Fold and branch point continuation in a Schnakenberg system and details of branch plotting – a pde2path tutorial

Hannes de Witt

1 Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.de.witt@uni-oldenburg.de
April 4, 2017

Abstract

We describe the OOPDE settings in pde2path for a Schnakenberg system with fold and branch point continuation in 1D and 2D. Additionally details of the pde2path function plotbra, which plots and labels branches, are discussed.

1 Introduction

The aim of this tutorial is to extend [RU17] to the system case. As a model system we consider the modified Schnakenberg system

\[0 = D\Delta U + F(u), \quad F(u) = \begin{pmatrix} -u + u^2v \\ \lambda - u^2v \end{pmatrix} + \sigma \begin{pmatrix} u - \frac{1}{v} \\ \frac{1}{v} \end{pmatrix} \] (1)

with \(U = (u, v)(x) \in \mathbb{R}^2, \ x \in \Omega \subset \mathbb{R}^n, \ n = 1, 2, \ \Omega \) an interval or a rectangle and diffusion matrix \(D = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \). Excepting \[\text{§}1\] we stick to \(d = 60 \) where analytically a bifurcation of a periodic solution at \(\lambda_c = \sqrt{60} \sqrt{3 - \sqrt{8}} \approx 3.21 \) with critical wave number \(k_c = \sqrt{2} \sqrt{\sqrt{2} - 1} \) occurs. Details on the theory of this system can be found in [UW14]. In general the continuation is more complicated in (1) than in the Allen-Cahn models discussed in [RU17], as there are many more solution branches, also see [UWR14, §4.2] for further comments. However, in this tutorial we avoid these problems by considering relatively simple domains and branches.

pde2path uses a problem structure, which we call \(p \), to store the data. In particular the unknown function \(U = (u, v) = (u_1, u_2) \) is stored in \(p.u \) along with the parameters \(\lambda, \sigma \) and \(d \). The parameters must always be placed as the last entries of \(p.u \). In detail, \(p.u \) will be the vector \((u_1, u_2, \lambda, \sigma, d) \) in this tutorial. As pde2path stores as many solutions as desired on hard disk it is suggested to work with \(p \) as the only problem structure and load old solutions with loadp if needed, even though one could define arbitrary many problem structure variables. See also [dWDR+17] for a data structure overview and quick references.

The tutorial is organized as follows. In \(\text{§2} \) we explain the basic implementation of the Schnakenberg model in pde2path and explain the general settings. In \(\text{§3} \) we will use a basic set of commands to numerically compute the trivial and the periodic branch bifurcating at \(\lambda_c \) along with a first fold continuation. \(\text{§4} \) works as an exercise and gives a more detailed bifurcation diagram with some hints to recreate this. \(\text{§5} \) takes a look at the model in a two dimensional domain and shows fold continuation there. In \(\text{§6} \) we will see the continuation of a branch point instead of a fold point in 1D. In \(\text{§7} \) we will give some details of the branch plotting function plotbra and show several example plots.

In general the output generated by plotbra profits from some post processing with the standard Matlab tools, but as these shall not be discussed here, we restrict it to a minimum.

The files corresponding to this tutorial are located in the demo folder schnakfold. Table \[\text{I}\] gives an overview. As this tutorial does not focus on solution plots, we outsourced these to the file cmds_sp.m. For detailed informations about solution plots see [Wet17].
Table 1: File structure of the demo schnakfold.

<table>
<thead>
<tr>
<th>file</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sG.m</td>
<td>residual of the pde</td>
</tr>
<tr>
<td>sGjac.m</td>
<td>Jacobian</td>
</tr>
<tr>
<td>spjac.m</td>
<td>Jacobian for spectral continuation</td>
</tr>
<tr>
<td>oosetfemops.m</td>
<td>generates FEM/mass-matrices</td>
</tr>
<tr>
<td>schnakinit.m</td>
<td>initialization of the problem</td>
</tr>
<tr>
<td>schnakbra_f1D.m</td>
<td>plotting function, used in §5 only</td>
</tr>
<tr>
<td>cmds_f1D.m</td>
<td>fold continuation in 1D</td>
</tr>
<tr>
<td>cmds_f2D.m</td>
<td>fold continuation in 2D</td>
</tr>
<tr>
<td>cmds_b1D.m</td>
<td>branch continuation in 1D</td>
</tr>
<tr>
<td>cmds_ex.m</td>
<td>solution for the 1D exercise in §4</td>
</tr>
<tr>
<td>cmds_plot.m</td>
<td>several plot commands</td>
</tr>
<tr>
<td>cmds_sp.m</td>
<td>solution plots</td>
</tr>
</tbody>
</table>

2 Basic setup

In the OOPDE setting we use here, see [Prü16] for detailed background and [RU17] for an introduction, the basic setup of each pde2path problem consists of at least three parts. The oosetfemops.m function to compute the needed FEM matrices, the sG and sGjac functions for the residual of the PDE respectively the (analytical) Jacobian, and an init command file or function to set some basic parameters. We now discuss these three parts in detail, e.g. give the code and some remarks.

