The main disadvantage is that this implementation of (8) is not a weak form but mixes FEM and FD differentiation matrices.

B Biocylinders with clamped BCs

In the demo biocyl we consider the Helfrich SC functional (63) for a cylindrical topology along the x-axis with BCs (68). The equation and BCs thus are

$$
\begin{align*}
& \Delta H+2 H\left(H^{2}-K\right)+2 c_{0} K-2 c_{0}^{2} H-2 \lambda_{1} H=0, \tag{87a}\\
& X_{2}^{2}+\left.X_{3}^{2}\right|_{X_{1}= \pm 1}=\alpha^{2}, \quad \text { and }\left.\quad \partial_{x} X_{2}\right|_{X_{1}= \pm 1}=\left.\partial_{x} X_{3}\right|_{X_{1}= \pm 1}=0 . \tag{87b}
\end{align*}
$$

For $c_{0}=0$ we have the explicit family

$$
\begin{equation*}
X_{\mathrm{cyl}, \alpha}=(x, \alpha \cos \phi, \alpha \sin \phi), \quad x \in[-1,1], \phi \in[0,2 \pi), \text { with } \lambda_{1}=\frac{1}{4 \alpha^{2}} \tag{88}
\end{equation*}
$$

of Helfrich cylinders, and DDG21 proves various existence results for axisymmetric solutions near (88) and in other regimes in the $\alpha-\lambda_{1}$ plane. See also VDM08 for other shapes with cylindrical topology, which fit into our setting by prescribing other contours at $x= \pm 1$ instead of the circles of radius α in (87b).

The external parameters for (87a) are ($\alpha, \lambda_{1}, c_{0}$), and continuation in any of these yields interesting results. We first continue in c_{0} at fixed $\alpha=1$, since we believe this is the numerically most challenging case due to the exact solution (89) below. Subsequently we continue in α, and again in c_{0} at different α, and finally in λ_{1}, always starting from the Helfrich cylinder (88).

Table 14: Scripts in pde2path/demos/geomtut/biocyl.
cmds1.m \quad Continuation of $X_{\text {cyl }, \alpha}$ in $c_{0},\left(\alpha, \lambda_{1}\right)=(1,1 / 4)$, Figs. 26 and 27
cmds2.m
cmds3.m
cmds4.m
cmds4b.m
Continuation of $X_{\mathrm{cyl}, \alpha}$ in $\alpha,\left(c_{0}, \lambda_{1}\right)=(1 / 4,1)$, Fig. 28 .
Continuation of "big" and "small" cylinders $X_{\text {cyl }, \alpha}$ in c_{0}, i.e., $\alpha=1.4$ and $\alpha=0.6$, Fig. 29
Continuation of $X_{\text {cyl }, \alpha}$ like solutions in $\lambda_{1},\left(\alpha, c_{0}\right)=(1,0.7)$, Fig. 31 .
Like cmds $4 . \mathrm{m}$ but with $\left(\alpha, c_{0}\right)=(1,0)$, Figs. 30 and 32 .
Table 14 lists the command scripts in biocyl/. Besides cylinit.m, sG.m, and getM.m (see Remark 4.1), we then additionally have the PC qfrot.m and its derivative qfrotder.m, and the scripts bdmov1.m and bdmov2.m to produce movies of the BDs in Fig. 31. In hcylbra.m we put $A, V, E, \lambda_{1} A$ and the mesh-quality data on the branch. In cylinit.m we set p.sw.Xcont=2, such that the colors in solution plots mainly give some visual structure to X, but do not in general give the continuation direction $u N$, cf. the remarks after (30). The PC multiplier $\left|s_{\text {rot }}\right|<10^{-4}$ on all the branches, and in all cases the final u plotted is of order 10^{-6} or smaller.

B. 1 Continuation in the spontaneous curvature

In cmds1.m we fix $\alpha=1$, and start with the Helfrich cylinder (88), hence $\lambda_{1}=1 / 4$. We choose a rather coarse uniform initial mesh of $\mathrm{np}=1770$ points, and first continue to $c_{0}<0$, yielding the branch c0b in Fig.26. The solutions contract in the middle and via two folds produce a bistability region around $c_{0}=-6.25$, but otherwise no bifurcations. As the neck thins, we refine the mesh based on e2rsshape1, cf. (32), with p.sw.rlong=1 and combined with retrigX to avoid obtuse triangles, cf. Remark 2.6. The 2nd plot in (a) shows the distortion $\delta_{\text {mesh }}$, with refinements at pt25, pt35 and pt40, and the second row in (b) shows rather strong zooms into the necks, illustrating the refinement step from pt35 to pt36, and the reasonable mesh in the neck at point pt45.
(a)

(b)

Figure 26: Results for (??) from biocyl/cmds1.m. $(\alpha, \varepsilon)=(1,1 / 4)$ fixed, continuation to $c_{0}<0$, with a bistability region near $c_{0}=-6.25$. Initially uniform mesh of $n_{p}=1770$ points, and the 2 nd plot in (a) indicates that with suitable refinement (at pt25 and pt35, to $n_{p}=3561$) the meshes stay good. Samples in (b), with zooms of the necks to illustrate the meshes.

