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Abstract

We use four 1D model problems to explain the setup of phase conditions to handle continu-
ous symmetries in pde2path. The first is a complex Ginzburg-Landau equation with, inter alia,
translational and rotational invariance. The second is a FitzHugh-Nagumo type system, for which
we also implement a ’freezing’ method to obtain traveling waves and their speed from time inte-
gration. Additionally we describe setups to compute branches of relative periodic orbits, namely
modulated fronts for a model of autocatalysis, and breathing pulses for another FHN model.
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1 Introduction

The purpose of this tutorial is to explain the handling of continuous symmetries of 1D problems

∂tu = −G(u, λ), u = u(t, x) ∈ Rn, x ∈ (−L,L), (1)

implemented pde2path, with special attention to traveling waves. For a background on pde2path we
refer to [UWR14, Uec17c], and for an introductory tutorial to [RU17]. In §3 we consider the class of
Ginzburg-Landau equations

∂tA = `2Axx + `sAx + (r + iν)A− (c3 + iµ)|A|2A− c5|A|4A+ γ,A = A(t, x) ∈ C, (2)

with real parameters `, s, γ, r, ν, c3, µ, c5 posed on the interval x ∈ (−π, π) with periodic or homoge-
neous Neumann boundary conditions. For γ = 0 both boundary conditions imply a ‘gauge’ symmetry
with respect to rotations A 7→ eiϕA, ϕ ∈ [0, 2π), which is also present on x ∈ R. Hence, for γ = 0
equation (2) is equivariant with respect to the action of the special orthogonal group SO(2). Peri-
odic boundary conditions imply a translation invariance as a typically additional SO(2)-equivariance.
However, for wavetrains A(t, x) = R exp(i(kx−ωt)) the rotation and translation have the same group
orbits; here R > 0 is the amplitude, ω, k ∈ R the frequency and wave number. Equation (2) may also
have reflection symmetries: x→ −x for s = 0, and A 7→ A for ν = µ = 0.
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In §3 we consider fronts in a FitzHugh-Nagumo (FHN) type system, and in addition to the
continuation of equilibrium solutions, we discuss (numerical) time evolution with symmetry reduction,
also known as ‘freezing’ [BT07, BORM14]. This is also used in §4 to compute traveling fronts for
an autocatalysis model, and pulses for another FHN model, from [BCM99] and [IIM00], respectively.
These fronts and pulses may undergo Hopf bifurcations, and thus we also explain a setup to compute
the associated relative time periodic orbits with suitable average speeds.

The associated demo directories cGL, fhn, modfro and breathe are included in symtut under
the pde2path/demos folder.

1.1 Phase conditions

A continuous symmetry of G in (1) with respect to a Lie group Γ implies that nontrivial solutions
come in continuous families given by the group orbit u(g), g ∈ Γ, which yields zero eigenvalue(s) of
the linearisation of G in a solution. Hence, a parameter continuation approach for the steady state
problem

0 = G(u),

which uses the Newton method requires to remove the symmetry in order to converge robustly.
While in practice the discretization may break the symmetry, this is typically unreliable, leads to
ill-conditioned matrices, and does not allow for a proper approximation of the continuous problem.
A natural and practical selection of a (locally) unique element on the group orbit goes by adding a
constraint that requires the predictor u from a solution uold to lie transverse to the group orbit of
uold. In a Hilbert space this is naturally an orthogonality relation, the so-called ‘phase condition’,

〈∂guold, u− uold〉 = 0, (3)

which corresponds to 〈∂gu, ∂µu〉 = 0 for the continuous problem with a parameter µ. Here ∂gu is
determined from the group action and relates to the generators in the Lie-algebra. For a symmetry of
translations in x-direction this gives ∂g = ∂x and for the rotations of the Ginzburg-Landau equations
∂g = i, i.e., multiplication with i.

The generic implementation of phase conditions in pde2path works via auxiliary equations

Qj(u, λ) = 0, j = 1, . . . , nQ, (4)

which are coupled to the ’PDE-part’ ∂tu = −G(u), respectively 0 = G(u) for the steady case, see
[RU17, §1] for more details. Adding an equation requires an additional parameter η in order to
solve the combined problem with a Newton method, which may be viewed as the Lagrange multiplier
associated to the constraint. The natural modification ofG is to add the generator with new parameter
η as

0 = G(u, λ) + η∂gu. (5)

Viewed as a steady state problems with left hand side the time derivative ∂tu, the parameter η thus
measures the velocity with which the resulting solutions move through the group orbit. For traveling
waves it is the speed in space, s in (2), and for rotating waves of (2) the gauge frequency, ν in (2). Note
that a linear problem possesses a dilation symmetry by multiplying with complex numbers. Here the
natural constraint is a fixed canonical scalar product 〈u, u〉 ∈ C of the complex eigenfunction which
yields the complex eigenvalue as the associated two-dimensional parameter.

A periodic domain and constant coefficients in G imply a translation symmetry that can be
preserved on the discrete level as a discrete translation symmetry. However, for front solution the
truncation to a bounded domain necessarily breaks the translation symmetry on R even though,
e.g., homogeneous Neumann boundary conditions on a ‘large’ interval can be used to approximate
the front. Imposing the phase condition then compensates for the lack of translation symmetry to
determine the velocity of the front as a traveling wave. We remark that a better approximation for
fronts as spatially heteroclinic orbits uses projection boundary conditions onto the spatial un/stable
eigenspaces of the asymptotic states, i.e., Robin-type BC, but often the additional effort to implement
these is not needed in practice.
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1.2 Bifurcation with symmetry and pde2path

The detection of bifurcations is affected by symmetries, for instance in constant coefficient problems,
periodic boundary conditions double the multiplicity of eigenvalues of the homogeneous Neumann
boundary conditions through the translates of the Neumann eigenfunctions. In pde2path even mul-
tiplicity means that the usual branch point detection by checking sign changes in the determinant
via LU-decomposition fails in case of periodic boundary conditions. In addition, the convergence of
eigenvalues via the Matlab routine eigs can be problematic for multiple eigenvalues. The detec-
tion problem can often be solved by locating a change in the number of unstable eigenvalues via
p.sw.bifcheck=2 (see [Uec17b, §2.1]), and warnings due to a poor convergence of eigs can some-
times be avoided by reducing p.nc.neigs – however, both of these ad hoc approaches should be used
with caution.

Symmetries cause at least group orbits of branches to bifurcate, and branch switching at the
resulting multiple zero eigenvalue, especially in 2D and 3D, requires judicious choice of the predictor
to detect all bifurcating branches. One may also need to account for symmetries that are present in
the linear problem only. While for continuous symmetries the phase conditions select a representative
of the group orbit, phase conditions can generally be applied to non-trivial solutions only, and thus
the initial step onto the branch requires caution as illustrated for (2) below.

Another symmetry that often occurs in applications is a Galilean boost invariance, which is
usually broken by a mass constraint as a phase condition. See, e.g., [DRUW14, §2.4] for the so called
functionalized Cahn-Hilliard equation, or [BGUY17] for a model for ionic liquids.

Here we restrict to 1D, but our codes naturally and easily extend to 2D or 3D, cf. [RU17, DU17]
for simple stationary examples. The number of required phase conditions then depends on the type
of BC (periodic BC in only one or in several directions) and the type of solutions (homogeneous or
not in some directions).