Let us take a look at the implementation of the model functions first. Listing 1 shows the implementation of the residual. We use some matrices p.mat.K and p.mat.M here which are the FEM and mass matrices and will be defined in oosetfemops.m, see Listing 3. While it is convenient to store the full mass matrix in p.mat.M it is sufficient to store the diffusion matrix for a scalar problem in p.mat.K only and assemble the full matrix in sG.m respectively sGjac.m. For the implementation of arbitrary diffusion coefficients, like d here, it even is necessary.

```matlab
function r = sG(p,u)
    u1 = u(1:p.np); % solution component 1
    u2 = u(p.np+1:2*p.np); % solution component 2
    par = u(p.nu+1:end); % parameters
    f1 = -u1+u1.^2.*u2+par(2)*(u1-u2.^(-1)).^2; % F_1(u), see eqn (1) in tut
    f2 = par(1)-u1.^2.*u2-par(2)*(u1-u2.^(-1)).^2; % F_2(u)
    f = [f1;f2];
    K = kron([[1,0];[0,par(3)]],p.mat.K); % assemble full FEM matrix
    r = K*[u1;u2]-p.mat.M*f; % the residual
end
```

Listing 1: sG.m; calculation of the residual in FEM-discretization. $p.u$ is the vector $(u_1, u_2, \lambda, \sigma, d)$, i.e. par= (λ, σ, d).

The Jacobian is created in the same way, see Listing 2.

```matlab
function Gu = sGjac(p,u)
    par = u(p.nu+1:end); % parameters
    n = p.np;
    [f1u,f1v,f2u,f2v] = njac(p,u,par); % the Jacobian, see below
    Fu = [spdiags(f1u,0,n),spdiags(f1v,0,n)];
    [spdiags(f2u,0,n),spdiags(f2v,0,n)]];
    Gu = kron([[1,0];[0,par(3)]],p.mat.K)-p.mat.M*Fu; % assemble the Jacobian
end
function [f1u,f1v,f2u,f2v] = njac(p,u,par) % Jacobian for Schnakenberg
    u1 = u(1:p.np); % solution component 1
    u2 = u(p.np+1:2*p.np); % solution component 2
end
```

2
f1u = -1 + 2 * u1 .* u2 + 2 * par(2) * (u1 - u2).^(-1);
f1v = u1.^2 + 2 * par(2) * u2.^(-2) .* (u1 - u2).^(-1);
f2u = -2 * u1 .* u2 - 2 * par(2) * (u1 - u2).^(-1);
f2v = -u1.^2 - 2 * par(2) * u2.^(-2) .* (u1 - u2).^(-1);
end

Listing 2: sGjac.m; calculation of the Jacobian in FEM-discretization.

When coding sG.m and sGjac.m it is advised to separate the components of the unknown function and the parameters as done here. Except p.mat.K and p.mat.M, the model is completely implemented now and these two are initialized by oosetfemops.m, see Listing 3.

function p = oosetfemops(p)
[p.mat.K,M] = p.pdeo.fem.assema(p.pdeo.grid,1,1,1); % FEM/mass matrices
% mass matrix adaption for the problem, as it is a system
p.mat.M = kron([1 0; 0 1], M);
end
Listing 3: oosetfemops.m; as here we use homogeneous Neumann BC we only need to call assema and all boundary terms are zero. The stiffness matrix K and the mass matrix M are then saved in p.mat.K and p.mat.M.

If one hard codes the diffusion parameter, e.g. implements it with an explicit value, one can also initialize the whole diffusion matrix in oosetfemops.m.

With these functions the Schnakenberg system is fully implemented, and to start a continuation only three things miss: the domain, a set of parameters (λ_0, σ_0, d_0) where the continuation shall start and a rough guess for a solution at this setting. It is convenient to put some initializations into an init function. Listing 4 gives basic settings for this example.

function p = schnakinit(p, dom, mp, par)

%% setting standard parameters
p = stanparam(p); % infuses p with standard parameter settings
screenlayout(p); % open, clear and arrange the common figures

%% special parameters related to this model
% basics
p.nc.neq = 2; % number of equations in the model
p.sw.sfem = -1; % type of numerical calculation, here OOPDE
p.sw.spjac = 1; % use analytical Jacobian for spectral point cont (fold cont)
% names for cmp of stanbra
p.plot.audict = {'\lambda', '\sigma', 'd', '{|| u_1 ||_{\infty}}', '\text{min}(|u_1|)'};
% description of the model
p.fuha.sG = @sG; % the model itself
p.fuha.sGjac = @sGjac; % the Jacobian of the model
p.fuha.spjac = @spjac; % Jacobian for spectral point cont (fold cont)