In Fig. 27 we continue to $c_{0}>0$. This is initially easy, but after a first fold near $c_{0} \approx 1.3$ and then decreasing c_{0} below $c_{0} \approx 0.15$ it becomes difficult to maintain mesh distortion $\delta<100$. We give the

Figure 27: Further results from biocyl/cmds1.m, $(\alpha, \varepsilon)=(1,1 / 4)$, continuation of Helfrich cylinder to $c_{0}>0$ (blue branch c 0 , c0r after mesh refinement), with bifurcation to c 1 r (red). (a) BDs of area A, energy E, and mesh distortion $\delta_{\text {mesh }}$. (b) A full sample at c0/pt10, different colormap (yellow>pink) for better visibility of mesh. (c) further samples, cut at $x=0$. (d) zoom into solution close to $X_{2 \mathrm{HS}}$. On co, results after pt33 become somewhat mesh-dependent, but our experiments suggest that the branch connects to $X_{2 \mathrm{HS}}$ at $c_{0}=1 / 2$ (with c0r/pt46 shortly before that connection).
full result of our continuation but remark that the behavior on c 0 (c 0 r after refinement, to $n_{p}=3130$ at pt46) after pt30, say, becomes mesh dependent. First, however, at $c_{0} \approx 0.94$, we find a BP to a non-axisymmetric branch (c1, red), 3rd sample in (c). We then get a second fold at $c_{0} \approx 0.08 \pm \eta$, with $\eta \in(-0.02,0.02)$ dependent on the mesh. Relatedly, the further continuation becomes somewhat non-smooth and quantitatively depends on the mesh, but qualitatively we get similar behavior for different meshes, namely: The neck becomes thin and short, and the solutions seem to approximate a solution

$$
\begin{equation*}
X_{2 \mathrm{HS}} \text { consisting of two hemispheres with radius } 1 \text {, centered at }(x, y, z)=(\pm 1,0,0) \text {, } \tag{89}
\end{equation*}
$$

and hence touching at $(0,0,0)$, see c0r/pt46, at $c_{0}=0.47 . X_{2 \mathrm{HS}}$ is an exact solution of (87) with $\lambda_{1}=1 / 4$ at $c_{0}=1 / 2$, and given our various experiments with mesh refinement we believe that the branch cOr connects to $X_{2 \text { HS }}$. However, the third plot in (a), and the samples in (c) (at $c_{0} \approx 0.47$, shortly before the supposed connection to $X_{2 \mathrm{HS}}$) show how the mesh quality seriously degrades as we approach the supposed connection.

Also, we have, e.g., $\operatorname{ind}(X)=3$ at pt33 (with one unstable direction from the fold at $c_{0} \approx 1.3$, and two from the double BP at $c_{0} \approx 0.94$), while the "almost- $X_{2 \mathrm{HS}}$ "-solutions near pt46 have ind $(X)=0$, i.e., are stable. Hence, since ind (X) should decrease by one at the (supposed) fold between pt33 and pt46, we expect another double BP between pt33 and pt46. However, the behavior of the branch is quantitatively mesh-dependent also near the left fold, and while the changes in ind (X) are detected, the bisection loops to localize the fold and/or the BPs do not converge. Thus, altogether the behavior
after pt33 is conjectured. On the other hand, for $c_{0} \in(0.3,0.5)$, say, and in particular near pt46, the solutions like pt46 stay stable under mesh refinement. In any case, a pinch-off (topological change) which should occur after pt 46 as we approach $X_{2 \mathrm{HS}}$ cannot be resolved with our methods, but probably requires the use of some phase field method, see, e.g., [DLW06] ${ }^{26}$

The results for c0r up to pt33 are mesh independent, including the bifurcation of the nonaxisymmetric branch c1 at c0/bpt1. The mesh then also degrades on the non-axisymmetric branch (c 1 , and in a similar way like on the branch c 0 but at larger c_{0}), and since next we focus on nonaxisymmetric branches in a slightly different setting we do not further pursue c1 here.

B. 2 Intermezzo: Other radii

In cmds2.m we continue $X_{\text {cyl, } \alpha}$ in α, with fixed $\left(c_{0}, \lambda_{1}\right)=(0,1 / 4)$, see Fig. 28. This shows no bifurcations. Numerically, the case $\alpha \searrow 0$ is challenging due to boundary layers developing at $x= \pm 1$, see Gru12. Alternating continuation and mesh adaptation based on e2rsshape1 we can reliably continue to $\alpha=0.05$ and slightly further.

Figure 28: Results for (??) from cmds2.m, continuation in α.
In cmds3.m and Fig. 29 we repeat the continuation in c_{0} from Fig. 26 and Fig. 27 for different starting cylinders $X_{\text {cyl }, \alpha}$, namely $\alpha=1.4$ in Fig.29(a) and $\alpha=0.6$ in (b-d). The main differences to the case $\alpha=1$ are as follows: For both, $\alpha=1.4$ and $\alpha=0.6$, continuing to negative c_{0} we no longer have the two folds and associated bistability range as in Fig. 26, and the branches seem to extend to arbitrary large negative c_{0}. We refrain from plotting this for $\alpha=1.4$ in (a), and for $\alpha=0.6$ in (b) we mainly remark that large negative c_{0} yields very long and thin necks, which can be handled with adaptive mesh refinement as in Fig. 26.