2 Complex Ginzburg Landau equation: demo cGL

In terms of real and imaginary parts A = u1 + iu2 equation (2) reads

∂t

(
u1

u2

)
=

(
`2∂2

x+s`∂x+r −ν
ν `2∂2

x+s`∂x+r

)(
u1

u2

)
−|A|2

(
c3u1−µu2

µu1+c3u2

)
−c5|A|4

(
u1

u2

)
+

(
γ

0

)
, (6)

where |A|2 = (u2
1+u2

2). In this form the problem can be readily implemented in pde2path, cf. [Uec17b],
where the problem with γ = 0 and ν 6= 0 has been used as a test problem for Hopf bifurcations (under
Neumann BC). For background on the implementation of periodic BC in pde2path we refer to [DU17],
and here only recall that the basic procedure is to
• first set up the problem with Neumann BC;
• call box2per, which generates matrices drop and fill; these are then first used in an initial

step to modify the mass and stiffness matrices, and secondly in the implementations of the right
hand side G and its Jacobian to extend/reduce the solution across periodic boundaries.

Consequently, the implementation of G from (6) reads as in Listings 1, 2, while Listings 3, 4 give the
(joint) implementations of the two phase-conditions

PC1: 〈∂xuold, u− uold〉 = 0, PC2: 〈iuold, u− uold〉 = 0, (7)

and their Jacobian(s). Table 1 gives an overview of the m-files in symtut/cGL.

function r=sG(p,u) % compute pde -part of residual

par=u(p.nu+1: end); f=nodalf(p,u);

r=par(9)^2*p.mat.K*u(1:p.nu)-p.mat.M0*f-par(9)*par(2)*p.mat.Kx*u(1:p.nu);

Listing 1: cGL/sG.m. The matrices M, M0 (which involves fill’), K and Kx are generated in oosetfemops,
and the nonlinearity (everything without derivatives) is outsourced to nodalf, see Listing 2
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Table 1: Scripts and functions in symtut/cGL.

script/function purpose,remarks

cmds1,...,cmds3 scripts, periodic BC in cmds1, fold-continuation in cmds2, Neumann BC in cmds3,
see also plotcmds.m.

cGLinit, oosetfemops initialization function, and setting of FEM operators, including tranform to periodic
domain.

sG, nodalf rhs G, where the nonlinearity is computed in nodalf.

sGjac, njac Jacobian ∂uG, with the main computation in njac.

qf sym, qfder sym the phase conditions (7), and the derivatives.

qf trans, qfder trans only the first phase condition from (7), and its derivative.

spjac, spqjac Jacobians ∂u(∂uGφ) and ∂u(∂uqφ) for fold continuation, see (8).

e2rs gradient based elements 2 refine selector, used for mesh-refinement in cmds3.

function f=nodalf(p,u) % nonlinearity for cGL

par=u(p.nu+1: end); u=p.mat.fill*u(1:p.nu); % extract param., extend sol

r=par(1); nu=par(3); mu=par(4); c3=par(5); c5=par(6); gam=par(7);

n=p.np; u1=u(1:n); u2=u(n+1:2*n); ua=u1.^2+u2.^2; % aux variable |u|^2

5 f1=r*u1 -nu*u2 -ua.*(c3*u1-mu*u2)-c5*ua.^2.* u1 + gam;

f2=r*u2+nu*u1 -ua.*(c3*u2+mu*u1)-c5*ua.^2.* u2;

f=[f1;f2];

Listing 2: cGL/nodalf.m. The nonlinearity for (6).

function q=qf_sym(p,u) % phase condition for both translation and rotation

par=u(p.nu+1: end); uox=p.mat.Kx*p.u(1:p.nu); q=uox ’*(u(1:p.nu)-p.u(1:p.nu));

q=[q; (p.mat.R*p.u(1:p.nu)) ’*(u(1:p.nu)-p.u(1:p.nu))+par(8)];

Listing 3: cGL/qf sym.m. The last solution uold is stored in p.u, and the predictor is u. Line 2 computes

uox=∂xuold and q=〈∂xuold, u − uold〉L2 . Line 3 adds PC2, where the rotation by i is implemented
via p.mat.R, which is set in oosetfemops.m. The auxiliary par(8) is used in the cGL-demo for
continuation in the group orbit of R.

function qu=qfder_sym(p,u) % phase condition jacs translation and rotation

qu=(p.mat.Kx*p.u(1:p.nu)) ’; qu=[qu; (p.mat.R*p.u(1:p.nu)) ’];

Listing 4: cGL/qfder sym.m. The derivatives of the components of q defined in cGL/qf sym.m from Listing 3
with respect to u.

We start by studying the case s = γ = ν = µ = 0 with the aforementioned additional reflection
symmetries; note that the combined reflection A → iA acts here as the permutation (u1, u2) 7→
(u2, u1). For these parameters, the linearization in the trivial steady state u1 = u2 = 0 consists of
two identical uncoupled equations so that any eigenvalue is geometrically at least double. On R or for
periodic boundary conditions, the translation symmetry implies an additional symmetry of arbitrary
relative translation between the components, which is however broken by the nonlinear terms.

2.1 Example results for periodic boundary conditions

First steps. For periodic boundary conditions, we find that the numerical predictor from swibra,
after locating a bifurcation via p.sw.bifcheck=2, in a first step leads to a solution in the invariant
subspace u = v. These are solutions of the Allen-Cahn equation for A ∈ R since A = ueiπ/4 with real
u lies in the group orbit of A = u ∈ R, which gives the Allen-Cahn equation. However, without a
phase condition, further continuation steps jump in an uncontrolled way to the branch of wavetrain
type A = R exp(ikx), i.e., a relative translation by π/4: u = cos, v = sin. Space-shifting a solution on
the Allen-Cahn branch can be used to do a controlled jump to wavetrains. The detailed commands
used here and for further branch continuation are shown in Listing 5, and the results are plotted in
Figures 1.

close all; format compact; keep pphome; % clean up

%% cell 1: init , and continuation of trivial branch
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p=[]; lx=pi; nx=30; p=cGLinit(p,lx ,nx); % initialize

% parameters: 1=r,2=speed ,3=nu ,4=mu ,5=c3 ,6=c5 ,7=gam ,8= symmetry ,9= domain scale

5 par=[-1; 0; 0; 0; -1; 1; 0; 0; 1];

u=zeros(p.np ,1); v=u; p.u=[u;v; par]; % initial guess (here trivial) and pars

dir=’zero’; p=setfn(p,dir); p.fuha.savefu(p); % set dirname and save

%% cell 2: PERIODIC BC: continue zero solution on periodic domain

p=loadp(’zero’,’pt0’,’per/zero’); p=box2per(p,1); % switch to periodic BC

10 p=cont(p,20); % continuation of (here) trivial branch , incl. bif -detec

%% cell 3 - switch to branch for a few steps without phase -cond (PC)

p=swibra(’per/zero’,’bpt2’,’per/ini’ ,0.025); %p.usrlam =[];

p.sw.bifcheck =0; p.sw.spcalc =0; % switch off bif -detection (is random without PC)

p.file.smod =1; p=cont(p,1); % do 1 initial step (for check), and store all

15 %% cell 3a - controlled step to wavetrain branch

p.u(1:p.nu/2)=circshift(p.u(1:p.nu/2),round(p.nu/8));

p.u=nloop(p,p.u); plotsol(p); p.fuha.savefu(p);

%% cell 4 - add phase conditions to 1st point of cell 3 and continue

p=loadp(’per/ini’,’pt1’,’per/stand’); p=resetc(p); p.file.smod =10;

20 p.nc.ilam =[1;2;3]; p.nc.nq=2; % 2 phase -cond , speed and nu as add parameters

p.fuha.qf=@qf_sym; % function handle for aux. eqn.