%% domain and mesh
kc = sqrt(sqrt(2) - 1); % wavenumber of the critical mode
switch length(dom)
case 1
lx = dom(1) * 2 * pi / kc; % set domain length according to critical wavenumber
p.pdeo = stanpdeo1D(lx, 2*lx/mp); % mesh [-lx, lx], max mesh pt 2*lx/r
break
case 2
nx = dom(1) * mp;
y = dom(2) * mp;
ly = dom(1) * 2 * pi / kc; % set domain x-length
p.pdeo = stanpdeo2D(lx, ly, nx, ny); % mesh [-lx, lx]x[-ly, ly] mesh pt nx* ny
end
p.np = p.pdeo.grid.nPoints; % number of meshpoints
%% bifurcation parameter, continuation basics and first guess for solution
p.nc.ilam=1; % primary bifurcation parameter located at p.u(p.np+p.nc.ilam)
p.sol.xi=1/p.nu; % weight in arclength-continuation
p.sol.dse=-0.01; % starting stepsize
p.nc.dsmax=0.01; % maximal stepsize
p.nc.dsmim=0; % minimal stepsize
% construction the trivial solution
lam=par(1); % setting parameter lambda
u=lam*ones(p.np,1); % initial guess for u resp. u_1
v=(1/lam)*ones(p.np,1); % initial guess for v resp. u_2
p.u=[u;v;par'] ; % initial solution guess with parameters

end

Listing 4: schnakinit.m; initialization file. Sets basic informations for the mesh/domain, the solution, some parameters, and makes the model information stored in sG.m, sGjac.m and oosetfemops.m accessible to pde2path. The initial solution, lines 42ff, is explicit known here, but a rough guess is sufficient, see \cite{RU17} §3.1.3] for an example.

There are many additional options, and when working with a problem one may have to change some of these, for example the step size ds. See \cite{dWDR+17} for details. It is generally useful to give the init function some inputs for domain, number of mesh points, value of parameters and so on to be able to use the file for several investigations of the problem. Here we restricted the inputs to a domain parameter dom, the number of mesh points mp and the values of the parameter organized in a vector \([\lambda, \sigma, d]\). The switch distinguishes 1D and 2D by the type of the domain input. 2D will be discussed later, for now only case one is relevant.

The function spjac.m, set in the init file at line 15 is the analytical Jacobian for spectral continuation and is used for fold and branch point continuation. It is not necessary to define it, but, as it has to be calculated numerically otherwise, speeds up fold continuation a lot. The corresponding spjac.m file is shown in Listing 5. To check the calculations in sGjac.m and spjac.m, call jaccheck(p) and spjaccheck(p) which compares the implemented derivatives of sG and sGjac with a finite difference approximation. While jaccheck can be used directly after initializing the problem, spjaccheck has to be used after the call of spcontini, which initialize the fold respectively branch point continuation. See \cite{[3] for details.

```
function Gvph=spjac(p,u)
  u1=u(1:p.np); % first component
  u2=u(p.np+1:2*p.np); % second component
  par=u(2*p.nu+1:end); % parameters
  s=par(2); % sigma
  n=p.np; % number of function points per component
  ov=ones(n,1); % dummy for the 1 function
  % second order derivations of the model
  fluu=2*u2+2*s*ov; % implementation of the derivations as sparse matrices
  f1uv=-4*s*(u1-u2.^(-1)).*u2.^(3)+2*s*u2.^(-1); % implementation of the derivations as sparse matrices
  f2uu=-f1uu;
  f2uv=-f1uv;
  f2vv=-f1vv;
  f1uu=2*u1+2*s*u2.^(-2);
  f1uv=-4*s*(u1-u2.^(-1)).*u2.^(3)+2*s*u2.^(-2);
  f2uu=-f1uu;
  f2uv=-f1uv;
  f2vv=-f1vv;
end
```
3 Basic fold continuation

