
Continuation of fold points, branch points, and Hopf points with

constraints in pde2path

Hannes Uecker

Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.uecker@uni-oldenburg.de

September 6, 2023

Abstract

This somewhat technical note reviews the pde2path setup for continuation of fold points,
branch points and Hopf points in case of constraints, and some demos for this, dealing with mass
conservation and phase conditions.

Contents

1 Introduction 1

2 The extended systems and the basic setup 2
2.1 Without constraints . 2
2.2 With constraints . 4

3 FPC and BPC in Cahn–Hilliard problems 7
3.1 The problem over boxes . 8
3.2 The problem on a torus . 10

4 FPC and HPC in the complex Ginzburg–Landau equation 12
4.1 Boxes . 12
4.2 A disk . 15

1 Introduction

The Matlab package pde2path [Uec21, Uec23] computes solution branches for systems of the form

Md∂tu = −G(u, λ), (1a)

0 = q(u, λ). (1b)

Here u = u(x, t) ∈ RN , x from some bounded domain Ω ⊂ Rd, d = 1, d = 2, or d = 3, (1D, 2D,
3D case), time t ∈ I ⊂ R, and G stands for a PDE rhs including the boundary conditions (BCs);
Md ∈ RN×N is a (dynamical) mass matrix, which may be singular, and λ ∈ Rnp denotes a parameter
(vector); q denotes a (vector in Rnq , nq ≥ 0 of) constraint(s), the most common of which being phase
conditions (PCs) in case of, e.g., periodic BCs, or mass constraints.

In pde2path, (1) is discretized by a finite element method (FEM), and with a slight abuse of
notation we identify u : Ω→ RN (and u(·, t) : Ω→ RN) with the nodal values u ∈ Rnu (resp. u(t) ∈
Rnu), nu = Nnp, where the number np of discretization points is usually large.

Important special points of solution branches of (1) are fold points (FPs), branch points (BPs),
and Hopf points (HPs), and a useful feature of a numerical continuation and bifurcation package is
the option of FP–, BP–, and HP–continuation (FPC, BPC and HPC, see also Table 1 for a list of

1

acronyms), for which one has to free an additional parameter. Besides being important themselves
due to topological changes occuring there (and new branches bifurcating at BPs and HPs), FPs, BPs
or HPs for instance also often delimit the stability regions of solution branches, and hence FPC,
BPC and HPC can be used to efficiently compute such stability regions in dependence of a second
parameter.

In pde2path, BPC and HPC so far have only been used (and documented in demos) without
constraints, i.e., for nq = 0 in (1). In the present somewhat technical note we explain the setup
with nq > 0, and give some examples, namely FPC and BPC in Cahn–Hilliard type problems (with
a mass constraint), and FPC and HPC in complex Ginzburg–Landau equations over a box with
periodic BCs in one direction (q=translational PC), and over a disk (q=rotational PC). These extend
the pde2path demos ch [Uec21, §6.9], chtor [Uec21, §10.9], and cglpbc,cgldisk [Uec21, §7.2].
Throughout we assume that G and q are sufficiently differentiable for all expressions to make sense,
and that 0 ≤ nq � nu, with in fact nq = 1 in ch,cglpbc and cgldisk, and nq = 2 in chtor.

Remark 1.1 a) Formally, we can set G =

(
G
q

)
and Md =

(
Md 0
0 0

)
and rewrite (1) as a system

without (explicit) constraints, i.e., Md∂tU = −G(U, λ), where U = (u, β), with parameter (vector)
β ∈ Rnq . However, from a practical (implementation–wise) point of view we find it useful to maintain
the distinction between G and q, and hence the form (1).

b) We here have the technical focus of how to set up FPC, BPC and HPC with constraints, and in
the demos we only give brief remarks about the usefulness of FPC, BPC and HPC, i.e., about what
we learn from these. See, e.g., [Kuz04, Chapter 8] for a general and detailed account. Other demos
with FPC, BPC and/or HPC with some more remarks (but with nq = 0) include, as subdirectories
of pde2path/demos/: acsuite/ac1D and other subdirectories of acsuite, see [Uec21, Chapter 6], as
simple introductory examples, but numerically expensive in 2D and 3D; pftut/shEck, [Uec21, §8.3.3],
where BPC is used to compute the boundary of the Busse–balloon, pftut/schnakpat, [Uec21, §9.1],
and pftut/bruosc, [Uec21, §9.3], where, e.g., BPC and HPC is used to find co–dimenssion-two points.
The latter three give further examples how to set up functions spjac.m, bpjac.m and hpjac.m (see
below) for systems of PDEs. c

Table 1: Acronyms.

BP/FP/HP branch/fold/Hopf point BPC/FPC/HPC branch–/fold–/Hopf–point continuation
BC boundary condition DBC/NBC/pBC Dirichlet/Neumann/periodic BCs
FDs finite diffences PC phase condition
CH Cahn–Hilliard (problem) cGL complex Ginzburg Landau (equation)

2 The extended systems and the basic setup

2.1 Without constraints

For nq = 0 (no constraints), the extended system used in pde2path for FPC, BPC and HPC are
discussed in [Uec21, §3.6.1], and for convenience recalled here. For FPC we continue (in arclength)

HFP(U) =

 G(u,Λ)

Gu(u,Λ)φ

〈φ, φ〉 − 1

 = 0 ∈ R2nu+1, U = (u, φ,Λ), (2)

2

where the active parameter vector Λ = (λ,w) consists of the new primary parameter λ and the
old primary parameter w = λold, and where here and in the following we write Gu = ∂uG where
convenient. This gives 2nu + 1 equations in the 2nu + 2 unknowns U = (u, φ,Λ), and is combined
with the usual arclength condition

p(U, s) := ξ

〈(
u′0
φ′0

)
,

(
u(s)− u0

φ(s)− φ0

)〉
R2nu

+ (1− ξ) 〈Λ′0,Λ(s)− w0〉R2 − ds
!

= 0, (3)

where ξ > 0 is a weight, typically ξ = 1/nu, U0 = (u0, φ0,Λ0) is the solution in the previous step and
(u′0, φ

′
0,Λ

′
0) = d

ds
(u0, φ0,Λ0) is the tangent to the branch at U0, and ds is the current continuation

stepsize.
Similary, for BPC we use

HBP(U) =

G+ µMdψ

GT
uψ

‖ψ‖2
2 − 1

GT
λold

ψ

 = 0 ∈ R2nu+2, U = (u, ψ, µ,Λ), (4)

where ψ is an adjoint kernel vector of Gu, and for HPC we use

HHP(U) :=

G

Guφr + ωMdφi
Guφi − ωMdφr

cTφr − 1

cTφi

 = 0 ∈ R3nu+2, U = (u, φr, φi, ω,Λ), (5)

where iω ∈ iR is the desired eigenvalue of Gu, φ = φr + iφi ∈ Cnu is an associated eigenvector, and
cr ∈ Rnu is used to fix the phase.