p.sw.qjac =1; p.fuha.qfder=@qfder_sym; % analytical jac for aux. eqn.

p.sw.bprint =2; clf(2); p.nc.dsmax =0.05; p=cont(p,30);

%% cell 5 - add only transl. PC to 1st point of cell 3 -> uncontr. rotations

25 p=loadp(’per/ini’,’pt1’,’per/rot0’); p=resetc(p); p.file.smod =10;

p.nc.nq=1; p.nc.ilam =[1;2]; % 1 phase -cond , speed as second parameter

p.fuha.qf=@qf_trans; p.sw.qjac =1; p.fuha.qfder=@qfder_trans;

p.sw.bprint =2; clf(2); p.nc.dsmax =0.05; p.sol.ds= -0.05; p=cont(p,40);

%% cell 6 - point of cell 3a (TW), only transl phase -cond sufficient

30 p=loadp(’per/ini’,’pt2’,’per/wtstand ’); p=resetc(p); p.file.smod =10;

p.nc.nq=1; p.nc.ilam =[1;2]; % 1 phase -cond , speed as second parameter

p.branch =[ bradat(p); p.fuha.outfu(p,p.u)]; figure (2); clf;

p.fuha.qf=@qf_trans; p.sw.qjac =1; p.fuha.qfder=@qfder_trans;

p.sw.bprint =2; p.nc.dsmax =0.1; p.sol.ds= -0.1; p=cont(p,20);

35 %% Plotting cmds in plotcmds.m

Listing 5: cGL/cmds1.m. Cell 1: Initialization at trivial solution; in cGLinit we set p.sw.bifcheck=2. See
Cell headings for purposes of further cells, and Figure 1 for some results (plots in plotcmds.m). The phase
condition qf trans in Cells 5,6 is q=(p.mat.Kx*p.u(1:p.nu))’*(u(1:p.nu)-p.u(1:p.nu))+par(8); i.e.,
only PC1.

Fold continuation with constraints. Fold continuation without constraints (nq = 0) is described
in various settings in [RU17]. For nq ≥ 1 the extended system for U = (u, φ,w), where φ is in the
kernel of ∂uG and w = (λ, η) is a shorthand for the active parameters, reads

H(U) =



G(u,w)

∂uG(u,w)φ

q(u,w)

∂uq(u,w)φ

‖φ‖2L2 − 1

p(U)


= 0, with Jacobian DUH(U) =



∂uG 0 ∂wG

∂u(∂uGφ) ∂uG ∂w(∂uGφ)

∂uq 0 ∂wq

∂u(∂uq φ) ∂uq ∂w(∂uq φ)

0 2φT 0

∂up ∂φp ∂wp


. (8)

Note that the last column of DUH(U) has dimension 2(nu + nq + 1) × (2 + 2nq). The last line
of DUH(U) is generated automatically, and also ∂wG and ∂w(∂uGφ) are obtained quickly by finite
differences. For 1D model problems, this also works for ∂u(∂uGφ) and ∂u(∂uqφ), but in particular in
higher space dimension for efficiency it is highly recommend to implement functions returning these
objects. For a 2-component semilinear system such as (6), we have

∂u(∂uGφ) =

(
(∂2
u1f1)φ1 + (∂u1∂u2f1)φ2 (∂u1∂u2f1)φ1 + (∂2

u2f1)φ2

(∂2
u1f2)φ1 + (∂u1∂u2f2)φ2 (∂u1∂u2f2)φ1 + (∂2

u2f2)φ2

)
, (9)
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Figure 1: Plots of results for the cGL equation with periodic BC from cmds1.m (Listing 5). (a) Solution plots

from the initial continuation of the 2nd branch without phase conditions. Here both components are plotted

due to the setting p.plot.pcmp=[1 2]; p.plot.cl={’black’,’blue’}; in cGLinit.m. The first step lies on

the subspace of Allen-Cahn solutions with u = v, while at some step we jump to the subspace of wavetrains

with A = R exp(ikx). (b-d): The black branch in (b) with u = v, with example solution in the top panel of

(c), is obtained from switching on both phase conditions at ini/pt1. If at this point we only switch on the

translational PC1, then we obtain the blue branch, with uncontrolled rotations of the phase (example plots in

(d)) – this is meant to illustrate problems that typically arise in continuation without proper phase conditions.

On the other hand, only switching on PC1 at the wave train solution ini/pt5 yields the red branch of standing

wave trains, because in this case PC1 and PC2 have the same group orbits. The gray line is obtained via fold

continuation in c5 of the black fold near r = 0.8 (cmds2.m).

and this is straightforwardly implemented in spjac.m, see the source code. Since the constraints in
Listing 4 are linear in u, we moreover have ∂u(∂uq φ) = 0 ∈ R2×nu , see Listing 6. Cell 2 of Listing 7
then gives an example of fold continuation; Cell 3 shows how to return to regular continuation from
a fold-point, and the Gray branch in Fig. 1(b) illustrates the results.

function quuph=spqjac(p,u) % \pa_u(q_u*phi), needed for fold continuation

2 quuph=sparse(p.nc.nq ,p.nu);% here just 0-matrix

Listing 6: cGL/spqjac.m. ∂u(∂uqφ) for q from Listing 4.

Continuation along group orbits. In Cells 3-6 of Listing 7 we continue along group orbits and
illustrate some symmetry breaking, see the Listing caption for comments, and Fig. 2 for results.

%% cell 1 - fold -continuation

p=spcontini(’per/stand’,’fpt2’,6,’per/fc1’); % init fold cont , par 6 new prim. par

p.plot.bpcmp =1; figure (2); clf; p.sol.ds= -0.01; % use this new param.for plotting

p.sw.spjac =1; p.fuha.spjac=@spjac; % spectral jac

5 p.sw.spqjac =1; p.fuha.spqjac=@spqjac; % and jac for constraints

tic; p=cont(p); toc

%% cell 2 - switch back to regular cont

p=spcontexit(’per/fc1’,’pt20’,’per/stand2a ’); p.plot.bpcmp =0;

clf (2); p=cont(p,1); p=cont(p,20); % cont in one direction , 1 init.step for saving

10 % continue in other direction

p=loadp(’per/stand2a ’,’pt1’,’per/stand2b ’); p.sol.ds=-p.sol.ds; p=cont(p,20);

%% cell 3 - continue standing wave in family given by rotation symmetry

p=loadp(’per/stand’,’pt20’,’per/rot’); p=resetc(p); p.file.smod =1;

p.nc.ilam =[8;2;3]; p.nc.dsmax =0.3; p.nc.lammax =10; p=cont(p,30);

15 %% cell 4 - continue WT in family given by rot=transl symmetry (shape doesn ’t

change)

p=loadp(’per/wtstand ’,’pt20’,’per/trans’); p=resetc(p); clf(2);

p.nc.ilam =[8;2]; p.nc.lammax =10; p=cont(p,20);

%% cell 5 - continue WT to nonzero speed/rotation (shape doesn ’t change)
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p=loadp(’per/wtstand ’,’pt20’,’per/wtmove ’); p=resetc(p); clf(2);

20 p.nc.ilam =[4;2]; p.sol.ds=-p.sol.ds; p.plot.bpcmp =2; p=cont(p,20);

%% cell 6 - break rotation symmetry through gamma for a wavetrain

p=loadp(’per/wtstand ’,’pt20’,’per/wtasym ’); p=resetc(p); clf(2);

p.sw.foldcheck =0; p.nc.ilam =[7;2]; p.plot.bpcmp =0; p=cont(p,20);

Listing 7: cGL/cmds2.m. Cells 1 and 2 perform fold continuation. Cell 3 and Fig. 2 (a,b) illustrate the
effect of continuation along the group orbits of rotations. Cell 4 illustrates that for wavetrains continuation
in par(8) is equivalent to continuation in position, while for instance continuation in µ adapts the speed; in
both cases, the shapes of the wavetrains stay fixed. Finally, Cell 6 breaks the rotation symmetry by changing
γ and yields asymmetric solutions.
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Figure 2: Some results for the cGL with periodic BC from Cells 3 and 6 of Listing 7.