Continuing to positive c_{0}, for $\alpha=1.4$ in (a), the main difference to Fig. 27 is that the branch c 0 r only has one fold (at $c_{0} \approx 2.3$) and then continues to negative c_{0}, see $\mathrm{b} / \mathrm{c} 0 \mathrm{r} / \mathrm{pt} 51$. The difference to $\alpha=1$ is that a solution like $X_{2 \mathrm{HS}}$ no longer exists, i.e., two hemispheres of radius $\alpha=1.4$ (or any $\alpha \neq 1$) cannot be near a (genus 1) cylinder type solution. Additionally, the larger radius makes the continuation of the red non-axisymmetric branch b/c1qr easier wrt to mesh handling, see the last sample in (a). For $\alpha=0.6$ in (c,d), the smaller radius gives a "pearling" behavior after the fold on the blue branch, and it seems likely that the branch s/cOr continues to a solution of type hemisphere-sphere-hemisphere, which would give similar problems as discussed for $X_{2 \text { HS }}$ in Fig. 27. Here we stop the continuation after pt30 (third sample in (d)), as further continuation requires excessive mesh adaptation and the solutions are unstable anyway. The pearling shape is also inherited by the non-axisymmetric branch s/c1 (last sample in (d)).

[^19]

Figure 29: cmds3.m, continuation in c_{0} for $\left(\alpha, \lambda_{1}\right)=(1.4,1 / 5.6)$ in (a), and $\left(\alpha, \lambda_{1}\right)=(0.6,2.4)$ in (b-d).

B. 3 Continuation in surface tension

In cmds4.m we return to fixed $\alpha=1$ and continue in λ_{1}, starting at $\lambda_{1}=0.25$ and $c_{0}=0.7$ corresponding to Fig 27, and in cmds $4 \mathrm{~b} . \mathrm{m}$ we repeat this for $c_{0}=0$, starting from the genuine Helfrich cylinder $X_{\text {cyl }, \alpha}$. In both cases, for increasing λ_{1} the solutions initially only slightly change shape, but at larger λ_{1} (near $\lambda_{1}=8$ for $c_{0}=0$, and near $\lambda_{1}=4$ for $c_{0}=0.7$) we get an S -shaped bistability region due to two consecutive folds, similar to the case of $c_{0} \approx-6$ in Fig. 26 (with fixed $\lambda_{1}=1 / 4$) ${ }^{27}$ However, we find no bifurcations to non-axisymmetric branches. The case of decreasing λ_{1} is more interesting, and in Fig. 30 we only show the basic result for $c_{0}=0$ and large $\lambda_{1}>0$ for completeness.
(a)
(b)

Figure 30: cmds4b.m, continuation of $X_{\mathrm{cyl}, \alpha}$ in $\lambda_{1},\left(c_{0}, \alpha\right)=(0,1)$.

[^20]

Figure 31: cmds4.m, continuation in λ_{1} at $c_{0}=0.7$. In (a): axisymmetric branch 10b (dark blue, sample in (b)), 10 (blue, sample in (c))), and four bifurcating branches, 11 (red, refined to 11 qr , samples in (d) and (e), with zoom), 12 (magenta), 13 (orange), 14 (green), samples in (f). The kinks of $11-14$ are due to adapative mesh refinement every 5 th step (after pt10), from $\mathrm{np}=2700$ to $\mathrm{np} \approx 3600$ at the end of each branch.

Even if $\lambda_{1}<0$ is in general unphysical, see Remark ??(b), continuation to $\lambda_{1}<0$ yields interesting results, in particular for $c_{0}>0$. For both, $c_{0}=0.7$ and $c_{0}=0$, for $\lambda_{1}<0$ the solutions start to bulge out in the "middle" (near $x=0$), and there are folds around $\lambda_{1}=-2$ after which we obtain pronounced "tire shapes". Moreover, we obtain bifurcations to D_{m}-symmetric branches, with increasing angular wave numbers $m=1,2,3,4, \ldots$. For $c_{0}=0.7$, the bifurcating branches return to $\lambda_{1}>0$, such that in Fig. 31(a-f) we obtain four new solutions at $\lambda_{1}=0.25$. For $c_{0}=0$, the D_{m} symmetric branches initially behave similarly, but do not reach $\lambda_{1}>0$ and instead asymptote to $\lambda_{1}=0_{-}$, with arbitrary large A, see Fig. 32 and again Remark ??(b). Therefore we put $c_{0}=0.7$ first in Fig 31. Nevertheless, for both $c_{0}=0$ and $c_{0}=0.7$, the BCs do not allow "large portions of planes" as solutions and thus yield the folds of the blue branches. Moreover, E stays bounded below (see Fig.(33), and also for $c_{0}=0$ in Fig. 32 and Fig. 33(b) it seems that $\lambda_{1} A \rightarrow 0$ as $\lambda_{1} \nearrow 0$, i.e., that the area grows slower than $\left|1 / \lambda_{1}\right|$.