The Jacobian of, e.g., HFP wrt to (u, φ, w) is

JFP = ∂(u,φ,w)HFP =

 Gu 0 ∂wG

∂u(Guφ) Gu ∂w(Guφ)

0 2φT 0

 ∈ R(2nu+1)×(2nu+1). (6)

In JFP, the nu×nu blocks Gu and ∂u(Guφ) may be expensive for large nu if done numerically by finite
differences (FDs), but at least for semilinear PDEs these terms can easily (and quickly) be handled
by user–provided functions, see the examples below. On the other hand, since dim(w) = 1 + nq is
small (here dim(w) = 1), all w derivatives can be done quickly by FDs. The Jacobians of HBP and
HHP are slightly more complicated, but with similar terms, discussed in §2.2 for nq > 0.

In (6), and similarly in the following, we omit the derivative of HFP wrt the new primary parameter
λ, which together with the derivative of the arclength condition is automatically appended to ∂UHFP

by pde2path. Thus, for the arclength continuation of FPs, pde2path uses the Jacobian

A =

(
JFP ∂λHFP

∂(u,φ,w)p(U, s) ∂λp(U, s)

)
, (7)

but the user does not need to deal with this, and similar for BPC and HPC. The Jacobian (7) is then
regular at a (quadratic) fold point, and the related Jacobians for BPC and HPC are regular at simple
branch points and simple Hopf points, respectively.

3

In pde2path, FPC is initialized by p=spcontini(dir,fpt,inewpar,newdir) (as in spectral
continuation initialization), where dir/fpt is the fold point to continue, inewpar is the (in-
dex of the) new primary parameter, and newdir is the directory for saving the results of the
FPC.This automatically reorganizes variables and dimensions (also in case nq > 0), and similarly
for bpcontini and hpcontini, and the user only has to take into account the hints on building
Jacobians given below. To switch back from FPC to regular continuation in the original parameter
λold, use p=spcontexit(dir,pt,newdir). For exiting BPC and HPC, similarly use bpcontexit and
hpcontexit.1

2.2 With constraints

FP continuation. For nq > 0, we write the extended system for FPC as

HFP(U) =

G

Guφ+Gw̃φ̃

q

quφ+ qw̃φ̃

〈Φ,Φ〉 − 1

 ∈ R2nu+2nq+1, U = (u, φ,Λ, φ̃), Λ = (λ,w), (8)

with now w = (λold, w̃) ∈ R1+nq , where again λold is the old primary active parameter, w̃ ∈ Rnq are

the old secondary active parameters, and where Φ = (φ, φ̃) ∈ Rnu+nq is in the kernel of

(
∂uG ∂w̃G

∂uq ∂w̃G

)
.

Accordingly, again omitting the derivative wrt the new primary λ, the Jacobian of HFP reads2

JFP =

Gu 0 ∂λoldG ∂w̃G 0

∂u(Guφ+Gwφ̃) Gu ∂λold(Guφ+Gw̃φ̃) ∂w̃(Guφ+Gw̃φ̃) Gw̃

qu 0 ∂λold ∂w̃q 0

∂u(quφ+ qw̃φ̃) qu ∂λold(quφ+ qw̃φ̃) ∂w̃(quφ+ qw̃φ̃) qw̃
0 2φT 0 0 2φ̃T

 . (9)

Thus JFP ∈ R(2nu+2nq+1)×(2nu+2nq+1) where the last three colums (of widths 1, nq and nq) are cheap
via finite differences.

Typical examples of constraints are (for now assuming a scalar PDE)

(0
!

=)q(u) =

∫
Ω

u dx−m = a ∗ u− m (mass contraint, with mass parameter m), (10)

(0
!

=)q(u) =

∫
Ω

(∂xu0)u dx = u0x′ ∗ u (1D phase constraint, where u0 is a reference profile), (11)

using the continuous notation on the left, and the discrete Matlab notation on the right, with
a = sum(M, 1) the column sum of the FEM mass-matrix M, and this motivates the following comments:
Although numerical derivatives are also possible via p.sw.qjac=0, we generally recommend to treat

1There also is the option p=spcontexit(dir,pt,newdir,outfu), where outfu can be set to a branch-output
function. This may be needed if for FPC (or BPC or HPC) a different output function than for the regular continuation
was used, see §4 for an example.

2we mainly display this obvious computation here for reference in the function getGufoco.m which assembles JFP,
and similarly for JBP (getGubpco.m) and JHP (getGuhpco.m) below

4

qu via p.sw.qjac=1 and p.fuha.qjac=@myqjac which implements ∂uq. For the above examples,

qu = a (mass contraint), (12)

qu = u0x′ (1D phase constraint). (13)

These are simple, and, perhaps more importantly, in case of integral constraints always dense, i.e.,
full row vectors, and hence cannot be treated efficiently by, e.g., numjac. Moreover, and we again
believe typically, they are linear in u, and hence the (possibly expensive) second derivatives ∂u(quφ)
in (9) are actually zero, as are all other second derivatives of these constraints.

Remark 2.1 a) In summary, to generate (9), we may proceed as follows (assuming that the user
knows the basic setup of the rhs G and q, and of Gu = ∂uG and qu = ∂uq; otherwise see [Uec21,
Chapter 6], or the demos below):3

1. For semilinear PDEs, ∂u(Guφ) is often easy to implement in a function Guphiu=myspjac(p,u,r),
see the examples below. Then set p.sw.spjac=1 and p.fuha.spjac=@myspjac.4 For testing,
call spjaccheck(p), which compares the implementation in myspjac with the results of numjac.

2. If ∂u(Guφ) is not easy, and p.sw.jac=1 (Gu is done by p.fuha.sGjac), then set p.sw.spjac=0;
∂u(Guφ) is then quickly (at least in 1D) and (usually) reliably generated by numjac.

3. If p.sw.jac=0 (Gu is already done by numjac), then p.sw.spjac=0 needs further care: In
this case, numjac for ∂u(Guφ) must often be run with a rather larger thresh(old) vector, and
our default setting (in getGuphiu.m) is thresh≡1e3. To see what increment δ (usually about
10−6∗thresh) is then actually used for FDs in numjac, set p.sw.verb > 2, which triggers a call to
numjacinfo in getGuphiu.5 For flexibility, the user may also set p.nc.njthreshsp to a chosen
(scalar) value, where however p.nc.njthreshsp<102 often gives bad Jacobians. Thus, if FPC
with p.sw.jac=0 and p.sw.spjac=0 fails, we recommend trying a larger p.nc.njthreshsp,
e.g. p.nc.njthreshsp=1e4.