2.2 Neumann boundary conditions

Neumann BC break the translation symmetry and the additional translation symmetry of the lin-
earization in the trivial zero solution. However, bifurcation points from the zero solution still come
with double zero eigenvalue due to the decoupled nature of the linearized equations. Hence, branch
points should be detected via p.sw.bifcheck=2.

We focus on the branch that relates to fronts. As for periodic BC, branch switching initially goes
without imposing a phase condition. The numerical predictor again steps onto the Allen-Cahn branch
with u = v and stays on it since in the present case there is no wavetrain branch. Listing 8 shows
the commands we use in this case. As mentioned in the introduction, even though the translation
symmetry is broken, proper approximation of traveling fronts from the unbounded domain requires
adding the translation phase condition.

%% cell 1 - hom. NEUMANN BC: continue zero solution

p=loadp(’zero’,’pt0’,’nbc/zero’); p=setlam(p, -0.1); p.nc.dsmax =0.1; p=cont(p,10);

%% cell 2 - switch to front -mode for one step

p=swibra(’nbc/zero’,’bpt2’,’nbc/ini’ ,0.01); p.sw.bifcheck =0; p=cont(p,1);

5 %% cell 3 - add phase conditions and continue

p=loadp(’nbc/ini’,’pt1’,’nbc/stand’); p=resetc(p);

p.nc.ilam =[1;2;3]; p.nc.nq=2; p.fuha.qf=@qf_sym;

p.sw.qjac =1; p.fuha.qfder=@qfder_sym;

p.sw.bprint =[2;3]; clf(2); p.nc.dsmax =0.5; p=cont(p,20);

10 %% cell 4 - continue in family given by rotation symmetry

p=loadp(’nbc/stand’,’pt20’,’nbc/rot’); p=resetc(p); clf(2);

p.nc.ilam =[8;2;3]; p=cont(p,20); % L2 -norm is of the first component only

%% cell 5 - increase domain size and refine mesh

p=loadp(’nbc/stand’,’pt20’,’nbc/dom’); p=resetc(p); clf(2);

15 p.nc.ilam =[9;2;3]; p.plot.bpcmp =9;

p.sol.ds= -0.1; p.nc.dsmax =0.1; p.nc.lammin =0.5; p=cont(p,10);

p=meshada(p,’ngen’,3,’sig’,1e-4);

p.nc.dsmax =0.1; p.nc.lammin =0.25; p=cont(p,10);

%% cell 6 - nonzero frequency/speed through gamma

20 p=loadp(’nbc/dom’,’pt10’,’nbc/move -’); p=resetc(p); clf(2);

p.nc.ilam =[7;2;3]; p.branch =[ bradat(p); p.fuha.outfu(p,p.u)];

p.nc.lammin =-1; p.plot.bpcmp =2; p=cont(p,22);
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p=loadp(’nbc/dom’,’pt10’,’nbc/move+’); p=resetc(p); p.sol.ds=-p.sol.ds;

p.nc.ilam =[7;2;3]; p.branch =[ bradat(p); p.fuha.outfu(p,p.u)];

25 p.nc.lammin =-1; p.plot.bpcmp =2; p=cont(p,22);

Listing 8: cGL/cmds3.m Cell 1 detects the bifurcation points, cell 2 goes one step without phase condition
on the front-mode. Cell 3 adds both phase conditions for rotation and translation and computes the branch.
Cell 4 continues in the group orbit of rotations, and Cell 5 continues in the domain size, refines the mesh,
and continues further. Cell 6 illustrates continuation in the parameter γ; see Fig. 3 for results.
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Figure 3: Plots of results for the cGL equation with Neumann BC from Listing 8. Cell 3 (a,b), Cell 4 (c), and

Cell 5 (d), and Cell 6 (e).

Remark 2.1 In the above experiments, after the primary bifurcation from (u, v) ≡ (0, 0) bifurcation
detection was turned off since the secondary bifurcations in (6) are of Hopf type, which we do not
consider here. Hopf bifurcations with phase constraints are discussed in §4 and [Uec17a]. c

3 Fronts in a FitzHugh-Nagumo type model: demo fhn

In this section we consider front solutions in the FitzHugh-Nagumo type system in 1D

ut = ε2uxx + sux + u− u3 − ε(p3 + p4v + p5v
2 + p6v

3)

vt = ε2(vxx + u− v) + svx,
(10)

x ∈ R, which is implemented in sG.m, nodalf.m and the Jacobian in sGjac.m of the demo directory
fhn. In addition to the translation symmetry in x and reflection symmetry in x for s = 0, the system
possesses the reflection symmetry (u, v) 7→ −(u, v) for p3 = p5 = 0.

On the spatial scale x/ε, at ε = 0 (10) reduces to the symmetric Allen-Cahn equation for u (and
vxx = 0), which possesses stationary front solutions. As shown in [CBvHR12], for 0 < ε � 1 these
steady fronts perturb to slowly moving fronts with velocity s of order ε2 and sharp interface, whose
existence is to leading order in ε equivalent to

p3 + p4v(s) + p5v(s)2 + p6v(s)3 −
√

2

3
s = 0,
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where v(s) = s√
s2+4

. This equation has a cusp singularity at p4 = 2
√

2/3 and p3 = p5 = p6 = 0 and the

associated center manifold captures the dynamics of the front velocity as discussed in [CBDvHR15].
An overview of the scripts and functions in symtut/FHN is given in Table 2. The commands in

cmds1 (Listing 9) compute the standing and traveling fronts with pde2path by continuation from the
zero state at s = pj = 0, j = 3, . . . , 6 with homogeneous Neumann boundary conditions and phase
condition of translation symmetry as in the previous section; here implemented in qf.m with Jacobian
qfder.m.

Table 2: Scripts and functions in symtut/FHN.

script/function purpose,remarks

cmds1 script for computing the steady and traveling fronts by bifurcation

cmds2 convergence to traveling front by freezing simulation starting from perturbations of
unstable steady fronts

cmds3 fold continuation to obtain cusp in p4
fhnplot script with plotting commands

FHNinit, oosetfemops initialization function, and set up of FEM operators

sG, nodalf, sGjac rhs G, where the nonlinearity is computed in nodalf, and Jacobian

qf, qfder the translational phase condition 〈∂xuold, u〉 = 0, and its u-derivative

spjac, spqjac Jacobians ∂u(∂uGφ) and ∂u(∂uqφ) for fold continuation.

e2rs gradient based elements 2 refine selector, used for mesh-refinement in cmds3

tintfreeze function for time integration with “freezing”.