Now that we have the basic setting we can start the continuation. One can do this in the command window, but most of the time it is more useful to write a script file, for instance called `cmds.m`. Before starting with a new problem one wants to clear the workspace and close all plots. Instead of using the Matlab function `clear all` to clear the workspace we use `keep pphome`, as this will clear all entries besides `pphome` which is needed for some secondary functions of `pde2path`, in particular the help system. After clearing the workspace one initializes the problem variable `p` and fills it with the standard settings. Listing 6 lists the commands for a fold continuation on the periodic branch. It is highly recommended to run the script cell by cell.

```matlab
%% 1 - creating a clear working space
close all; keep pphome;
%% 2 - initialising the problem
p=[];
par=[sqrt(60)*sqrt(3-sqrt(8))+5e-2, -0.6, 60]; % [lambda, sigma, d]
p=schakinit(p,4,300,par);
p.plot.pmod=10; % shows each 10th solution in fig 2 only
p.file.smod=10; % stores each 10th solution only
p=setfn(p,'tr_f1D');

%% 3 - continuation of the trivial branch
p=cont(p,20); % continuation for a maximum of 20 steps
%% 4 - switch to periodic branch and continuation with fold detection
p=swibra('tr_f1D','bpt1','per_f1D',1e-2); % switch to new branch with ds=0.01
p.sw.foldcheck=1; % enables detection of folds
p.sw.bifcheck=0; % disable detection of bif
p.cont(p,150); % continuation for a maximum of 150 steps
%% 5 - fold continuation in sigma
p=spcontini('per_f1D','fpt1','fold_f1D'); % switch to fold cont in par. sigma
p.sol.ds=-1e-3; % continue backward in sigma
clf(2);

%% 6 - continuation at new fold point in lam again
p=spcontexit('fold_f1D','pt50','per2a_f1D'); % exit fold continuation
p.sol.ds=1e-2; % continue forward in lambda
clf(2);
p.plot.bpcmp=0; % plot L2-norm over lambda in fig 2
p=cont(p,20); % cont for a maximum of 20 steps
p=spcontexit('fold_f1D','pt50','per2b_f1D'); % exit fold continuation
p.sol.ds=-1e-2; % continue forward in lambda
p.nc.lammin=3.2084; % minimal lambda - approx. bif point from trivial branch
p.plot.bpcmp=0; % plot L2-norm over lambda in fig 2
p=cont(p,120); % cont for a maximum of 120 steps
%% 7 - plot BD
figure(3);
clf;
plotbra('tr_f1D'); % trivial branch
plotbra('per_f1D'); % periodic branch for sigma=-0.6
plotbra('per2a_f1D','cl','r'); % periodic branch for sigma=-0.7617
plotbra('per2b_f1D','cl','r'); % periodic branch for sigma=-0.7617
%% 8 - plot lambda over sigma for fold
```
Listing 6: \texttt{cmds_f1D.m}; we continue the trivial branch, switch to a periodic one and make a fold continuation in the parameter σ there. The results are plotted.

Cells one and two initialize the problem. There should be three figures after the run of these. \texttt{Matlab-figure 1} will show the current solution plot, \texttt{Matlab-figure 2} will show a basic bifurcation diagram, and \texttt{Matlab-figure 6} will show special plots like the tangent vector at bifurcation points if one switches the branch. Figure 1 and 2 should fill with life through the run of cell three which calculates a small part of the trivial branch. One should also see some output in the command window then. \texttt{Matlab-figure 6} then fills by the use of \texttt{swibra} in cell four. To see what the further cells do, see the commented script in Listing 6. At cells seven and eight one should get the graphs shown in Figure 1a,b.

(a) Bifurcation diagram

(b) plot λ over σ for the fold position

(c) solution at folds in the domain $[-8\pi/k_c, 8\pi/k_c]$

Figure 1: (a),(b) \texttt{Matlab} output after the run of \texttt{cmds_f1D.m}. (c) Solution plots at the fold of the red and black branch of periodic solutions. For details on the creation of the solution plots see [Wet17].

You may now modify the script on your own. But, as already mentioned in the introduction, the system (1) has many solutions even in 1D, so in particular a change of the domain will change the continuation results a lot, as additional bifurcation points will rise, and some might not be found with \texttt{cont} anymore, if to many bifurcation points are close to each other. This implies, that a change from 1D to 2D is – even though one only has to give another domain parameter – a delicate problem for this system. For this reason it is cumbersome to transfer the above example in 2D. That is why we continue with an 1D exercise, and will give another example for a 2D fold continuation afterwards.

4 Exercise 1D

Starting from the \texttt{cmds file} in the previous section, it is a good exercise to recreate the bifurcation diagram shown in Figure 2 and the fold continuation shown in Figure 3. To do so it is advised to copy the files for the basic fold continuation in a new directory and modify them as necessary. The only numerical constants one wants to adjust for this plots are \texttt{p.nc.lammin} and \texttt{p.nc.lammax}. No changes in domain size or mesh points are needed. Also note, that the classical way to find the magenta branch would be to switch branch via \texttt{swibra} from the end of the snaking branch and continue in both directions, but this tends to fail. There are other ways. As stated in the caption, Figure 3 is created by following the third and forth fold point of the blue branch of localized patterns. See Figure 3 for a location of these. Possible solutions to create the plots are located in \texttt{cmds_ex.m}. Keep in mind, that multiple calls of the same plot will lead to slightly different figures,
Figure 2: (a) detailed bifurcation diagram of the 1D Schnakenberg model for $\sigma = -0.6$. The labeling can be improved by various options, for instance through the use of 'fancy', as additional input for plotbra. See §7 for some details. (b) several solution plots generated with plotsol. See [Wet17] for a detailed description of plotsol.

as the labels offset is randomized. Thus a solution to the exercise might not exactly look like Figure 2a. If the verification of a solution is difficult one can plot the solution in cmds without labels and compare this with a unlabeled version of the own solution. See §7 or [dWDR+]17 for details on how to do so.