4. Due to 3., instead of using numjac, the user can also set p.sw.spjac=2; ∂u(Guφ) is then
generated by “brute force” FDs with stepsize δ = p.nc.del, which however can be quite slow.

5. If q is linear in u, and hence ∂u(quφ) = 0, then nothing needs to be done; ∂u(quφ) is computed
by quuphi.m which by default is set to the (dummy) library function quuphi.m, which returns
0 ∈ Rnq×nu . If ∂u(quφ) 6= 0 but “easy to implement”, then make a local copy of quuphi.m and
modify accordingly.

6. If ∂u(quφ) 6= 0 and is difficult to implement, then set (the switch) p.sw.spqjac=0 (overriding
the default p.sw.spqjac=1), in which case ∂u(quφ) is approximated by finite differences.

b) Additional to p.nc.njthreshsp in 3., we (newly!) introduced p.nc.njthresh as (possible)
threshold for numjac for ∂uG. This so far was set to δ := p.nc.del (the FD stepsize), and this
still applies if p.nc.njthresh is not set. However, in some cases it seems necessary to use a δ
somewhat larger than the default δ = 10−4, and in this case it may be necessary to independently set
p.nc.njthresh. See the comments in the demo–scripts below. c

3The demos provide the pertinent functions sGjac and spjac (and bpjac and hpjac) and then use the fastest
option p.sw.jac=1 and p.sw.spjac=1 for Jacobians. However, to experiment with other settings, you can change
these switches (e.g., by uncommenting the indicated lines in the scripts) to use numerical Jacobians, and get the same
branches, but slower.

4In practice, we usually simply use p.fuha.spjac=@spjac and put the function spjac.m in the current directory.
5If p.sw.jac=0 and p.sw.verb > 3, then numjacinfo is also called in getGupde for the computation of ∂uG.

5

BP continuation. Using a similar sorting like in (8), we write the extended system for BPC with
nq > 0 as

HBP(U) =

G+ µMψ

GT
uψ + qTu ψ̃

q

GT
w̃ψ + qw̃ψ̃

〈Ψ,Ψ〉 − 1(
GT
λold

, qTλold

)
Ψ

∈ R2nu+2nq+2, U = (u, ψ,Λ, µ, ψ̃), Λ = (λ,w), (14)

with again w = (λold, w̃)∈R1+nq , and where now Ψ=(ψ, ψ̃) ∈ Rnu+nq is in the kernel of

(
∂uG ∂w̃G

∂uq ∂w̃q

)T
=(

GT
u qTu

GT
w̃ qTw̃

)
. Hence, the Jacobian of HBP reads

JBP=

Gu µMd ∂λoldG ∂w̃G Mdψ 0

∂u(G
T
uψ + qTu ψ̃) GT

u ∂λold(GT
uψ +Gw̃ψ̃) ∂w̃(GT

uψ +Gw̃ψ̃) 0 qTu

qu 0 ∂λoldq ∂w̃q 0 0

∂u(G
T
w̃ψ + qTw̃ψ̃) GT

w̃ ∂λold(GT
w̃ψ + qw̃ψ̃) ∂w̃(GT

w̃ψ + qw̃ψ̃) 0 qTw̃

0 2ψT 0 0 0 2ψ̃T

∂u(G
T
λold

ψ + qTλoldψ̃) GT
λold

∂λold(GT
λold

ψ + qTλoldψ̃) ∂w̃(GT
λold

ψ + qTλoldψ̃) 0 qTλold

. (15)

Thus, JBP ∈ R2(nu+nq+1)×2(nu+nq+1), and similar remarks as for (9) apply: The (possibly) expensive
term is ∂u(G

T
uψ + quψ̃), while all others can be easily and quickly done by FDs, for instance also

using ∂u(G
T
λold

ψ + qTλoldψ̃) = ∂λold(ψTGu + ψ̃T qu). If as in (12) and (13) we assume that q is linear in

u, then ∂u(q
T
u ψ̃) = 0, and for this we provide the (dummy) function quupsi.m; if ∂u(q

T
u ψ̃) 6= 0, then

implement this in a local copy of quupsi.m. Thus, it mainly remains to compute ∂u(G
T
uψ), for which

the analog of Remark 2.1 applies: :
• Settings for spjac: If possible, supply a function mybpjac.m and set p.fuha.spjac=@mybpjac and

p.sw.spjac=1. Otherwise, if p.sw.jac=1, then set p.sw.spjac=0.
If p.sw.jac=0, try p.sw.spjac=0. If that fails, then try, e.g., p.nc.njthreshsp = 1e4 or larger,
or ultimately the fallback p.sw.spjac=2 (slowest option).

HP continuation. The extended system for HPC with nq > 0 reads

HHP(U) =

G

Guφr+ωMφi+Gw̃φ̃r

Guφi−ωMφr+Gw̃φ̃i

q

quφr+qw̃φ̃r

quφi+qw̃φ̃i

CTΦr − 1

CTΦi

∈ R3(nu+nq)+2, U = (u, φr, φi,Λ, ω, φ̃r, φ̃i), Λ = (λ,w), (16)

6

with again w=(λold, w̃) ∈ R1+nq , and where now Φ=(φ, φ̃)∈Cnu+nq , Φ = Φr+iΦi with Φr,Φi ∈ Rnu+nq ,(
Gu Gw̃

qu qw̃

)
Φ = iωΦ, and where C = (c, c̃) ∈ Rnu+nq fixes the phase of Φ and can be chosen as Φr at

initialization of the HPC. The Jacobian of HHP reads

JHP=

Gu 0 0 ∂λoldG ∂w̃G 0 0 0

∂u(Guφr+Gw̃φ̃r) Gu ωM ∂λold(Guφr+Gw̃φ̃r) ∂w̃(Guφr+Gw̃φ̃r) Mφi Gw̃ 0

∂u(Guφi+Gw̃φ̃i) −ωM Gu ∂λold(Guφi+Gw̃φ̃i) ∂w̃(Guφi+Gw̃φ̃i) −Mφr 0 Gw̃

qu 0 0 ∂λoldq ∂w̃q 0 0 0

∂u(quφr+qw̃φ̃r) qu 0 ∂λold(quφr+qw̃φ̃r) ∂w̃(quφr+qw̃φ̃r) 0 qw̃ 0

∂u(quφi+qw̃φ̃i) 0 qu ∂λold(quφi+qw̃φ̃i) ∂w̃(quφi+qw̃φ̃i) 0 0 qw̃

0 cT 0 0 0 0 c̃T 0

0 0 cT 0 0 0 0 c̃T

.