%% demo fhneps , clear , - init and findbif

close all; format compact; keep pphome; p=[]; p=FHNinit(p,10 ,50);

%pars: 1=eps; 2=vel; others of coupling function g=p_3+p_4*u+p_5*u^2+p_6*u^3

par =[6; 0; 0; 0; 0; 0;]; u=zeros(p.np ,1); v=u; p.u=[u;v; par]; p=findbif(p,1);

5 %% cell 1 - swibra to stationary front for one step

p=swibra(’init’,’bpt1’,’prep/swibra ’ ,0.1); p.nc.lammin =0.5; p=cont(p,1);

%% cell 2 - add velocity and phase equation

p=swiparf(’prep/swibra ’,’pt1’,’prep/decoup ’ ,[1;2]);

p.nc.nq=1; p.nc.xiq =0.1; p.fuha.qf=@qf; p.fuha.qfder=@qfder;

10 p.sol.ds= -0.1; p.nc.lammin =0.1; p.usrlam =[0.4 ,0.3 ,0.2]; p.sw.bifcheck =0;

p.nc.dsmax =0.5; p.nc.dlammax =0.5; p.sw.bprint =2; clf(2); p=cont(p,30);

%% cell 3 - refine mesh

p=loadp(’prep/decoup ’,’pt20’,’prep/decoup ’);

p=meshada(p,’ngen’,3,’sig’,1e-4); p.fuha.savefu(p);

15 %% cell 4 - turn on cubic coefficient

p=swiparf(’prep/decoup ’,’pt21’,’prep/cubic’ ,[6;2]);

p.nc.lammin =-1; p.nc.lammax =1;

p.usrlam =[0.25 ,0.5 ,0.75]; p.sol.ds= -0.1; clf(2); p=cont(p,20);

%% cell 5 - find bifurcation point

20 p=swiparf(’prep/cubic’,’pt5’,’stand’ ,[4;2]); p.sw.bifcheck =1;

p.nc.lammin =-2; p.nc.lammax =1.5; p.sol.ds =0.1;

p.usrlam =[]; clf(2); p=cont(p,25); plotsol(p,6);

%% cell 6 - switch to branch with nonzero velocity

p=swibra(’stand’,’bpt1’,’travel ’ ,0.1); p.nc.dsmax =0.1;

25 p.plot.bpcmp =2; clf(2); p=cont(p,20);

%%

p=swibra(’stand’,’bpt1’,’travel -’ ,-0.01); p.nc.dsmax =0.1;

p.plot.bpcmp =2; clf(2); p=cont(p,20);

Listing 9: fhn/cmds1.m. Commands to locate the front solutions of (10) and compute a supercritical
pitchfork bifurcation in the front velocity. In Cell 1 we find a primary bifurcation from (u, v) ≡ 0 at
relatively large ε with coupling parameters equal to 0. In Cell 2 we continue the decoupled front branch
down to ε = 0.1, where we obtain a rather sharp interface, calling for the mesh-refinement in Cell 3. In
Cell 4 we continue in the cubic coefficient p6 = par(6) and then in Cell 5 find a bifurcation point upon
continuation in p3 = par(4), leading to moving fronts in Cell 6. See Figure 4.

Due to the spatial scale separation by ε, the fronts are sharp for small ε so that the mesh needs
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to be adapted. Here we use an error estimator based on the gradient of the first component as shown
in Listing 9.

function [p,idx]=e2rs(p,u) % elements to refineme selector

% here not via error estimation but simply via gradient

ux=p.mat.M\(p.mat.Kx*u(1:p.nu)); idx=find(abs(ux(1:p.np -1)) >=p.nc.sig);

if(mod(p.np ,2)); idx=idx (1: length(idx) -1); end;

Listing 10: fhn/e2rs.m. A mesh refinement strategy that respects the reflection symmetry.
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Figure 4: Plots of results for the FHN system from Listing 9. Decoupled branch (a), solution plots at ε ≈ 3.3

(b) and ε = 0.1 (c), and solution after continuing (c) to p6 = −1 (d). (e): supercritical pitchfork of fronts in

terms of velocity and parameter p3 (e), and profiles of stationary symmetric and asymmetric moving front at

labeled points in (f-h).

Next, the dynamics on the aforementioned center manifold is computed with pde2path via a
‘frozen’ simulation of the parabolic equation, which removes the translational motion using the phase
condition – now applied to the time stepping algorithm so that in (3) uold is the previous time step.
The location of the front-type solution is thereby effectively fixed in the mesh, which also keeps the
sharp gradient at the refined part. Let F (u, v) denote the right hand side of (10) for s = 0. Then at
each time step t the current ‘speed’ s = s(t) relative to the translation mode (ux, vx) is determined
as the projection of −F onto (ux, vx):

s(t) = −〈F (u, v), (ux, vx)〉
‖(ux, vx)‖22

,

which is equivalent to the phase condition 〈(ut, vt), (ux, vx)〉 = 〈F (u, v) + s(t)(ux, vx), (ux, vx)〉 = 0,
i.e., the time evolution it orthogonal to the translation symmetry, cf. (3).

The implementation of this adapted velocity requires just a small change of a time integration
loop and the routine tintfreeze is shown in Listing 11, based on the routine tints. The vector vel
is returned by this routine in order to be processed for plotting or further evaluation, see Listing 12
and Figure 5.

% adapted from tint to freeze the translation symmetry

% additional input/output vel=[ times (..); speeds (...)]
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Figure 5: Plots of (a) the velocity vel(n) and, by integration, positions (b) for the simulation with tintfreeze

of two perturbations from an unstable front from Listing 11.

% additional input vmod=skip for augmenting vel

function [p,t1,vel]= tintfreeze(p,t1,dt,nt,pmod ,vel ,vmod)

5 n=0; t=t1; K=p.u(p.nu+1)^2*p.mat.K; Kx=p.mat.Kx;

% prefactor stiffness matrix for semi -implicit time -stepping:

Lam=p.mat.M+dt*K; [L,U,P,Q,R]=lu(Lam);

while(n<nt) % integration loop

f=nodalf(p,p.u); uKx = Kx*p.u(1:p.nu);

10 r=K*p.u(1:p.nu)-p.mat.M*f; cs=(uKx ’*r)/(uKx ’*uKx); % cs=current speed

g=p.mat.M*p.u(1:p.nu)+dt*(p.mat.M*f+cs*uKx);

p.u(1:p.nu)=Q*(U\(L\(P*(R\g)))); n=n+1; t=t+dt; % time stepping:

if (mod(n,vmod)==0); vel=[vel [t; cs]]; end % for returning velocity

if(mod(n,pmod)==0); plotsol(p,p.plot.ifig ,p.plot.pcmp ,p.plot.pstyle); end

15 end

t1=t;

Listing 11: fhn/tintfreeze.m. Sample of time (linearly implicit) stepping that freezes the translation
symmetry. Note that tintfreeze can be called repeatedly, if an initial call turned out to cover a too short
time interval, returning a growing vector vel of times and speeds. Also note that in l5 we explicitly define
the effective stiffness matrix, which we then prefactor in l7, while the nonlinearity is computed in l9 via
nodalf. Thus, tintfreeze is somewhat problem dependent (see also the implementations in the modfro

and breather directories).