The main issue in both, cmds $4 . \mathrm{m}$ and cmds4b.m (which is essentially a copy of cmds $4 . \mathrm{m}$, with a different start (at $c_{0}=0$) of the blue branch and hence directory names starting with 0), is the mesh adaptation for the strong budding of the D_{m} symmetric branches. In detail, to compute the branch, e.g., 11 ($m=1$, sample in Fig. 31 (d)) with refinement (sample in (e)) we proceed as follows. After branch switching at $10 / \mathrm{bpt} 1$ (double, by rotational symmetry, but again we just choose the first of the two kernel vectors) we do a few steps without rotational PC, which we then switch on. Subsequently, we continue with mesh adaptation based on area every five continuation steps. This works very robustly, also on the branches with $m=2,3,4$ and similarly for $c_{0}=0$ in Fig. 32, and allows continuation to large buds. This shows again that bulging out (i.e., expanding) is typically not problematic wrt meshes, though at mesh-refinement we obtain the kinks on the $m=1,2,3,4$ branches in Fig. 31(a). To have smoother branches we would need more frequent but less strong refinement, but this is clearly not critical.

Figure 32: cmds4b.m, continuation in λ_{1} at $c_{0}=0$; color code as in Fig 31, and, e.g., $\mathrm{np}=4400$ at $011 \mathrm{qr} / \mathrm{pt} 40$.

The branches in Fig. 31 can be continued further by alternating cont and refineX, but this requires some fine-tuning of the cont-refineX loop parameters, and eventually the continuation of the branches $l * q r$ fails again due to bad triangles in the necks. Thus, to keep the script cmds4.m simple we stop at the given points. Finally we note that the stabilities in Fig. 31 and Fig. 32 are as expected, namely $\operatorname{ind}(X)=m$ on the D_{m} branch(es).

Figure 33: Energies E and the part $\lambda_{1} A$ of E along the branches of Fig. 31. (a) $c_{0}=0.7$, (b) $c_{0}=0$.