(17)

Thus, JHP ∈ R(3(nu+nq)+2)×(3(nu+nq)+2) and similar remarks as for JFP and JBP apply: The (possibly)
expensive terms are the 2nd and 3rd nu× nu blocks in the first column, and the 4th and 5th nq × nu
blocks, while all other can be done by FDs. However, if again we assume that q is linear in u, then
∂u(quφr) = ∂u(quφi) = 0, and similar to above we provide the functions quuphir.m and quuphii.m

to “compute” this; if ∂u(quφr) 6= 0 or ∂u(quφi) 6= 0, make suitable local copies of these functions. It
essentially remains to generate (∂u(Guφr), ∂u(Guφi)), and the analog of Remark 2.1 again applies:
• Settings for spjac: If possible, supply a function myhpjac.m and set p.fuha.spjac=@myhpjac and

p.sw.spjac=1. This can be tested by hpjaccheck.
If myhpjac.m is not available, and p.sw.jac=1, then set p.sw.spjac=0.
If HPC with p.sw.jac=0 and p.sw.spjac=0 fails, then try, e.g. p.nc.njthreshsp = 1e4, or
ultimately the fallback p.sw.spjac=2 (slowest option).

For HPC it may be useful to put the frequency ω on the branch for later plotting, and hence we
provide a function hpcbra.m, see §4.

Remark 2.2 Table 2 lists the function needed for the “expensive terms”; additionally we remark
again that providing, e.g., spjac.m or not is mainly a question of efficiency. In 1D, i.e., for “small”
nu, p.sw.spjac=0 is usually fast enough. However, in 2D, p.sw.spjac=0 and more so p.sw.spjac=2

are often slow. For instance, for nu = 7000 in chtor (§3.2) sGjac and spjac are on the order of 0.001
seconds on the authors I7 laptop, while numjac for ∂u(Guφ) (p.sw.spjac=0 with p.sw.jac=1) is on
the order of 1 second, and the fallback p.sw.spjac=2 (not needed here!) is about 10 seconds, which
becomes minutes for p.sw.jac=0. c

3 FPC and BPC in Cahn–Hilliard problems

We start with the classical example of the Cahn–Hilliard (CH) problem, concerned with stationary
points of the energy

Eε(u) =
1

2σ

∫
Ω

ε

2
|∇u|2 +

1

ε
W (u) dx, (18)

where Ω is a bounded domain in Rd, ε > 0 is an interface energy parameter, W is a double–

well potential with minima in u±, and σ =
∫ u+
u−

√
1
2
W (u) du is a normalization. Wlog we choose

7

Table 2: Functions (function handles) for FPC, BPC and HPC. The first three are used if p.sw.spjac=1.

To use, e.g., myspjac.m for FPC, set p.fuha.spjac=@myspjac, and similar p.fuha.spjac=@mybpjac or

p.fuha.spjac=@myhpjac for BPC or HPC, respectively. The defaults set by spcontini, bpcontini and

hpcontini are spjac, bpjac and hpjac, respectively; these must be provided by the user. If this is difficult,

set p.sw.spjac=0 and see Remark 2.1. For the last four functions, the defaults are dummies returning 0.

handle p.fuha. use implements default p.sw test

spjac FPC ∂u(Guφ) none spjac spjaccheck
spjac BPC ∂u(GTuψ) none spjac bpjaccheck
spjac HPC (∂u(Guφr), ∂u(Guφr))

T none spjac hpjaccheck

quuphi FPC ∂u(quφ) quuphi(= 0)) spqjac none

quupsi BPC ∂u(qTu φ̃) quupsi(= 0)) none none
quuphir,quuuphii HPC ∂u(quφr), ∂u(quφr) quuphir(i)(= 0)) none none

W (u) = −1
2
u2 + 1

4
u4 + 1

4
with u± = ±1 and σ =

√
2/3. We impose the mass constraint

q(u) := 〈u〉 −m !
= 0, 〈u〉 =

1

|Ω|

∫
Ω

u dx, (19)

where m = 0 corresponds to equal volume fractions of “the phases ±1”, and we impose homogeneous
Neumann BCs. Interestingly, for m = 0 and a sequence uε of minimizers of Eε we have Eε(uε)→ |I|
as ε → 0, where the limit interface I is (a) minimal (surface). We refer to [Uec21, §6.9, §10.1] and
the references therein for further background, and here only discuss the setup of FPC and BPC (as
the problem is variational, Hopf points and time–periodic orbits cannot occur).

Introducing the Lagrange multiplier λ̃ and the Lagrangian L = Eε + λ̃q, the pertinent system is

G(u) := −ε2∆u− u+ u3 − λ̃ = 0, q(u) = 〈u〉 −m = 0 (20)

with ∂nu|∂Ω = 0. In 1D, the whole problem is symmetric under x 7→ −x, and in general under
(u,m, λ̃) 7→ −(u,m, λ̃). Therefore we can restrict to m ≤ 0.

3.1 The problem over boxes

In the script demos/pftut/ch/cmds1Db.m and Fig.2 we choose Ω = (−1/2, 1/2) and first continue
the homogeneous branch h (black) with u ≡ m, λ̃ = W ′(m) in m, with free λ̃. Depending on the
size of ε there are a number of (pitchfork, due to the equivariance x 7→ −x) BPs on h. For ε = 0.1,
the first branch a1 bifurcates at m = m1(ε) ≈ −0.6, with one interface between u = ±1, and shows a
fold around m = −0.66 after which it becomes stable; it then continues to m = 0, where the interface
sits in the middle, i.e., at x = 0.

As already done in [Uec21, Fig.6.22] we can for instance continue the fold on a1 in ε to see the
existence (and stability) region (in m as a function of ε) of the one-interface pattern a1. The only
nonlinear terms in G is u3, hence ∂uG = −ε2∆− 1 + 3u2 and ∂u(Guφ) = 6uφ and sG.m and sGjac.m,
and also spjac.m and bpjac.m are very simple, see Listing 1. Moreover, q is from (10), hence ∂uq = a

is from (12), and in particular ∂u(quφ) = 0, which is already the default setting in quuphi.m. Thus,
FPC of the (first) FP on branch a1 in ε =parameter 2 is simply initialized and run by

p = spcontini(′a1′,′ fpt1′, 2,′ fpc1′); ...set some switches..., p = cont(p, 20);

see cmds1Db.m, 4th cell, and the green branch in Fig. 1(b). The physically interesting case is to de-
crease ε, and as we do so the FP moves to the left (inm, which together with λ̃ becomes a secondary ac-

8

tive parameter). Here we also set p.usrlam=0.05, which forces output at ε = 0.05 if ε = 0.05 is passed
during the continuation, which here happens at pt9. Calling spcontexit(’fpc1’,’pt9’,’b1’) we
go back to continuation in m (at fixed ε = 0.05), and this yields the magenta branch b1 in (c), see
also the samples in (d).