%% cell 1 - perturb by eigenfunction and simulate time dynamics

p=loadp(’stand’,’pt7’,’sim’); p.nc.nq=0; [muv ,V]= specGu(p); muv (1:4)

p.u(1:p.nu)=p.u(1:p.nu)-1e-3* real(V(1:p.nu ,2));

vel1 =[]; t1=0; nt =5000; dt=0.5; pmod =500; vmod =50;

5 [q,t1 ,vel1]= tintfreeze(p,t1 ,dt ,nt ,pmod ,vel1 ,vmod);

t1=0; vel2 =[]; p.u(1:p.nu)=p.u(1:p.nu)+2e-3* real(V(1:p.nu ,2)); % other direction:

[q,t1 ,vel2]= tintfreeze(p,t1 ,dt ,nt ,pmod ,vel2 ,vmod);

%% cell 2 - velocity plot

figure (7); clf; fs=’fontsize ’;

10 plot(vel1 (1,:),vel1 (2,:),vel2 (1,:),vel2 (2,:),’-r’,’LineWidth ’ ,3);

xlabel(’time’,fs ,16); ylabel(’velocity ’,fs ,16); set(gca ,fs ,16); axis tight

%% cell 3 - position plot

tl=size(vel1 ,2); pos1=zeros(1,tl); pos2=pos1;

for(i=1:tl -1)

15 pos1(i+1)=pos1(i)+vel1(2,i)*(vel1(1,i+1)-vel1(1,i));

pos2(i+1)=pos2(i)+vel2(2,i)*(vel2(1,i+1)-vel2(1,i));

end;

figure (8); clf; plot(vel1 (1,:),pos1 ,vel2 (1,:),pos2 ,’-r’,’LineWidth ’ ,3)

xlabel(’time’,fs ,16); ylabel(’position ’,fs ,16); set(gca ,fs ,16);axis tight

Listing 12: fhn/cmds2.m Simulation from unstable front in supercritical pitchfork plotted in Figure 4.
Results are shown in Figure 5.

Next we break the reflection symmetry (u, v) 7→ −(u, v) by changing the parameter p3, which
relates to unfolding the cusp singularity at the pitchfork bifurcation point. The commands in com-
bination with time simulation from an asymmetric unstable front are shown in Listing 13 and the
results are plotted in Fig. 6.
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%% cell 1 - use p3 to break symmetry to obtain direction reversing front

p=swiparf(’stand’,’pt7’,’asym’ ,[3;2]); p.nc.lammin = -0.4; p.nc.lammax =1; clf (2);

p.usrlam =0.05; p.sol.ds =0.1; p.sw.foldcheck =1; p.plot.bpcmp =2; p=cont(p,10);

%% cell 2 - continue the fold to get the underlying cusp

5 p=spcontini(’asym’,’fpt1’,4,’cusp’); p.plot.bpcmp=p.nc.ilam (2); clf (2);

p.sw.spjac =1; p.fuha.spjac=@spjac; p.sw.spqjac =1; p.fuha.spqjac=@spqjac;

p.sol.ds= -0.01; p.nc.lammax =1.5; p=cont(p);

%% cell 3 - perturb by eigenfunction and time -integrate

p=loadp(’asym’,’pt2’,’sim’); [muv ,V]= specGu(p); n=p.nu;

10 p.u(1:n)=p.u(1:n)+1e-3* real(V(1:n,1)); vel1 =[]; t1=0; nt =5000; dt =0.5; pmod =500;

vmod =50;

[q,t1 ,vel1]= tintfreeze(p,t1 ,dt ,nt ,pmod ,vel1 ,vmod);

p.u(1:n)=p.u(1:n)-2e-3* real(V(1:n,1)); vel2 =[]; t1=0; % other direction

[p,t1 ,vel2]= tintfreeze(p,t1 ,dt ,nt ,pmod ,vel2 ,vmod);

p=setaux(p,2,vel2(2,end)); p.fuha.savefu(p);

15 %% cell 4 - velocity and position plots

figure (7); clf; fs=’fontsize ’;

plot(vel1 (1,2:end),vel1 (2,2:end),vel2 (1,2:end),vel2 (2,2:end),’-r’,’LineWidth ’ ,3);

xlabel(’time’,fs ,16); ylabel(’velocity ’,fs ,16); set(gca ,fs ,16); axis tight

tl=size(vel1 ,2); pos1=zeros(1,tl); pos2=pos1;

20 for(i=1:tl -1)

pos1(i+1)=pos1(i)+vel1(2,i)*(vel1(1,i+1)-vel1(1,i));

pos2(i+1)=pos2(i)+vel2(2,i)*(vel2(1,i+1)-vel2(1,i));

end;

figure (8); clf; plot(vel1 (1,:),pos1 ,vel2 (1,:),pos2 ,’-r’,’LineWidth ’ ,3)

25 xlabel(’time’,fs ,16); ylabel(’position ’,fs ,16); set(gca ,fs ,16); axis tight

%% cell 5 - continue final state as TW (get branch from cell 1 again!)

p=swiparf(’sim’,’pt3’,’travel2 ’ ,[3;2]); p.usrlam=p.u(p.nu+3); p.nc.lammin =-4;

p.nc.lammax =0.2; p.sol.ds =0.1; p.nc.dsmax =0.1; clf(2); p=cont(p,30);

figure (3); clf; plotbra(p,3,2,’lsw’ ,0);

Listing 13: fhn/cmds3.m. Commands for continuation of Fig. 4(f) in p3 = par(3) (Cell 1), continuation
of the obtained fold (Cell 2), yielding the unfolding of the cusp, for simulation of perturbations from an
asymmetric unstable front (Cells 3 and 4). If after time integration we again continue in p3 = par(3) (Cell
5), then we regain the branch from Cell 1.
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Figure 6: Results from Listing 13. (a) continuation in p3. (b) continuation of the first fold on asymmetric

branch through the cusp point. (c,d) plots of the velocities vel(n) and, by integration, positions for simulations

with tintfreeze of two perturbations from the asymmetric unstable front with label 2 in (a).

4 Hopf–bifurcation with symmetry

As examples of Hopf bifurcations from traveling (and standing) waves we consider two models from
[BCM99] and [IIM00]. The first, also considered in [BT07, Examples 3.1 and 5.5], reads

∂tu = a∂2
xu− uf(v), ∂tv = ∂2

xv + uf(v), (11)
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f(v) = vm for v ≥ 0 and 0 otherwise, where a > 0 and m ≥ 2. are parameters. We study (11) on
the domain Ω = (−lx, lx) with sufficiently large lx, and with BC (u, v) = (u, v)∓ for x = ∓lx, with
(u, v)− = (0, 1) and (u, v)+ = (1, 0) which fixes a boost invariance of (11). Using freezing, we first
find a TW for a near 0.2 with (constant) speed s, and then lowering a we find a Hopf bifurcation to
a modulated TW.

The second example is similar to the FHN equation from §3, namely

∂tu = ∂2
xu+ f(u, v), ∂tv = D∂2

xv + g(u, v), (12)

with homogeneous Neumann BC, f(u, v) = u(u−α)(β−u)− v, g(u, v) = δ(u− γv), with α, β, γ > 0,
and 0 < δ � 1. This model has standing and traveling pulses (and traveling fronts), and for δ → 0
we find a Hopf bifurcation to standing (and traveling) breathers. See also [HM94, GF13] for related
models and results.

The basic strategy for both models is the same, and quite related to §3: first use freezing to
converge to an appropriate traveling wave, then add the phase condition 0 = q(u) := 〈∂xu0, u− u0〉.
In contrast to the examples from §2 and §3 we now ‘freeze’ by using a fixed reference profile u0, and
consider the extended system

M∂tu = −(G(u)− s∂xu), (13a)

0 = q(u). (13b)

We continue stationary solutions (corresponding to TW) of (13) in some parameter, including adaptive
mesh refinement to deal with sharp interfaces, and find a Hopf bifurcation point (HBP) for the
extended system. For this we naturally use the (generalized) eigenvalue problem(

µM 0

0 0

)(
v

σ

)
=

(
−(∂uG(u)− s∂x) ∂xu

∂uq(u) 0

)(
v

σ

)
, (14)

where a zero eigenvalue from (approximate) translational invariance of (11) and (12) is absent.
However, the additional algebraic constraint in (13) is incompatible with our default set-up for

Hopf-bifurcations, see [Uec17b, Uec17a], where (13b) constitutes a constraint at each time t so s = s(t)
in (13a). In order to compute Hopf branches1 we redefine s in (13a) as an average (over one period)
speed, and replace the constraint q(u(t)) = 0 at each time slice by the averaged constraint

qH(u) :=

m−1∑
i=1

〈∂xu0, u(ti)〉
!