References

[AHLL88] S Andersson, S. T. Hyde, K Larsson, and S. Lidin. Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chemical Reviews, 88(1):221242, 1988.
[ALP99] L. J. Alías, R. López, and B. Palmer. Stable constant mean curvature surfaces with circular boundary. Proc. Amer. Math. Soc., 127(4):1195-1200, 1999.
[BF67] R. Bowen and St. Fisk. Generations of triangulations of the sphere. Mathematics of Computation, 21:250-252, 1967.
[BGBC22] M. Bottacchiari, M. Gallo, M. Bussoletti, and C. Casciola. Activation energy and force fields during topological transitions of fluid lipid vesicles. Commun. Phys., 5:12, 2022.
[BGN15] J. Barrett, H. Garcke, and R. Nürnberg. Numerical computations of the dynamics of fluidic membranes and vesicles. PRE, 92:052704, 2015.
[BGN20] J. Barrett, H. Garcke, and R. Nürnberg. Parametric finite element approximations of curvaturedriven interface evolutions. In Geometric partial differential equations. Part I, volume 21 of Handb. Numer. Anal., pages 275-423. Elsevier, Amsterdam, 2020.
[BGNZ22] Weizhu Bao, H. Garcke, R. Nürnberg, and Quan Zhao. Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. J. Comput. Phys., 460:Paper No. 111180, 23, 2022.
[BNP10] A. Bonito, R. H. Nochetto, and M. S. Pauletti. Geometrically consistent mesh modification. SIAM J. Numer. Anal., 48(5):1877-1899, 2010.
[Bol11] M. Bollhöfer. ILUPACK V2.4, www.icm.tu-bs.de/~bolle/ilupack/, 2011.
[Bra96] K. Brakke. The surface evolver and the stability of liquid surfaces. Philos. Trans. Roy. Soc. London Ser. A, 354(1715):2143-2157, 1996.
[Bra23] K. Brakke. Triply Periodic Minimal Surfaces, 2023. http://facstaff.susqu.edu/brakke/ evolver/examples/periodic/periodic.html.
[Bru18] N. D. Brubaker. A continuation method for computing constant mean curvature surfaces with boundary. SIAM J. Sci. Comput., 40(4):A2568-A2583, 2018.
[BT84] M. J. Beeson and A. J. Tromba. The cusp catastrophe of Thom in the bifurcation of minimal surfaces. Manuscripta Math., 46(1-3):273-308, 1984.
[CK97] T. K. Callahan and E. Knobloch. Symmetry-breaking bifurcations on cubic lattices. Nonlinearity, 10:1179-1216, 1997.
[CR71] M. G. Crandall and P. H. Rabinowitz. Bifurcation from simple eigenvalues. J. Functional Analysis, 8:321-340, 1971.
$\left[\mathrm{DCF}^{+} 97\right] \quad$ E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang. AUTO: Continuation and bifurcation software for ordinary differential equations (with HomCont). http://indy.cs.concordia.ca/auto/, 1997.
[DDG21] K. Deckelnick, M. Doemeland, and H-C. Grunau. Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour. Calc. Var. Partial Differential Equations, 60:32, 2021.
[DE13] G. Dziuk and Ch. M. Elliott. Finite element methods for surface PDEs. Acta Numer., 22:289396, 2013.
[DEK $\left.{ }^{+} 97\right] \quad$ H.-G. Döbereiner, E. Evans, M. Kraus, U. Seifert, and M. Wortis. Mapping vesicle shapes into phase diagrams: A comparison of experiment and theory. PRE, 55(4):4485-4474, 1997.
[Des04] M. Deserno. Notes on differential geometry, https://www.cmu.edu/biolphys/deserno/pdf/ diff_geom.pdf, 2004.
[DLW06] Qiang Du, Chun Liu, and Xiaoqiang Wang. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys., 212(2):757-777, 2006.
[Doe17] M. Doemeland. Axialsymmetrische Minimierer des Helfrich-Funktionals, Master Thesis, available at http://www-ian.math.uni-magdeburg.de/home/grunau/papers/Doemeland_ Master.pdf, 2017.
[DS13] H. Dankowicz and F. Schilder. Recipes for continuation, volume 11 of Comp. Sc. छ Eng. SIAM, Philadelphia, PA, 2013.
$\left[\mathrm{dWDR}^{+} 23\right]$ H. de Witt, T. Dohnal, J.D.M. Rademacher, H. Uecker, and D. Wetzel. pde2path - Quickstart guide and reference card, 2023. Available at Uec23].
[ES98] J. Escher and G. Simonett. The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc., 126(9):2789-2796, 1998.
[ES13] C. M. Elliott and B. Stinner. Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys., 13(2):325-360, 2013.
[ES18] Norio Ejiri and Toshihiro Shoda. The Morse index of a triply periodic minimal surface. Differential Geometry and its Applications, 58:177-201, 2018.
[FS21] S. A. Funken and A. Schmidt. A coarsening algorithm on adaptive red-green-blue refined meshes. Numer. Algorithms, 87(3):1147-1176, 2021.
[FVKG22] B. Foster, N. Verschueren, E. Knobloch, and L. Gordillo. Pressure-driven wrinkling of soft inner-lined tubes. New J. Phys., 24(January):Paper No. 013026, 15, 2022.
[FW14] S. Fujimori and M. Weber. A contruction method for triply periodic minimal surfaces. In Proceedings of the 16th OCU, pages 79-90. OCAMI Studies, 2014.
[GBMK01] P. J. F. Gandy, S. Bardhan, A. L. Mackay, and J. Klinowski. Nodal surface approximations to the P,G,D and I-WP triply periodic minimal surfaces. Chemical Physics Letters, 336:187-195, 2001.
[GK00] P. J. F. Gandy and J. Klinowski. Exact computation of the triply periodic Schwarz P minimal surface. Chemical Physics Letters, 322:579-586, 2000.
[Gru12] H.-C. Grunau. The asymptotic shape of a boundary layer of symmetric Willmore surfaces of revolution. In Inequalities and Applications '10. Dedicated to the memory of Wolfgang Walter. Selected papers of the 2nd conference on inequalities and applications, Hajdúszoboszló, Hungary, September 19-25, 2010, pages 19-29. Basel: Birkhäuser, 2012.
[GS02] M. Golubitsky and I. Stewart. The symmetry perspective. Birkhäuser, Basel, 2002.
[Har13] D. Hartley. Motion by volume preserving mean curvature flow near cylinders. Comm. Anal. Geom., 21(5):873-889, 2013.
[Hel73] W. Helfrich. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung, 28:693, 1973.
[Hof90] D. A. Hoffman. Some basic facts, old and new, about triply periodic embedded minimal surfaces. J. Physique, 51:197-208, 1990. Intern. Workshop on Geometry and Interfaces (Aussois, 1990).
[Hoy06] R.B. Hoyle. Pattern formation. Cambridge University Press., 2006.
[Jac13] A. Jacobson. Algorithms and interfaces for real- time deformation of 2D and 3D shapes, https://doi.org/10.3929/ethz-a-00979066, 2013.
[Jac22] A. Jacobson. gptoolbox, https://github.com/alecjacobson/gptoolbox, 2022.
[JQJZC98] Yan Jie, Liu Quanhui, Liu Jixing, and Ou-Yang Zhong-Can. Numerical observation of nonaxisymmetric vesicles in fluid membranes. Phys. Rev. E, 58:4:4730-4736, 1998.
[Kie12] H. Kielhöfer. Bifurcation theory. Springer, New York, second edition, 2012. An introduction with applications to partial differential equations.
$\left[K_{I P M}{ }^{+} 20\right]$ V. Kralj-Iglc, G. Pocsfalvi, L. Mesarec, V. Šuštar, H. Hägerstrand, and A. Iglic. Minimizing isotropic and deviatoric membrane energy-an unifying formation mechanism of different cellular membrane nanovesicle types. PLOS ONE, 2020.
[KN06] Y. Kohsaka and T. Nagasawa. On the existence of solutions of the Helfrich flow and its center manifold near spheres. Differential Integral Equations, 19(2):121-142, 2006.