5 2D fold continuation

The init file for 2D has already been discussed in [2]. The only difference lies in the call of schnakinit with a vector as the domain size, which will switch on case two and thus uses stnmpdeo2D instead of stnmpdeo1D. Additional changes which are commonly placed in the init file have been moved to lines 11-18 in the cmds file. These enhance the branch and solution plotting. As indicated in §3 even though the transfer of the problem from 1D to 2D is easy, the adaption of the example is not. Thus a continuation of a fold in a hexagon-branch which has no 1D correspondence has been done. As a consequence the similarities of the command files are negligible and instead of discussing changes we quote the whole file again, see Listing 7. The output is shown in Figure 4a,b.

```matlab
%% 1 - creating a clear working space
close all; keep pphome;
%% 2 - initialising the problem (2D)
p=[];
par=[sqrt(60)*sqrt(3-sqrt(8))+1e-3, 0, 60]; % [lambda, sigma, d]
dom=[4,1]; % domain parameter
p=schnakinit(p,dom,20,par);
p.nc.dsmx=1e-1; % increase dsmax for faster calculation
p.file.smod=1; % store each solution
p=setfn(p,'tr_f2D');
%% 3 - plot improvements for 2D
```
p.plot.pstyle=2;
plot.cm= hot;
p.fuha.outfu=@schnakbra_f2D; % new branch data (in particular L8-norm with
||1||=1)

15
k_c=sqrt(sqrt(2)-1);
p.Om=16*pi^2/(dom(1)*kc*dom(2)/(sqrt(3)*kc)); % interval length
% names for cmp of schnakbra
p.plot.auxdict={'\lambda','\sigma','d','||u||_{\infty}','\min(|u|)','||u||_8'};
%% 3 - find first two bif-points from homog. branch

20
p.nc.nsteps=30;
p=findbif(p,2); % find first two bif points in max p.nc.nsteps steps, if possible
%% 4 - branch-switch to cold hexagons
p=swibra('tr_f2D','bpt2','hex_f2D',0.05); % switch to cold hexagon branch
p.sw.foldcheck=1; % detect folds

25
p.sw.bifcheck=0; % disable bif detection
p=cont(p,10); % cont for max of 10 steps
%% 5 - fold continuation
p=spcontini('hex_f2D','fpt1',2,'fold_f2D'); % init fold continuation in par 2
p.sol.ds=-1e-3; % new stepsize in new primary parameter

30
p.plot.bpcmp=1; % plot lam of fold position over sigma in fig 2 now
clf(2);
p.nc.lammin=-10; %p.nc.lammin=-0.5; % set minimal sigma (!) to -0.5
p=cont(p,15); % cont for a max of 15 steps
%% 6 - cont. in lam again from foldpoint
p=spcontexit('fold_f2D','pt9','hex2a_f2D'); % back to normal cont
p.sol.ds=-0.005;
p.nc.dsmx=0.02;
p.nc.lammin=3.2; % minimal lambda (!) is 3.2 now
p.plot.bpcmp=0; % plot 12-norm over lam in fig 2 again
clf(2);
p=cont(p,25);
p=spcontexit('fold_f2D','pt9','hex2b_f2D'); % back to normal cont
p.sol.ds=0.01;
p.nc.dsmx=0.05;

35
p.nc.lammin=3.208; % set min lambda to approx bif point
p.plot.bpcmp=0; % plot 12-norm over lam in fig 2 again
p=cont(p,10); % cont for a max of 10 steps
%% 7 - plot BD

40
figure(3);
clf;

% plot analytical trivial branch
plot([3.208,3.24],[3.208,3.24],{'color','k','Linewidth',4});
hold on;
plot([3.208,3.05],[3.208,3.05],{'color','k','Linewidth',2});

50
% plot computed branches with l8-norm
plotbra('tr_f2D','pt6',3,6,'cl','k');
plotbra('hex_f2D','pt10',3,6,'fp',2,'cl','b');
plotbra('hex2a_f2D','pt24',3,6,'cl','r');
plotbra('hex2b_f2D','pt9',3,6,'cl','r');