= 0, (15)

where t1, . . . , tm denotes the gridpoints of the time discretization. Thus, after introducing the un-
known period T and rescaling t = Tt, i.e., now t ∈ [0, 1), t1 = 0, . . . , tm = T , we consider

M∂tu = −T (G(u)− s∂xu), (16a)

qH(u) = 0. (16b)

with scalar constraint and s ∈ R. Hence, (16) is a system of mnu + 1 equations for the mnu + 1
unknowns (u(t1), . . . , u(tm), s), where nu is the number of unknowns at each time slice.

With φ and ψ denoting the phase condition and the arclength condition for Hopf orbits, see
[Uec17b], the complete extended system for U = (u, T, λ, s) then reads

H(U) :=


G(U)

φ(u)

ψ(U)

qH(u)

 !
=


0

0

0

0

 ∈ Rmnu+3, (17)

1We refer to a branch that bifurcates at a Hopf bifurcation point simply as a ‘Hopf branch’ and the associated
periodic orbits as ‘Hopf orbits’.
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with Jacobian

A=


∂uG ∂TG ∂λG ∂sG

∂uφ 0 0 0

ξHτu (1−ξH)wT τT (1−ξH)(1−wT )τλ wsτs
∂uqH ∂T qH ∂λqH ∂sqH

 , (18)

where τ = (τu, τT , τλ, τs) denotes the tangent along the branch, and ξH , wT , ws are weights; see
[Uec17b, §2.3] for further details and notation, e.g., the definition of G as a time discretization of
M∂tu = −T (G(u)− s∂xu. For (17) we can immediately use a modified Hopf setup for systems with
constraints, see [Uec17a, §4 and Appendix A], where two more examples of Hopf bifurcations with
symmetries are considered: a reaction diffusion system with mass-conservation, and the Kuramoto-
Sivashinsky equation on a periodic domain, which yields a translational and boost symmetry.

We can also compute the Floquet multipliers of (relative) periodic orbits from ∂uG. Note, however,
that since q fixes the space translations, ∂uG typically possesses a multiplier close to 1 from space
translations of the periodic orbit – in addition to the trivial multiplier 1 from time-translations. As a
consequence, the stability computations of periodic orbits tend to be less accurate than for the case
without translational invariance, and we slightly relax the tolerance for multipliers close to 1 to be
identified as 1, i.e., we work with tolfl =1e-3 instead of the default setting tolfl=1e-8.

4.1 Modulated fronts: demo modfro

Table 3 gives an overview of the scripts and functions in symtut/modfro used for (11). In cmds1 we
fix m = 9, lx = 25 with an (initial) mesh of nx = 51 points, and choose a as the bifurcation parameter,
starting with a = 0.18 and initial guess

u0(x) =
1

2
(tanh(2x)− 1) and v0 = 1− u.

This is also used as a reference profile in tintfreeze (and later on in (15)). For a = 0.18 time simu-
lation with tintfreeze quickly convergences to a travelling wave, but for, e.g., a = 0.1, tintfreeze
gives a time oscillating near travelling wave profile. Notably, the oscillations in the speed s are rather
large, see Fig.7(a), and Listing 15, Cells 1 and 2. Thus, somewhere between a = 0.18 and a = 0.1 we
expect a Hopf bifurcation to a relative periodic orbit, i.e., a modulated front.

Table 3: Main scripts and functions in symtut/modfro.

script/function purpose,remarks

cmds1 main script

modfroinit, oosetfemops initialization function, and setting of FEM operators.

sG, nodalf, sGjac rhs G, where the nonlinearity is computed in nodalf, and Jacobian

qf, qfder the phase conditions 〈∂xu0, u〉 = 0, and its u-derivative

qfh, qfhjac the Hopf version (15) of the translational phase condition, and its derivative

e2rs gradient based elements 2 refine selector, used for mesh-refinement in cmds3

oomeshada adaption of library routine oomeshada to also interpolate the (fixed) reference profile
u0 for the phase condition to the adapted mesh.

tintfreezex variant of tintfreeze (see §3) which also returns u(tj , ·) for plotting.

%% demo modfro , C1: clear and init

close all; format compact; keep pphome; p=[]; lx=25; nx=50; par =[0.2 9 0];

p=modfroinit(p,lx ,nx ,par ,’s1’);

%p.u(p.nu+1) =0.1; p1=p; % change a=par(1) to get an osc.front via tintfreeze

5 %% C2: use tintfreeze to converge to TW , and plot velocity

nt=1.5e4; pmod =500; vmod =100; dt=0.1; t1=0; vel =[];

[p,t1 ,vel]= tintfreeze(p,t1 ,dt ,nt ,pmod ,vel ,vmod);

figure (7); clf; h=plot(vel(1,:),vel(2,:)); axis tight; legend(’a=0.18 ’);

%% C3: switch on ext. system , cont for 1 step , then mesh -ref , then cont further
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Figure 7: Results from modfro/cmds1 (Listing 13), with tl=100 (mesh in t). (a) shows the speed s(t) returned

from tintfreeze for a = 0.18 (convergence to steady TW) and a = 0.1 (modulated TW). (b) shows a basic

bifurcation diagram. The black branch corresponds to the steady TW with speed=average speed s; at a ≈ 0.157

there is a Hopf bifurcation for (13) (with profiles in (c)), and the red branch is the bifurcating branch with

numerically stable Floquet multiplier until a ≈ 0.1. Panels (d)-(h) present data from the Hopf branch, at

points 5,10 and 15. (d) shows the u profiles of the Hopf orbits uH at pt5 and pt10 (magenta≈1, cyan≈ 0),

and (f) shows the associated speeds obtained from the Hopf orbits (blue) and from tintfreeze (red), starting

with the same initial condition. Already at a ≈ 0.128 (pt10), there is a significant error between the two,

which would be hard to see in the associated solution plots. This indicates a significant discretization error in

uH : direct simulation with freezing readily allow for a t-mesh fine enough that solutions do not change upon

further refinement. (f)-(h) show uH and s(t) at pt15 (a ≈ 0.094), together with the Floquet multipliers. (g)

illustrates the behavior of the second component v (every 4th point in t is plotted only), and that the adaptive

mesh-refinement in space at the front position in Cell 3 of cmds1.m makes sense. (h) shows a significant error

in the comparison of s(t) and sfreeze(t). The bottom panel of (f) illustrates that there are 2 Floquet multipliers

µ1,2 very close to 1, which is always the case along the Hopf branch. At pt15 µ1 ≈ 1 + 10−5, µ2 ≈ 1.016 (red),

i.e., numerical instability, which is due to an underresolved t mesh, see text for further comments.