Similarly we can do BPC in ε of the first BP on the homogeneous branch h to find the instability
region of the homogeneous states, sometimes called spinodal region. This yields the red branch in
(b), where ε = 0.05 is at pt7. Then calling, e.g., p=bpcontexit(’bpc1’,’pt7’,’pbpc1’) (with pbpc

standing for PostBranchPointContinuation) and p=swibra(’pbpc1’,’bpt1’,’c1’); p=cont(p), we
again obtain the magenta branch from (c).

Remark 3.1 For increasing ε, the BP h/bpt1 moves to the right in m, and “vanishes” (in m=0)
at ε=ε0≈0.318. In arclength continuation this means that the branch of BPs folds back (in ε), and
continues the symmetric BP (at positive m), see Fig. 1(b). Similarly, the FP on the one-interface
branch moves to the right for increasing ε, and at ε = ε1 ≈ 0.2 “collides” with the BP. This means that
at ε1 the bifurcation changes from subcritical ε < ε1 to supercritical ε > ε1. The green branch actually
consists of two branches (by the symmetry x 7→ −x) which form a cusp at ε = ε1, and depending on
the numerical settings (tolerance, minimal stepsize, etc), near such cusps the continuation may fail
or unreliably jump between the two branches.

Altogether we remark that we can have folds in FPC, BPC and HPC. We can also have BPs in
FPCs, BPC and HPC, but we do not further pursue this here, and in our demos switch off BP (and
HP) detection (and localization) by setting p.sw.bifcheck=0, and we switch off the computation of
eigenvalues of −∂UH by setting p.sw.spcalc=0. c

(a) (b) (c) (d)

-1 -0.5 0

m

0

1

2

E

0.1 0.2 0.3

-0.8

-0.6

-0.4

-0.2

0

0.2

m

7

9

-0.8 -0.6 -0.4

m

0.95

1

1.05

1.1

E

Figure 1: (20) over Ω = (−1/2, 1/2). (a) basic BD of the homogeneous branch h (black) and the one–

interface branch a1 (blue), ε = 0.1. (b) BPC (red) in ε of h/bpt1 and FPC (green) in ε of a1/fpt1. (c)

Zoom of a1, and the analogous branch b1 after FPC exit at pt9 in (b) ε ≈ 0.05. (d) samples of fpt1 on a1

and on b1.

function r=sG(p,u) % PDE rhs for CH; first split u into pars and PDE -vars

par=u(p.nu+1:end); eps=par(2); lam=par(3); u=u(1:p.nu);

f=u+lam -u.^3; r=eps^2*p.mat.K*u-p.mat.M*f; % nonlinearity and rhs

function q=qf(p,u); m=u(p.nu+1); q=p.mat.vM*u(1:p.nu)/p.Om-m; % mass constraint

function Gu=sGjac(p,u) % PDE Jacobian

par=u(p.nu+1:end); eps=par(2); u=u(1:p.nu); % split u into pars and PDE vars

fu=1-3*u.^2; Fu=spdiags(fu ,0,p.nu ,p.nu); % f-deriv., put into sparse matrix

Gu=eps ^2*p.mat.K-p.mat.M*Fu; % the Jacobian matrix

9

function qu=qfder(p,u); qu=(1/p.Om)*p.mat.vM; % pa_u q of mass constraint

function J=spjac(p,u) % \pa_u (G_u phi) for FPcont

phi=u(p.nu +1:2*p.nu); u=u(1:p.nu); % kernel vector , and PDE -u

fuu=-6*u; J=-p.mat.M*spdiags(fuu.*phi ,0,p.nu ,p.nu);

function J=bpjac(p,u) % \pa_u (G_u ’ psi) for BPcont

psi=u(p.nu +1:2*p.nu); u=u(1:p.nu); % adjoint kernel -vector and PDE -u

fuu=-6*u; J=-spdiags(fuu.*psi ,0,p.nu ,p.nu)*p.mat.M’;

Listing 1: ch/sG.m and ch/qf.m implementing (20) (prepared by chinit.m and oosetfemops.m as usual)
where p.mat.vM = a from (10); ch/sGjac.m and ch/qfder.m as examples of simples derivatives, and
ch/spjac.m and ch/bpjac.m as the only “nontrivial” functions needed for FPC and BPC.

Over 2D boxes, and more so over 3D boxes, the problem (20) becomes more complicated in the
sense that for small ε there are many branches of solutions, e.g., different spots and stripes in 2D, and
many secondary (and tertiary) bifurcations. Moreover, depending on the symmetry of the domain Ω,
BPs from the homogeneous branch may have higher multiplicity, and for ε → 0 the mesh–handling
for the sharp interfaces becomes a more difficult problem than in 1D, see [Uec21, §6.9.2 and §6.9.3].
Nevertheless, the FPC and BPC (of simple BPs) works as before, and with the same files as in Listing
1, and in cmds2Db.m we illustrate this 2D setting.

3.2 The problem on a torus

In [Uec21, §10.1] and pftut/chtor we treat (20) on (the surface of) a torus, see Fig. 2, with ∆
denoting the associated Laplace–Beltrami operator. For u non–constant in the horizontal angle ϑ,

additional to the mass constraint we need a phase condition (PC) in the form q2(u) = 〈∂ϑu0, u〉
!

= 0
where u0 is a reference profile. In that case nq = 2, and that gives us the opportunity to test/illustrate
FPC and BPC with nq > 1.

For the basic setup and patterns of (20) on a torus we refer to [Uec21, §10.1], and here and in
chtor/cmds2.m and Fig. 2 only comment on issues of FPC and BPC. The black branch in (a) is
again the spatially homogeneous solution u ≡ m, λ̃ = W ′(m). If we continue the first bifurcating
branch b1 (blue) to m = 0, then at m = 0 this yields 2 vertical rings as interfaces between u = ±1,
but here we are mostly interested in the fold around m = −0.71. Similarly, b2 (red) at m = 0 yields
4 vertical rings at m = 0, but again we are only interested in the BP at m ≈ −0.46, which yields a
tertiary branch b2-2 (magenta), and this again shows a fold, around m ≈ −0.51. Importantly, these
three branches have solutions which are nonhomogeneous in ϑ, and hence their continuation requires

the PC q2(u) :=
∫

Ω
(∂ϑu0)u dΩ

!
= 0, where for u0 we take the solution from the last continuation step,

while G(u) is augmented by s∂ϑu with new (Lagrangian) parameter s. Thus, now

G(u) = −ε2∆u− u+ u3 − λ̃+ s∂ϑu, (21)

and nq = 2 for such branches, with (here assuming a as a column vector, and using a discrete notation,
where moreover ∂ϑu0 already contains multiplication by the mass matrix M)

q(u) =

(
aTu−m
(∂ϑu0)Tu

)
, ∂uq =

(
aT

(∂ϑu0)T

)
, ∂(m,s)q =

(
−1 0

0 0

)
. (22)