60
% post processing
axis([3.2 3.242 3.2 3.45]);
text(3.202,3.33,{'ch','\sigma=0','color','b','fontsize',16});
text(3.205,3.4,{'ch',\sigma=-0.1395,'color','r','fontsize',16});

65
% 8 - plot lambda over sigma for fold
figure(4);
clf;
plotbra('fold_f2D','pt15',4,1); % plot lam over sigma for fold position

Listing 7: cmds_f2D.m; fold continuation of so called cold hexagons in 2D Schnakenberg model.
(a) plot λ over σ for fold position (b) Fold positions

Figure 3: (a) continuation of the fold points FP3 (black line) and FP4 (red line) shown in (b) with respect to σ. (b) third and fourth fold point on the blue branch in Figure 2.

(a) Bifurcation diagram (b) plot λ over σ for the fold position (c) solution at blue fold in a $[4,1]$ domain

Figure 4: (a),(b) Matlab output after the run of cmds_f2D.m. ch stands for cold hexagons the form of solution on the blue/red branch. (c) both solution components at the fold on the blue branch.

We used findbif instead of cont to find the bifurcation points on the trivial branch, as the bifurcation detection methods in cont tend to fail here due to too many bifurcations points close to each other. This is a general troubleshoot if one does not find the desired bifurcation point. Changing p.sol.ds along with the limits p.nc.dsmin and p.nc.dsmax or a change of the mesh are two further good tries.

For a better plotting experience we customized pde2path to plot the L^8 norm of the first component u_1, normalized through $\|1\|_8 = 1$, instead of the L^2 norm by replacing stanbra.m with snakbra_f2D.m. In greater detail snakbra_f2D adds the L^8 norm to the outputs generated by stanbra. This is the convenient way to change the branch data generating function. The first branch data generated by p.fuha.outfu should always be the parameters for axis labeling through the use of auxdict.

6 Branch point continuation

The idea of fold continuation is to follow a zero eigenvalue via the extended system (12) in [RU17]. Thus we may attempt to use the same method for branch point continuation. Although this is only guaranteed to work for systems (bifurcations) with up-down symmetry, see [WSS1], in practice we found it to work for general systems with some caveats.

The syntax keeps the same, e.g. call spcontini at the branch point which should be continued, continue with cont and call spcontexit to leave the branch point continuation and be able to start with a normal continuation again. As an example we continued the branch point of a periodic
solution from the trivial one in 1D, marked as BP1 in Figure 2a. See Figure 5 for the results. The

![Figure 5: (a) Continuation of the branch point connecting the trivial and an periodic solution. Shown is the trivial branch and the periodic branch for \(d = 60 \) and \(d = 47.2768 \). (b) The position of the branch point with respect to \(d \). Both plots are generated through `cmds_b1D.m`. As the Jacobian in `spjac` is ill conditioned for this branch point a secant predictor is used through the switch \(\text{p.sw.secpre} = 1 \). `bpcontexit` is used to mark the point as a branch point and to compute the pertinent tangent.](image)

7 Details of `plotbra`

All relevant data for branch plotting is saved in a matrix in `p.branch`. Each column represents a computed – not necessarily stored – point while the rows contain different informations about this point. The first five rows are filled by `bradat` and are the point number, its type (reg/bif/etc), the number of negative eigenvalues, the active parameter value, the solutions error and its \(L^2 \)-norm. The further rows are by default filled through `stanbra` which can easily be changed through `p.fuha.outfu` as for example done in §5 with the function `schnakbra_f1D`.

Thus this data can be used to directly plot branches with the `Matlab` plotting commands. To simplify this `pde2path` has the high level function `plotbra` which plots and in particular labels branches suitable for most situations.

The basic call of `plotbra` is `plotbra(p)` for a problem structure or `plotbra('dir')` to plot the branch from a directory. See Figure 6a for an example. The generating code is given in Listing 8, cell ’basic 2’. The behavior of `plotbra(p)` respectively `plotbra('dir')` can be controlled via a few fields in `p.plot`, see Table 2. This fields should be set in the beginning of a continuation for example in the init file.