[KPP15] M. Koiso, B. Palmer, and P. Piccione. Bifurcation and symmetry breaking of nodoids with fixed boundary. Adv. Calc. Var., 8(4):337-370, 2015.
[KPP17] M. Koiso, B. Palmer, and P. Piccione. Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, 69(4):1519-1554, 2017.
[KPS18] M. Koiso, P. Piccione, and T. Shoda. On bifurcation and local rigidity of triply periodic minimal surfaces in \mathbb{R}^{3}. Ann. Inst. Fourier (Grenoble), 68(6):2743-2778, 2018.
[Lip14] R. Lipowsky. Coupling of bending and stretching deformations in vesicle membranes. Advances in colloid and interface science, 208:14-24, 2014.
[Lóp13] R. López. Constant Mean Curvature Surfaces with Boundary. Springer, 2013.
[LWM08] G. Lim, M. Wortis, and R. Mukhopadhyay. Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane. In Soft Matter: Lipid Bilayers and Red Blood Cells, Volume 4, pages 83-254, 2008.
[Man11] C. Mantegazza. Lecture notes on mean curvature flow. Birkhäuser/Springer Basel, 2011.
[MDHV13] I. M Mladenov, P. A. Djondjorov, M. T. Hadzhilarova, and V. M. .Vassilev. Equilibrium configurations of lipid bilayer membranes and carbon nanostructures. Comm. Theor. Phys., 59(2):213-228, 2013.
[MDSB03] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and mathematics III, Math. Vis., pages 35-57. Springer, Berlin, 2003.
[Mla02] I. M. Mladenov. Delaunay surfaces revisited. C. R. Acad. Bulgare Sci., 55(5):19-24, 2002.
[MMCRH13] M. Mercker, A. Marciniak-Czochra, T. Richter, and D. Hartmann. Modeling and computing of deformation dynamics of inhomogeneous biological surfaces. SIAM J. Appl. Math., 73(5):17681792, 2013.
[MP02] R. Mazzeo and Fr. Pacard. Bifurcating nodoids. In Topology and geometry: commemorating SISTAG, volume 314 of Contemp. Math., pages 169-186. AMS, Providence, RI, 2002.
[MU23] A. Meiners and H. Uecker. Supplementary information for Differential geometric bifurcation problems in pde2path, www.staff.uni-oldenburg.de/hannes.uecker/pde2path/tuts, 2023.
[Nit76] J. C. C. Nitsche. Non-uniqueness for Plateau's problem. A bifurcation process. Ann. Acad. Sci. Fenn. Ser. A I Math., 2, 1976.
[Nit91] J. C. C. Nitsche. Periodic surfaces which are extremal for energy functionals containing curvature functions. IMA Preprint Series \#785, 1991.
[Nit93] J. C. C. Nitsche. Boundary value problems for variational integrals involving surface curvatures. Quart. Appl. Math., 51(2):363-387, 1993.
[NT03] T. Nagasawa and I. Takagi. Bifurcating critical points of bending energy under constraints related to the shape of red blood cells. Calc. Var. PDEs, 16(1):63-111, 2003.
[Oss14] R. Osserman. A Survey of Minimal Surfaces. Dover reprint of the 1968 edition, 2014.
[OYT14] Z. C. Ou-Yang and Z. C. Tu. Overview of the study of complex shapes of fluid membranes, the Helfrich model and new applications. In Proceedings of the conference in honour of the 90th birthday of Freeman Dyson, pages 277-287. World Sci. Publ., Hackensack, NJ, 2014.
[Pet83] Mark A. Peterson. An instability of the red blood cell shape. Journal of Applied Physics, 57:1739-1742, 1983.
[Pla73] J. Plateau. Experimental and theoretical statics of liquids subject to molecular forces only, translated by K. Brakke, facstaff.susqu.edu/brakke/plateaubook/plateaubook.html, 1873.
[PP22] B. Palmer and Á. Pámpano. The Euler-Helfrich functional. Calc. Var. Partial Differential Equations, 61(3):Paper No. 79, 28, 2022.
[PS04] P. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46(2):329-345, 2004.
[Ros92] M. Ross. Schwarz' P and D surfaces are stable. Differential Geom. Appl., 2(2):179-195, 1992.
[Ros05] W. Rossman. The first bifurcation point for Delaunay nodoids. Experiment. Math., 14(3):331342, 2005.
[Ros08] A. Ros. Stability of minimal and constant mean curvature surfaces with free boundary. Matematica Contemporanea, 35:221-240, 2008.
[RU19] J.D.M. Rademacher and H. Uecker. The OOPDE setting of pde2path - a tutorial via some Allen-Cahn models, 2019. Available at Uec23.
[Ruc81] H. Ruchert. A uniqueness result for Enneper's minimal surface. Indiana Univ. Math. J., 30(3):427-431, 1981.
[SAR97] L. Slobozhanin, J. Alexander, and A. Resnick. Bifurcation of the equilibrium states of a weightless liquid bridge. Phys. Fluids, 9(7):1893-1905, 1997.
[SBL90] U. Seifert, K. Berndl, and R. Lipowsky. Shape transformations of vesicles: Phase diagram. PRA, 44:1182-1202, 1990.
[Sch22] A. Schmidt. ameshcoars, https://github.com/aschmidtuulm/ameshcoars, 2022.
[Sei97] U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics, 46(1):13-137, 1997.
[Sei99] U. Seifert. Giant vesicles: A theoretical perspective. In P. L. Luisi and P. Walde, editors, Perspectives in Supramolecular Chemistry: Giant Vesicle, volume 6, pages 71-91. Wiley, 1999.
[She02] J. R. Shewchuk. What is a good linear element? Interpolation, conditioning, and quality measures. In Eleventh International Meshing Roundtable (Ithaca, New York), pages 115-126, 2002.
[SL95] U. Seifert and R. Lipowsky. Morphology of Vesicles. In R.Lipowsky and E. Sackmann, editors, Handbook of Biological Physics, volume 1, pages 403-463. Elsevier, 1995.
[STFH06] G. E. Schröder-Turk, A. Fogden, and S. T. Hyde. Bicontinuous geometries and molecular selfassembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces. The European Physical Journal B - Condensed Matter and Complex Systems, 54(4):509-524, 2006.
[SZ89] S. Svetina and B. Zeks. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur.Biophys J,, 17(2):101-111, 1989.
[Tap16] K. Tapp. Differential geometry of curves and surfaces. Springer, [Cham], 2016.
[TN20] Naoki Tamemoto and Hiroshi Noguch. Pattern formation in reaction-diffusion system on membrane with mechanochemical feedback. Scientific reports, 10(19582), 2020.
[Uec21] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia, PA, 2021.
[Uec23] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2023.
[UY17] Masaaki Umehara and Kotaro Yamada. Differential geometry of curves and surfaces. World Scientific, 2017. Translated from the second (2015) Japanese edition by W.Rossman.
[VDM08] V. M. Vassilev, P. A. Djondjorov, and I. M. Mladenov. Cylindrical equilibrium shapes of fluid membranes. J. Phys. A, 41(43):435201, 16, 2008.
[Vel20] R. Veltz. BifurcationKit.jl, https://hal.archives-ouvertes.fr/hal-02902346, 2020.
[WBD97] A. De Wit, P. Borckmans, and G. Dewel. Twist grain boundaries in 3D lamellar Turing structures. Proc. Nat. Acad. Sci., 94:12765-12768, 1997.
[WDS96] W. Wintz, H.-G. Döbereiner, and U. Seifert. Starfish vesicles. EPL, 33(5):403-408, 1996.
[Xu04] Guoliang Xu. Convergent discrete Laplace-Beltrami operators over triangular surfaces. Computer Aided Geometric Design, 21:767-784, 2004.
[XX09] Zhiqiang Xu and Guoliang Xu. Discrete schemes for Gaussian curvature and their convergence. Comput. Math. Appl., 57(7):1187-1195, 2009.