For branches of solutions homogeneous in ϑ, only the first line of q is relevant. Relatedly, after
branch switching from the homogeneous black branch we first do two continuation steps without the

10

(a) (b)

-0.8 -0.6 -0.4

m

1

2

3

4

5

6

E

FP1

FP1

BP2

(c) (d) (e)

0.1 0.15

-0.8

-0.7

-0.6

-0.5

m

5

8

8

-0.8 -0.6 -0.4

m

2

3

4

5

6

E

FP2
FP1FP1

Figure 2: (20) over a torus with (R, ρ) = (0.5, 0.25), and ε = 0.15 in (a,b). (a) homogeneous branch h

(black) and the first two bifurcating branches b1 (blue) and b2 (red), and a tertiary branch b2-2 (magenta).

Samples in (b). (c) FPC and BPC of the marked points in (a). (d,e) switching back to continuation in m at

ε = 0.1.

PC q2 (as at bifurcation ∂ϑu0 = 0), and then switch on the PC.6 Thus, we have two sets of q and qu:
First qf.m,qfder implementing only the mass constraint (the first line of (22)) and its derivative, to
be run with nq=1, and second qf2,qf2der, implementing (22) and to be run with nq=2.

The parameter vector is (m, ε λ̃, R, ρ, s) where R, ρ are the large and small radius of the torus. We
fix R = 0.5, ρ = 0.25, and as before use m as the primary parameter for regular continuation with λ̃
as secondary active parameter, and hence p.nc.ilam=[1,3] (nq = 1, no PC) or p.nc.ilam=[1,3,6]
(nq = 2, with PC). Altogether, due to the more complicated geometry and the PC, the files in chtor/

are slightly more complicated than in ch/, but we refer to [Uec21, §10.1] for general discussion and
put ample comments in the new script cmds2.m which deals with the FPC and BPC.

Fig.2(c) shows the continuation of points in (a) from ε=0.15 to ε=0.1.7 (d) shows the new branches
after spcontexit at pt5 of the blue branch in (c), giving the lighter blue branch pfc1 and pfc1b8

, while the green branch pbpc2-2 is obtained from bpcontexit at pt8 of the red branch in (c), and
then branch–switching at that BP. Naturally, spcontexit at the magenta pt8 in (c) again yields
the green branch, and the samples in (c) show that the effect of decreasing ε is to produce sharper
interfaces between u = ±1.9 Thus, these FPCs and BPCs (to still moderate ε) behave as expected,

6 This sometimes introduces spurious bifurcation points, as without PC the ’almost zero’ eigenvalue µ0 may be
negative; µ0 is removed by switching on the PC, and this then changes the index of the solution. This can be fixed
by after switching on the PC first doing one step without BP detection, but for simplicity we omit this here and in
cmds2.m.

7Here we use a fixed mesh of 7000 points, and for ε < 0.1 we run into convergence problems as near the interfaces
we would need a finer mesh. This can be done by adaptive mesh refinement, see cmds1.m and [Uec21, §10.1], including
the convergence of Eε(uε) to the (limit) interface lengths, but for simplicity here we stick to the fixed mesh.

8with for instance pfc1 and pfc1b standing for PostFoldContinuation1 and PostFoldContinuation1Backward
9This becomes more obvious at m closer to zero, see cmds2.m for such plots.

11

and the main remarkable effect is that the primary branch blue branch at ε=0.1 has two additional
folds in m.

4 FPC and HPC in the complex Ginzburg–Landau equation

In demos/hopf/cglpbc we consider the complex Ginzburg–Landau (cGL) equation

∂tu = ε2∆u+ (r + iν)u− (c3 + iµ)|u|2u− c5|u|4u+ s∂x1u, u = u(t, x) ∈ C, (23)

where we added the last term to deal with translational invariance (in x1) for periodic BCs (in x1).
In (23), additionally to the choice of the domain, ε > 0 can be used to set the length scale 1/ε, and
we have the real parameters r, ν, c3, µ, c5, where typically the “driving force” r is used as the primary
continuation parameter. Over 1D interval with periodic BCs the problem is O(2) equivariant (spatial
translations x 7→ x+ ϑ, ϑ ∈ S1, and reflection symmetry x 7→ −x), with HBPs on the trivial branch
u = 0, and hence [Hoy06, §5.7] we obtain bifurcations of standing waves (SWs) and travelling waves

(TWs) from the trivial solution. The TWs again need a PC q(u) := 〈∂xu0, u〉
!

= 0 and undergo Hopf
bifurcations to modulated TWs, and thus we can illustrate HPC with nq > 0.10 Moreover, the cGL
equation gives a 2-component real reaction diffusion system and hence gives an illustrative example
how to implement spjac and hpjac for systems.

In the demo demos/hopf/cgldisk we transfer the setup to the cGL equation over a disk with
Neumann-BCs, where the role of spatial translations is taken by spatial rotations x = (x1, x2) 7→ Rϑx,
ϑ ∈ S1, again giving O(2) equivariance. The TWs then become rotating waves (RWs), of spiral shape,
and the Hopf-bifurcations from spirals yield modulated RWs, or ’meandering spirals’. The demos are
already discussed in some detail in [Uec21, §7.2], without FPC and BPC, and thus here we focus on
these aspects.

Written as a 2–component real system, (23) reads

∂t

(
u1

u2

)
= −G(u, λ) (24)

:=

(
ε2∆+r −ν
ν ε2∆+r

)(
u1

u2

)
− (u2

1+u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1+u2
2)2

(
u1

u2

)
+ s∂x

(
u1

u2

)
.

For all r, ν, c3, µ, c5, and pBCs, or homogeneous DBCs or NBCs, u ≡ 0 is a trivial solution, and we
consider r 7→ u ≡ 0 as the trivial branch. Depending on the domain (or equivalently ε) and the
BCs, there are Hopf (for ν 6= 0) bifurcations from this trivial branch and for c3 < 0 (and c5 > 0) the
bifurcating (TW or SW) branches show folds and (for TWs) possibly further Hopf bifurcations.

4.1 Boxes

Choosing Ω = (−π, π) and pBCs, the Hopf points on the trivial branch are at rk = ε2k2, k = 0, 1, 2,
At each rk, k ≥ 1, we have a double Hopf point and three bifurcating branches, namely standing

10The cGL equation is also equivariant under phase rotations u 7→ eiαu, α ∈ R, but for instance for SWs and TWs
the spatial translations and phase rotations generate the same group orbits, and hence both are removed by the same
phase conditions q(u) = 0, see, e.g., [Hoy06]. Thus nq = 1.