<table>
<thead>
<tr>
<th>option</th>
<th>field</th>
<th>purpose</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsw</td>
<td>p.plot.lsw</td>
<td>switch for basic labeling, see below and [4WDR+17], tab 24 for details; lsw=xx.xx12 is required for user lambda labels</td>
<td>1</td>
</tr>
<tr>
<td>wrn</td>
<td>p.plot.brafig</td>
<td>figure number to plot</td>
<td>3</td>
</tr>
<tr>
<td>cmp</td>
<td>p.plot.bpcmp</td>
<td>row of <code>p.branch</code> which shall be plot. If number: (y)-comp only, if vector: ([x \ y]) comp number</td>
<td>0</td>
</tr>
<tr>
<td>fancy</td>
<td>p.plot.fancybd</td>
<td>fancyness of plot, in particular: 0: no annotation arrow; 1: fixed ones; 2: movable ones</td>
<td>1</td>
</tr>
<tr>
<td>fs, lfs</td>
<td>p.plot.fs</td>
<td>axis and label font size</td>
<td>16</td>
</tr>
<tr>
<td>auxdict</td>
<td>p.plot.auxdict</td>
<td>dictionary for the components in <code>stanbra</code>, see below for details</td>
<td>{}</td>
</tr>
</tbody>
</table>

The option \(lsw \) is the main switch for default plotting. Written in binary number its entries are
switches for labels of regular, fold, hopf, branch and usrlam points, i.e. a value of 10000\(_2 = 16\)\(_{10}\) correspond to labeling all regular points, while 01100\(_2 = 12\)\(_{10}\) correspond to labels for all fold and hopf points only. The value has to be given in decimal numbers. See Table 3 for a list of possible values.

Table 3: Settings for \texttt{p.plot.lsw} and \texttt{\textasciitilde{lsw},lsw} argument of \texttt{plotbra}, for regular point labels=’off’. For regular point labels=’on’, add 16 to lsw.

<table>
<thead>
<tr>
<th>lsw</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>userlam</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>branch</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hopf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The default value for \texttt{lsw} labels so called ‘user lambdas’ only, which have to be defined in the beginning of a continuation as a vector in \texttt{p.usrlam}. See Figure 6c and cells usrlam 1,usrlam 2 in Listing 8 for a minimal example. Further modifications of the branch plotting can be achieved through (string,value) pairs as additional inputs, see Table 4 for a description of these.

Table 4: (string, value) pairs for function \texttt{plotbra}.

<table>
<thead>
<tr>
<th>option</th>
<th>purpose</th>
<th>standard value</th>
</tr>
</thead>
<tbody>
<tr>
<td>lwun</td>
<td>line width of unstable solution</td>
<td>2</td>
</tr>
<tr>
<td>lwst</td>
<td>line width of stable solution</td>
<td>4</td>
</tr>
<tr>
<td>lw</td>
<td>overrides lwst=lw, lwun=lw/2</td>
<td>set through lwun, lwst</td>
</tr>
<tr>
<td>tyun</td>
<td>line type of unstable solution</td>
<td>’-‘</td>
</tr>
<tr>
<td>tyst</td>
<td>line type of stable solution</td>
<td>’-‘</td>
</tr>
<tr>
<td>ms</td>
<td>marker size (branch/hopf points)</td>
<td>5</td>
</tr>
<tr>
<td>fms</td>
<td>marker size (fold points)</td>
<td>0</td>
</tr>
<tr>
<td>lms</td>
<td>marker size (labeled points); if number: all labeled points, if vector: {reg. bif.}</td>
<td>[5 4]</td>
</tr>
<tr>
<td>rms</td>
<td>marker size (all reg. points) marks reg points; 0 is the convenient choice</td>
<td>0</td>
</tr>
<tr>
<td>lsw</td>
<td>recessive switch for the basic labeling, detailed description above: lsw=xxxx1 is required for user lambda labels</td>
<td>p.plot.lsw=1</td>
</tr>
<tr>
<td>lab</td>
<td>place markers and labels for given label-list and disables the labels for user lambdas</td>
<td>set through lsw</td>
</tr>
<tr>
<td>labi</td>
<td>as ‘lab’, but step through all labels in branch with given increment</td>
<td></td>
</tr>
<tr>
<td>labu</td>
<td>if 1 & lsw= 1 + x: user lambdas will be plotted even if a set of regular labels is given through ‘lab’ or ‘labi’</td>
<td>0</td>
</tr>
<tr>
<td>fs</td>
<td>font size for labels and axes</td>
<td>p.plot.fs</td>
</tr>
<tr>
<td>lfs</td>
<td>font size for labels, if zero no labels (only markers)</td>
<td>p.plot.fs</td>
</tr>
<tr>
<td>fp</td>
<td>first point to be considered</td>
<td>1</td>
</tr>
<tr>
<td>lp</td>
<td>last point to be considered</td>
<td>last point in p.branch</td>
</tr>
<tr>
<td>cl</td>
<td>color, see option in plot</td>
<td>‘black’</td>
</tr>
<tr>
<td>bplab</td>
<td>place markers and labels for label-list of branch points</td>
<td>set through lsw</td>
</tr>
<tr>
<td>fplab</td>
<td>place markers and labels for label-list of fold points</td>
<td>set through lsw</td>
</tr>
<tr>
<td>hplab</td>
<td>place markers and labels for label-list of hopf points</td>
<td>set through lsw</td>
</tr>
<tr>
<td>fancy</td>
<td>0: no annotation arrow, 1: static annotation arrow, 2: annotation arrow movable by mouse</td>
<td>1</td>
</tr>
<tr>
<td>wrn</td>
<td>figure number</td>
<td>p.plot.brafig=3</td>
</tr>
<tr>
<td>cmp</td>
<td>row of p.branch which shall be plot. If number: y-comp only, if vector: {x y} comp number</td>
<td>p.plot.bpcmp=0 (|u_1|_2)</td>
</tr>
</tbody>
</table>
They are called as \texttt{plotbra(...,'option',value)}, like \texttt{plotbra(p,'fancy',2,'lab',[4 5])}. Additional one can also insert an arbitrary amount of (string,value) pairs as a cell array, which can be used to easily recall personal standard settings, for instance if other marker/branch sizes are desired. See Figure 6 and Listing 8 cell 'cell 2' for an example. As commonly used and for backward compatibility one can also call \texttt{plotbra(X,wnr,cmp,varargin)} with \texttt{X=p} or 'dir' or 'dir','pt' to set the figure and component number without the call of the option string. If no point is selected the last point in the directory will be loaded. If the directory is not messed up the specification of a point can always be replaced through the last point option, 'lp', but if one wants to plot the branch until a special point, for instance a branch point, the specification as a point in the directory is more easy, as one can use the syntax \texttt{plotbra('dir','bpt1')}. Only the last call of an option is taken into account, thus (string,value) pairs always overrides settings through fields in \texttt{p.plot} and of course default settings as well. The only exception are the first four digits in 'lsw' written as a binary number, as this options are dominated by any other labeling option. Still only the last call of 'lsw' is taken into account and \texttt{lsw=xxyy12} is necessary to label user lambdas.