15



10 p.nc.ilam =[1 3]; p.nc.nq=1; p.u(p.nu+3)=vel(2,end);

p.fuha.qf=@qf; p.fuha.qfder=@qfder; p.sw.qjac =1;

p.sol.ds=-1e-3; p=cont(p,1); p=meshada(p,’ngen’,2,’sig’ ,0.005); p=cont(p,10);

%% C4: swibra to Hopf , average speed <s> as aux. variable ,

clear aux; aux.nqnew =0; % switch off steady constraint

15 aux.nqh =1; % switch on 1 ’Hopf ’ constraint

aux.qfh=@qfh; aux.qfhder=@qfhjac; % function handles to hopf contraints

aux.tw=1e-6; % small weight of period T in arclength often useful

aux.dlam =0; % use trivial initial predictor

aux.tl =100; hodir=’h1’; ds =0.1; aux.tl=50; % use 2nd version for quick results

20 p=hoswibra(’s1’,’hpt1’,ds ,4,hodir ,aux); % branch switching

p.hopf.flcheck =1; p.hopf.fltol=1e-2; % set some additional controls

p.file.smod =1; p.nc.dsmax=ds; p.sw.verb =0;

p.hopf.auxp=@speedplot; % aux function for on the fly plot of s(t)

p.nc.ilam =1; % the primary cont. parameter

25 p.hopf.ilam =3; % the 2nd active parameter , here again the speed (but now average)

p=cont(p,10);

Listing 14: modfro/cmds1.m (first 26 lines). Cells 1-3 deal with initialization, convergence to a (steady)
TW, and continuation of this in the parameter a, see text. Cell 4 deals with branch switching to and
continuation of the Hopf branch. Most control variables for this continuation are set automatically via
hostanparam in hoswibra, and we only need to pass a few problem specific parameters via the field aux. In
particular, in line 14 we switch off the (steady) constraint (13b) in the computation of the residual, which
thus only considers (13a) at each time time slice. Instead, in lines 15,16 we switch on the ’Hopf constraint’
(16b) and set the pertinent function handles, cf. Listings 16 and 17. Additionally, we set a small T weight
in the arclength norm, and tell hoswibra to use a “trivial” (no normal form computations) initial predictor,
i.e., fix the continuation parameter λ in the first predictor. In line 19 we set the time-discretization (rather
fine, see text for further comments, and alternatively uncomment the 2nd half) and the output directory for
the Hopf orbits. Line 20 contains the actual branch switching. Before continuation in line 26 we set some
additional controls and parameters, such as a rather large tolerance for identifying the Floquet multiplier 1
(see text).

%% C5: compare Hopf -orbit to tintfreeze: load some point , and freeze again

% OK for tl=100 and a=0.147 (pt5), significant error already at at a=0.128 (pt10)

p=loadp(hodir ,’pt5’); hoplot(p,1,1); speedplot(p); ylabel(’’);

vel =[]; t1=0; t2=p.hopf.T; tl=p.hopf.tl; p.u(1:p.nu)=p.hopf.y(1:p.nu ,1);

5 nt =1000; dt=t2/nt; pmod=round(nt/20); vmod =5;

[p,t1 ,vel ,uv]= tintfreezex(p,t1 ,dt ,nt ,pmod ,vel ,vmod);

figure (10); hold on; plot(vel(1,:),vel(2,:),’r’); axis tight;

set(gca ,’FontSize ’,p.plot.fs); xlabel(’t’); legend(’s’,’s_{freeze}’);

Listing 15: modfro/cmds1.m (continued). In Cell 5 we compare s(·) from the Hopf orbit with sfreeze(·)
obtained from tintfreeze with uH(0, ·) as an initial condition, see text for further comments. The remainder
of modfro/cmds1.m deals with plotting.

function qf=qfh(p,y) % aux eqns in Hopf , here: sum up shifts wrt u0

qf=0; for i=1:p.hopf.tl; u=y(1:p.nu,i); qf=qf+p.u0x ’*(u-p.u0); end

Listing 16: modfro/qfh.m. Straightforward implementation of the constraint (15).

function qfj=qfhjac(p,y) % derivatives of qfh

qfj=zeros(1,p.hopf.tl*p.nu); qfa =0;

for i=1:p.hopf.tl; qfj((i-1)*p.nu+1:i*p.nu)=p.u0x ’; end

Listing 17: modfro/qfhjac.m. Derivative of qfh.

In oder to find the Hopf bifurcation of modulated TW, in Cell 3 of cmds1 we continue the steady
branch of (13), with some adaptive mesh-refinement at the front, and find a Hopf bifurcation at
a ≈ 0.157. In Cell 4 we then branch switch to these Hopf orbits, set up as (17), and in Cell 5 the
speeds

s(t) =
〈∂xu0, G(u(t))〉
〈∂xu0, ∂xu〉

,
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computed a posteriori from the Hopf orbits, are compared with those obtained from freezing, cf.
Fig. 7(f,h). In the remainder of cmds1, which is not listed, we a posteriori compute Floquet multipliers
of Hopf orbits and deal with plotting. The Listing and Figure captions contain some for further details.

Regarding the numerical accuracy of the results from Fig. 7 we remark that the branch of mod-
ulated fronts can be continued by alternating tintfreeze and decreasing a to a = 0.05, say, in a
stable manner. In contrast, continuation of the Hopf branch predicts loss of stability as measured by
Floquet multipliers around a ≈ 0.11. This discrepancy is worse for m = 50, but relaxes for m = 200.
Since tintfreeze can be run with much smaller dt without change of results we attribute the error
at small a to underresolved t meshes in the continuation of the Hopf branch. The numerical accuracy
of the Floquet multiplier µ1, theoretically at 1 by time-shift invariance, is on the order of 10−5 up
to a = 0.1, and the (spurious) instability is due to the second multiplier µ2, associated to spatial
translation, which is present in ∂uG from (18).

4.2 Breathers: demo breathe

We consider (12) on the domain (−lx, lx) with lx = 50, with fixed parameters (α, β, γ,D) = (0.11, 1, 6, 2)
and use δ as a bifurcation parameter, starting with δ = 0.1. We focus on the Hopf bifurcation from
standing pulses, and thus the continuation of a branch of standing breathers. The computation of
a Hopf-bifurcation from traveling pulses to traveling breathers is also possible, but requires rather
large domains and fine meshes, and therefore is not included in this demo; see [IIM00] for suitable
parameter ranges.

Figure 8 shows some basic results for (12), and for the script file cmds1.m and the function files in
symtut/breathe we directly refer to the source code. The implementations of the phase conditions
are as before, and similarly for the implementations of the right hand sides and Jacobians we refer
to the sources sG.m, nodalf.m, and sGjac.m. From the numerical point of view, the three main
differences compared to §4.1 are as follows:

1. For (12) we refrain from adaptive mesh refinement in x. This can be done to improve the
accuracy of the steady pulses and of the breathing pulses near bifurcation, but ultimately the
breathers oscillate over a wide region, so that refinement locally in x is irrelevant.

2. For (12) the Hopf orbits become unstable at small δ, i.e., δ = δ0 ≈ 0.005. However, in contrast
to §4.1, this instability is due to a multiplier crossing the unit circle at −1, and is correct in
the sense that also in tintfreeze simulations the breather looses stability at δ0. The time
evolution then converges to the spatially uniform solution due to interaction with the boundary.
For larger domains we obtain stable widely moving breathers down to smaller δ.

3. For standing pulses and breathers, s = 0 with high numerical accuracy, i.e., |s| ≤ 10−12 for
all solutions. Nevertheless, s is required as an active variable for steady and breathing (with
s as average speed) pulses, with the associated phase conditions (13b) and (16b), respectively.
Without (13b), bifurcations from the pulses cannot be detected in a reliable way, and without
introducing (16b) the convergence of Newton loops in the continuation of the breathers fails
completely.
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