12

waves (SWs), and left and right traveling waves (TWs) of the form

u(x, t) = aei(ωt±εkx), |a|2=− c3

2c5

±

√
c2

3

4c2
5

+ r − ε2k2, ω=ν − µ|a|2, (25)

where the phase of a ∈ C is free. Moreover, we compute that these branches have folds at

r = ε2k2 − c2
3/(4c5)2. (26)

In Fig. 3 we focus on ε = 1 and the branch with k = 1 and FPC (and HPC) for this. First we
note that for k > 0, to fix the (spatial) phase of the TW we need the PC

q(u) = 〈∂xu0, u〉
!

= 0, (27)

and the addition of s∂xu in (23) to treat TWs as relative equilibria, i.e., as fixed points in the comoving
frame, i.e., in the frame moving with speed s. As we then continue the TW branch (black), we get
the fold at r = 3/4 and additionally a HP at r ≈ 1.21, where a branch of relative periodic orbits
bifurcates, i.e., of time–periodic orbits in the comoving frame, aka modulated TWs, and where the
TW branch gains stability. We can now do FPC and HPC with results as expected: in Fig. 3(b) we
show the FPC (dashed line) and HPC (full line) in c3. As c3 decreases, the fold position behaves
according to (26), and also the HP position moves to the left. Similarly, we can do FPC and HPC in
ε, see the end of cmds1Db.m but we leave the analogous discussion to a 2D problem in the next demo.

(a) (b) (c) (d)

0 1 2

r

0

0.5

1

1.5

m
a

x
(u

)

12

20

-2 -1.5 -1

c3

0

0.2

0.4

0.6

0.8

1

1.2

r 14

16

Figure 3: Results for (24) from cmds1D.n, (ν, µ, c5) = (1, 0.5, 1) and (initially) c3 = −1. (a) TW branch

1dtw1b (black) and mTW branch 1dtw1bs1 (violet, with pt20), and the same branches phpc1 (green) and

phpc1-1 (light violet) after HPC to c3 = −2. (b) HPC (full line) and FPC (dashed line) in c3. (c,d) Samples.

It remains to discuss the setup of ∂u(Guφ) for FPC, and of (∂u(Guφr), ∂u(Guφi)) for HPC (both
are essentially the same). On the discrete level, (24) yields

G(u) = (ε2K + sKx)u−Mf(u), K =

(
K 0

0 K

)
, Kx =

(
Kx 0

0 Kx

)
, M =

(
M 0

0 M

)
, (28)

where K is the one–component stiffness matrix corresponding to −∆, Kx is the one–component
advection matrix, M is the one–component mass matrix, and f is the “nonlinearity” (more precisely

13

the terms without spatial derivatives)

f(u) =

(
ru1 − νu2

νu1 + ru2

)
− (u2

1+u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1+u2
2)2

(
u1

u2

)
. (29)

Thus, Gu = ε2K + sKx −M∂uf(u), and since

M(∂uf)

(
φ1

φ2

)
=M

(
∂u1f1φ1 + ∂u2f1φ2

∂u1f2φ1 + ∂u2f2φ2

)
, (30)

the general form of ∂u(Guφ) in this case is

∂u(Guφ) = −M
(

(∂2
u1
f1)φ1 + (∂u1∂u2f1)φ2 (∂u1∂u2f1)φ1 + (∂2

u2
f1)φ2

(∂2
u1
f2)φ1 + (∂u1∂u2f2)φ2 (∂u1∂u2f2)φ1 + (∂2

u2
f2)φ2

)
. (31)

With the shorthand |u|2 = u2
1 + u2

2 we have

∂uf(u) =

(
∂u1f1 ∂u2f1

∂u1f2 ∂u2f2

)
(32)

=

(
r−2u1(c3u1−µu2)−c3|u|2−4c5|u|2u2

1−c5|u|4 −ν−2u2(c3u1−µu2) + µ|u|2−4c5|u|2u1u2

ν−2u1(c3u2+µu1)−µ|u|2−4c5|u|2u1u2 r−2u2(c3u2+µu1)−c3|u|2−4c5|u|2u2
2−c5|u|4

)
,

see also sGjac.m which calls njac.m implementing the “nodal Jacobian” (32). For (31) we need to
compute the 6 expressions ∂2

u1
f1, ∂u1∂u2f1, ∂

2
u2
f1, ∂

2
u1
f2, ∂u1∂u2f2, ∂

2
u2
f2, and then have

∂u(Guφ) = −M
(
M11 M12

M21 M22

)
(33)

with, e.g., M11=spdiags(f1uu.*phi1+f1uv.*phi2,0,np,np), see spjac.m, where, e.g., f1uv=∂u1∂u2f1,
and where phi1, phi2 are the two components of φ, extracted at the beginning of spjac.m from the
extended data in u.

Similarly,

(
∂u(Guφr)

∂u(Guφr)

)
= −

M
(

(∂2
u1
f1)φr1 + (∂u1∂u2f1)φr2 (∂u1∂u2f1)φr1 + (∂2

u2
f1)φr2

(∂2
u1
f2)φr1 + (∂u1∂u2f2)φr2 (∂u1∂u2f2)φr1 + (∂2

u2
f2)φr2

)
M
(

(∂2
u1
f1)φi1 + (∂u1∂u2f1)φi2 (∂u1∂u2f1)φi1 + (∂2

u2
f1)φi2

(∂2
u1
f2)φi1 + (∂u1∂u2f2)φi2 (∂u1∂u2f2)φi1 + (∂2

u2
f2)φi2

)
 , (34)

see hpjac.m. Both, (31) and (34), generalize in an obvious way to N–component (semilinear) reaction
diffusion systems.

Finally, for w̃ = (r, s),

(∂uq)v = ∂xu0,1v1 + ∂xu0,2v2 and (∂w̃G)

(
v1

v2

)
=

(
v1 ∂xv1

v2 ∂xv2

)
, (35)

and hence ∂u(∂w̃G) = 0 and in particular ∂u(quφ) = 0 as before such that we can use the default
functions (returning 0) quuphi,quuphir and quuphii in JFP and JHP, cf. (9) and (17).