[^0]: ${ }^{1}$ On a manifold X with boundary ∂X we have $\int_{X} K \mathrm{~d} S+\int_{\partial X} \kappa_{g} \mathrm{~d} s=2 \pi \chi(X)$ where $\chi(X)$ is the Euler characteristic of X, and κ_{g} is the geodesic curvature of ∂X. This will play an important role for the biomembranes in $\$ 4$. The discrete formula 28) is used at interior points of X, while at boundary points X_{i} it is modified to $K\left(X_{i}\right)-\pi$.

[^1]: ${ }^{2}$ Euler's polyhedron formula yields that triangulations with all nodes of valence 6 do not exist, see, e.g., BF67.

[^2]: ${ }^{3}$ six values, where count=step-counter, type $\in\{0,1,2,3\}$ (regular point, BP, FP, Hopf point), ineg=number of unstable eigenvalues (if p.sw.spcalc >0), lam=value of primary continuation parameter, and err and L2 are not meaningful in the Xcont setting, see bradat.m for details)

[^3]: ${ }^{4}$ This turned out to be convenient, i.e.: When plotting from file we very often want to change the look of plots "globally", i.e., without first loading the point and then adapting settings.

[^4]: ${ }^{5}$ Fig. $4(\mathrm{a}, \mathrm{b})$ shows essentially verbatim output from plotbra in cmds $2 . \mathrm{m}$, where the dots and numbers indicate the continuation step, subsequently used also in the sample plots as in (c). This also holds for all subsequent plots, and the only "manual adjustments" are the occasional repositioning of the numbers at the arrows by drag and drop, as this is not automatically optimized.
 ${ }^{6}$ For p.sw.rlong=0 (RGB refinement with possibly longer cascades to avoid hanging nodes) σ is only a lower bound.

[^5]: ${ }^{7}$ We also put $\|H(X)-H(V)\|_{\infty} /|H(V)|$ and $z_{\max }(V)-z_{\max }$ on the branch, where $z_{\max }(V)$ is the height of $C(V)$ and $z_{\text {max }}$ the numerical height; these can then also be plotted via plotbra, and/or chosen as error indicators, but the L^{2} error seems most natural. Also note that $e(X)$ is normalized by $|H(V)|$ (which decays in V), but not by A (which increases with V).