The option 'cmp', respectively \texttt{p.plot.bpcmp} allows negative numbers. In greater detail 0 stands for the last component in \texttt{bradat}, e.g. the L^2-norm, while -5 is the first component, e.g. the points number. The positive values for 'cmp' count through the user datas generated by \texttt{p.plot.outfu}.

The option 'auxdict' respectively the field \texttt{p.plot.auxdict} can be filled with a dictionary of the components generated by \texttt{p.fuha.outfu}, as already used in the \texttt{schnakinit} file, see Listing 4 line 12. If set it is used to label the x-axis in the default setting as well. For this reason the dictionary should start with the parameters, i.e. \{‘\lambda\text{lambda}', ‘\sigma\text{sigma}',d, ...\}, which implies, that \texttt{p.fuha.outfu} should generate this data as the first components as well.

The option 'fancy' respectively \texttt{p.plot.fancybd} switches the style of annotations. The setting ('fancy',0) does not plot any annotation arrows. The default setting 'fancy'=1 plots fixed annotation arrows and is the convenient choice when working with \texttt{pde2path}. When preparing papers one can spare a lot post processing time with the use of 'fancy'=2 which will plot movable annotation, but this is slow for many labels. Also 'fancy'=2 uses undocumented \texttt{Matlab} code and thus is error prone. In particular 'fancy'=2 does not work satisfactorily with subplots.

\begin{verbatim}
%% basic / cell 1 - switch to periodic branch
p=swibra('tr_plot','bpt1','per_plot',1e-2); % switch to new branch with ds=0.01
p=cont(p,150); % continuation for a maximum of 150 steps

%% basic 2 - basic plot
figure(3);
clf;
plotbra('tr_plot'); % trivial branch
% plotbra('tr_plot','pt20'); % plots the same, 'pt10' plots a shortend branch

%% cell 2 - plot with options through a cell array
figure(3);
clf;

basic={'ms',2,'fancy',0,'lsw',15};
plotbra('tr_plot',basic); % trivial branch
% plotbra('tr_plot','ms',2,'fancy',0,'lsw',15); % plots the same
plotbra('per_plot',basic); % periodic branch
\end{verbatim}
Listing 8: `cmds_plot.m`: different plots of the trivial and the first periodic branch generated in `cmds_f1D`, see Listing 6. The data generation in the first 12 lines is the same as in `cmds_f1D` besides the problem directory changed to `tr_plot`. The cell headings describe which cell is necessary for the corresponding examples in Figure 6. Lines 1-12 are required for all examples.

(a) basic call (b) change of settings via cell (c) plot with predefined user lambdas

![Graphs of L2-norm vs λ for different settings](image)

Figure 6: (a) basic call of `plotbra(p)`. (b) call of `plotbra` with reduced markersize and no annotation arrows via an cell array of (string,value) pairs. (c) call of `plotbra` with predefined user lambdas 3,3.1,3.2,3.3,3.4 and 3.5. For all three examples see `cmds_plot.m`.

References