Remark 4.1 Again, the functions sG, sGjac, spjac and hpjac are essentially independent of the

14

domain Ω, which in Fig.3 we took as a 1D interval. In [Uec21, §7.2.1] and cglpbc/cmds2D.m we
generalize the computation of SW and TW branches to 2D boxes with pBCs in x1 and (homogeneous)
NBCs in x2. The 3rd HBP on the trivial branch is then triple, giving five bifurcating branches, and
in cmds2Db.m we now illustrate some FPC for this, but here we skip the details and instead next
consider a disk. c

4.2 A disk

In demos/hopf/cgldiskHPC we consider

∂tu = ε2∆u+ (r + iν)u− (c3 + iµ)|u|2u− c5|u|4u+ sKrotu, u = u(t, x) ∈ C, (36)

over a disk of radius π (this precise value plays no role at all). This is (23) with s∂xu replaced by
sKrotu, Krotu = −x2∂x1u+ x1∂x2u, and the PC (27) is replaced by

q(u) := 〈Krotu0, u〉
!

= 0. (37)

Writing (36) as a two component real system proceeds as in (24), and in fact the files sG.m,sGjac.m,
spjac.m and hpjac.m for (36) are exactly as in demos/hopf/cglpbc (with Kx replaced by Krot). We
again have the trivial branch r 7→ u ≡ 0, with HBPs, double due to rotational symmetry (except
the first), and the bifurcating branches are SWs and left/right rotating waves RWs. We refer to
[Uec21, §7.2.2] for basic results on these, including more detailed plots of modulated RWs (mRWs),
aka meandering spirals, often characterized by the motion of the spiral tip.11

Besides again using c3 for FPC and HPC, here we also want to decrease ε (increase the disk size),
and therefore we start with a reasonably fine mesh (np ≈ 2000). This means that the computation
of the mRWs is somewhat expensive (about 20Min for a branch of 10 continuation steps), and since
we focus on HPC we only compute and plot a few mRWs. In Fig. 4, we give the BD of the first RW
rw1 (brown) for continuation in r, which gains stability at HP312 near r = 0.68, and loses it again at
HP4 near r = 1.23. At these HPs, mRWs mrw2 and mrw3 bifurcate, and in particular mrw3 contains
stable solutions. See the top row of (c) for the profiles at these two HPs, which look rather similar,
but the angular speeds ω/2π are different, namely ω = −11.3 at HP3 vs ω = −2.3 at HP3. Similar to
Fig. 3, in (b) we then do (FPC and) HPC in c3. Here again all points move left in r as c3 decreases,
and the stability range of rw1 between HP3 (red branch) and HP4 (blue branch) increases, while the
solution profiles (c) do not change much.

In (d) we do a similar (FPC and) HPC in ε. Decreasing ε, HP3 and HP4 again move to the
left, but also their distance (in r) decreases, and at ε = ε0 ≈ 0.65 they flip order. This could be
problematic as it gives a double HP at ε0 such that JHP might not be regular. Here, however, the
continuation works to ε = 0.5 (and smaller) without complaints. In (e) we go back to continuation
in r at ε = 0.75 from hpc2/pt36, but naturally the FPC and the other HPC gives the same (blue)
branch (brown branch taken from (a) for comparison). Here the stability of rw1 corresponds to the
(small) r–interval between hpc1/pt62 and hpc2/pt36 from (a). This illustrates the application of
HPC to find stability ranges of solutions by continuing points that delimit these ranges.13

11demos/hopf/cgldiskHPC is a modification of demos/hopf/cgldisk since here we introduced the additional pa-
rameter ε which (for decreasing ε) also requires somewhat finer meshes, and we do this new in a new directory in order
not to proliferate branches in demos/hopf/cgldisk; on the other hand, to keep the demo focussed we removed some
additional functions present in cgldisk/ (e.g., for plotting spiral tip paths).

12strictly speaking, this is the 2nd HP on the rw1 branch; the first (at small amplitude of rw1, near r = 0.43) is
spurious and wrongly detected due to the switching on of the PC after branch switching, cf. footnote 6.

13Of course, other HPs could move into the (supposed) “stability interval” delimited by HP3 and HP4, but this does
not occur here.

15

(a) (b) (c)

0 0.5 1 1.5

r

0

0.5

1

m
a

x
(u

1
)

HP3

HP4

-2.5 -2 -1.5 -1

c3

0

0.5

1

r
11

52
11

-2 -1

c3

-15

-10

-5

52

11

(d) (e) (f)

0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

r

36

62

70

122

0.5 1

-10

-8

-6

-4

-2

62

122

70 36

0.2 0.6 1

r

0.6

0.8

1

1.2

m
a
x
(u

1
)

0.1 0.2 0.3

r

0.3

0.4

0.5

0.6

0.7

0.8

m
a
x
(u

1
)

Figure 4: Results for (36) on a disk of radius π, (ν, µ, c5) = (1, 0.5, 1) and initially c3 = −1, ε = 1. (a) BD

of (original) RW1 (brown), with two mRWs bifurcating, giving a stability region for RW1 between HP3 and

HP4. Green branch obtained after (either) FPC or HPC from RW1 to c3 = −2. (b) FPC (black, dashed)

and HPC hpc1 (red, from HP3) and hpc2 (blue, from HP4) in c3, position in r (left), and ω (right), samples

in (c). (d) FPC and HPC in ε, and two samples. (e) back to continuation in r at δ = 0.75, where the (small)

stability region of the blue RW1 is as determined in (d). (f) Continuation in r at δ = 0.5, after mode crossing

in (d).

For ε < ε0 we do not expect stable parts on rw1, and in Fig. 4(f) we show rw1 (blue) obtained
from hpcontexit from hpc1/pt70 (but again from hpc2/pt122 or spcontexit at ε = 0.5 we obtain
the same rw1 branch), which is unstable for all r. However, to correctly detect this we (as always)
need to make sure that we compute the relevant unstable eigenvalues, and for instance the 4 unstable
eigenvalues µ1,2 ≈ −0.06±5i and µ3,4 ≈ −0.09±8.5i are “missed” with the intial setting of computing
p.nc.neig = 30 closest to p.nc.eigref = 0, because too many stable eigenvalues with Reµ > 0 are
closer to 0 on this larger domain. There are different options to refine the eigenvalue computation,
see [Uec21, §3.3], but here we just choose the easy way and set p.nc.neig=100. For completeness,
in (f) we also illustrate that Hopf branch-switching at the HPs still works, by plotting the obtained
modulated RW branches as in (a).

References

[Hoy06] R.B. Hoyle. Pattern formation. Cambridge University Press., 2006.

[Kuz04] Y. A. Kuznetsov. Elements of applied bifurcation theory. 3rd ed. Springer, 2004.

[Uec21] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia, PA,
2021.

[Uec23] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2023.

16

www.staff.uni-oldenburg.de/hannes.uecker/pde2path

	Introduction
	The extended systems and the basic setup
	Without constraints
	With constraints

	FPC and BPC in Cahn–Hilliard problems
	The problem over boxes
	The problem on a torus

	FPC and HPC in the complex Ginzburg–Landau equation
	Boxes
	A disk