[^6]: ${ }^{8}$ In more detail, degcoarsenX can also be called as $\mathrm{p}=$ degcoarsenX (p,sigc,iter), where iter (default 5) gives the number of internal iterations, or as $\mathrm{p}=$ degcoarsen X (p, sigc, iter, keepbd) where keepbd=1 (default 0) means that boundary triangles are kept, which is mainly needed for periodic BCs, see $\$ 3.4$
 ${ }^{9}$ As already said in Rem. 2.6 b), due to the analogy between the truss forces and surface tension (constant in minimal surfaces) moveX works particularly well for minimal X.
 ${ }^{10}$ see also Remark 3.9 for the Enneper-Weierstrass representation

[^7]: ${ }^{11}$ See, e.g., Uec21, Example 1.30] and the references therein for comments on cusps (and other catastrophes).

[^8]: ${ }^{12} \mathrm{~N}$ up to BP1, Nb , and N 1 are the only stable (in the sense of VPMCF) branches in Fig. 9 , and hence physically most relevant; the further branches we compute are all unstable, and hence of rather mathematical than physical interest.

[^9]: ${ }^{13} \mathrm{BP} 5$ is an example of a BP qualitatively predicted in [KPP17, Prop.3.9] at large t_{0}.

[^10]: ${ }^{14}$ This also holds for further BPs and folds, but we refrain from plotting these in the already cluttered BD in Fig. 9.
 ${ }^{15}$ All of the branches from Fig. 11 are unstable, i.e., Footnote 12 applies more strongly.

[^11]: ${ }^{16}$ See also $\$ 3.5 .2$ where we discuss the opposite effect in more detail: There, an analytically double (due to obvious symmetry) zero eigenvalue is split up, with a larger split there than between $\mu_{1,2}$ and $\mu_{3,4}$ here.

[^12]: ${ }^{17}$ This trick can also be summarized as follows: We do not localize each of the close-together BPs near BP2, which would require very small (arclength) stepsizes ds, and possibly many bisections. Instead, we just approximately localize some BP* near BP2, subsequently compute the (approximate) kernel at BP* using qswibra, and then select a kernel vector and try branch-switching in that direction. This "usually" works (in particular it works here), and is in particular useful if many BPs (including BPs of higher multiplicity) are close together. See also $\$ 3.5 .2$ for application of this trick in a different setting, and, e.g., [Uec21, §10.1] for further discussion.

[^13]: ${ }^{18}$ The approximation (57), and higher order corrections, also arise from solving the amplitude equations for a Turing bifurcation on a simple cubic (SC) lattice, where hence the Schwarz P surface, or, depending on volume fractions a CMC companion of Schwarz P, occurs as the phase separator between "hot" and "cold" phases. See, e.g., CK97] and Uec21, §8.1,8.2], and similarly WBD97 for the occurrence of Scherk's surface in 3D Turing patterns.

[^14]: ${ }^{19}$ For $\vartheta=\pi / 2$ we obtain the Schwarz D family, and for $\vartheta \approx 0.9073$ Schoen's gyroid, as two further TPMS. Moreover, since these have the same Jacobians as Schwarz P, all bifurcation results from Schwarz P carry over to Schwarz D and the gyroid, but these appear to be much more difficult to treat in our numerical setting.

[^15]: ${ }^{20}$ Additionally, there is a simple negative eigenvalue $\mu_{0} \approx-0.7$, and the next two eigenvalues are $\mu_{3,4} \approx 0.5$, i.e., $\mu_{1,2}$ are well separated from the rest of the spectrum.

[^16]: ${ }^{21}$ or, more down to earth, lipid bilayer membrane vesicles which develop upon injection of lipids into water, and which for instance can also organize into tubes; see also [SL95, §8] for a discussion of additional structures (networks of spectrin tetramers) on the membrane of RBCs

[^17]: ${ }^{22}$ Additionally, the demo contains convtest.m for convergence tests, see Fig. 3 .
 ${ }^{23}$ In detail, $X(0)$ here is obtained as $X(0)=S_{r_{0}}+0.4\left(\sin (\vartheta)\left(|x|-r_{0}\right)+\xi\right) N$, where ϑ is the azimuth, and $\xi=$ $0.2($ rand -0.5$)$ with rand $\in[0,1]$ a Matlab random variable on each node.
 ${ }^{24}$ This "volume-accuracy" of geomflow for VPMCF depends weakly on the Euler-stepsize dt, and more strongly on the fineness of the discretization of X. This can be checked by changing sw in spheres/cmds $1 . \mathrm{m}$ for initializing X.

[^18]: ${ }^{25}$ In cmds1.m we also monitor the "positions" $\left(x_{0}, y_{0}\right)$ of X defined as $x_{0}=\int_{X} X_{1} \mathrm{~d} S, y_{0}=\int_{X} X_{2} \mathrm{~d} S$. These behave as expected, namely: very small drifts for continuation without PCs, but no drifts for continuation with the PCs 84 .

[^19]: ${ }^{26}$ For Neumann BCs (68), hemispheres are highly degenerate in the following sense: Setting up (87) over a single circle at wlog at $X_{1}=1$, and wlog with $\left(\alpha, \lambda_{1}, c_{0}\right)=(1,1 / 4,1 / 2)$ the single unit hemisphere is again an exact solution, but we are not able to continue this in λ_{1} or c_{0}, i.e., it seems isolated. This is different for BCs 69), see $\S ? ?$.

[^20]: ${ }^{27}$ Such folds were already found in [Doe17, §6.3] for $c_{0}=0$ in the 1D axisymmetric setting.

