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Abstract

We give a detailed analysis of the interaction of two NLS-described wave packets with
different carrier waves for a nonlinear wave equation. By separating the internal dynamics
of each wave packet from the dynamics caused by the interaction we prove that there is
almost no interaction of such wave packets. We also prove the validity of a formula for
the envelope shift caused by the interaction of well-prepared pulses and invalidate this
formula by numerical experiments in case of non-well prepared pulses.
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1 Introduction

We consider the nonlinear wave equation

@2
t u = @2

x u � u + u3 (1)

with t � 0; x 2 R, and u = u(x; t ) 2 R. For this equation the ansatz

u(x; t ) = "A (X; T )ei( kx � !t ) + c.c. + O("2); X = " (x � ct); T = "2t; (2)

where k; ! 2 R satisfy the linear dispersion relation! 2 = k2 + 1, where c = d!=dk = k=! is
the linear group velocity, and where 0< " � 1 is a small perturbation parameter, leads to the
Nonlinear Schr�odinger (NLS) equation

2i!@T A = (1 � c2)@2
X A + 3 jAj2A

describing slow modulations in time and space of the underlyingcarrier wave ei( kx � !t ) . This
procedure is common in nonlinear optics and allows to reducethe dimension of the problem in
numerical simulations by a factor up to 105, cf. [Ag01]. In modern �ber optics, however, not
only a single carrier wave, but a number of di�erent carrier waves is used, cf. [HK95].

In the particular case of two di�erent carrier waves, i.e.,kA 6= kB , the ansatz is given by

u(x; t ) = "A
�
" (x � cA t); "2t

�
ei( kA x� ! A t ) + "B

�
" (x � cB t); "2t

�
ei( kB x� ! B t ) + c.c. + O("2);

leading to a system ofcoupledNLS equations

2i! A @T A = (1 � c2
A )@2

X A
A + 3AjAj2 + 6AjB j2;

2i! B @T B = (1 � c2
B )@2

X B
B + 3BjB j2 + 6BjAj2:

SinceX A = " (x � cA t) = " (x � cB t) � " (cA � cB )t = X B � cA � cB
" T and since the group velocities

cA 6= cB of the wave packets are di�erent, this system has still the multiple scale character of
the original problem. However, the interaction of localizedwave packets will only happen on a
very short time scale, such that asymptotically the interactionterms

6A(X A ; T)jB (X B ; T)j2 = 6A(X A ; T)
�
�
�
�B

�
X A �

(cB � cA )
"

T; T
� �

�
�
�

2

and

6B (X B ; T)jA(X A ; T)j2 = 6B (X B ; T)
�
�
�
�A

�
X B �

(cA � cB )
"

T; T
� �

�
�
�

2

are negligible. As a consequence, in lowest order we have a system of uncoupledNLS equations

2i! A @T A = (1 � c2
A )@2

X A
A + 3AjAj2;

2i! B @T B = (1 � c2
B )@2

X B
B + 3BjB j2;

or, in other words, each band is described independently by a single NLS equation.

In applications the neglection of the coupling terms is a common procedure, cf [Ag01].
There exist a number of mathematical papers [PW96, BF06, CBSU07] which validate this
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procedure rigorously. Our research is dedicated to an improvement of existing estimates for wave
interaction aiming towards applications in optical communication lines which use wavelength
division multiplexing technologies, cf.[HK95].

In our previous work [CBSU07] we presented improved bounds fortwo waves modulated
by NLS 1-solitons (in the following called well-prepared pulses, see Figure 1). Here, we further
extend our results to waves whose envelopes aregeneral localized pro�lesevolving according to
the NLS equation (in the following callednon-well prepared pulses, see Figure 1). We show for
these general wave packets that the interaction leads to anO(" )-phase shift of the carrier wave
and to an O(" )-shift of the envelope. Thus, we improve the bound for the possible envelope
shift caused by the interaction of general localized NLS-described wave packets fromO(1),
cf. [PW96], to O(" ) and generalize theO(" )-bound for the interaction of wave packets with
NLS 1-solitons as envelope to general NLS-described wave packets. Moreover, we invalidate
by numerical experiments a formula for the envelope shift forgeneral wave packets, but prove
analytically the validity of this formula for pulses in the form of NLS 1-solitons.

Notation. Many possibly di�erent constants which can be chosen independently of 0 < " � 1
are denoted byC. The spaceH s(m) consists ofs-times weakly di�erentiable functions for
which kukH s (m) = ku� mkH s = (

P s
j =0

R
j@j

x (u� m )j2dx)1=2 with � (x) =
p

1 + x2 is �nite, where
we do not distinguish between scalar and vector-valued functions or real- and complex-valued
functions. The spaceCs

b consists ofs-times continuously di�erentiable functions for which
kukCs

b
=

P s
j =0 supx2 R j@j

xuj is �nite. We sometimes write, e.g.,ku(x)kCs
b

for the Cs
b-norm of the

function x 7! u(x).

Acknowledgement. The authors would like to thank Kurt Busch and his working group
at the University of Karlsruhe for raising this question. The workis partially supported
by the Deutsche Forschungsgemeinschaft DFG and the Land Baden-W�urttemberg through
the Graduiertenkolleg GRK 1294/1: Analysis, Simulation und Design nanotechnologischer
Prozesse.

2 Approximate description of internal and interaction
dynamics

In this and in the next section we derive approximation equations in order to describe the
internal and interaction dynamics of the wave packets. In order to make the concept of internal
and interaction dynamics more precise letSt be the nonlinear evolution operator of the nonlinear
wave equation (1). The evolutionSt (uA ) of one single initial wave packetuA is called internal
dynamics. The solution to the sum of two single initial wave packets uA and uB evolves as
St (uA + uB ). The interaction dynamics is then the di�erenceSt (uA + uB ) � St (uA ) � St (uB ).
It is the purpose of this paper to give a precise description of this di�erence. We are especially
interested in improved estimates for carrier and envelope shifts caused by the interaction.

3



Approximate description of internal dynamics. In the case of one single wave packet
with a wavenumberkA the dynamics can be described approximately by the ansatz (2).By
adding higher order terms to the ansatz the formal error, or more precisely the later on intro-
duced residual, can be made arbitrarily small. The NLS equationis then accompagnied by a
system of linear PDEs and algebraic equations.

Approximate description of interaction dynamics. In the case oftwo-wave propagation
the nonlinearity leads to an interaction between the wave packets which in turn result in a
modi�cation of the pure internal dynamics. We improve the ansatz from [CBSU07] and seek
solutions of the form

" 	 = ( "A 1 + "2A2 + "3A3)E + ( "B 1 + "2B2 + "3B3)F + c.c. + "3Mmixed (3)

where the termMmixed serves to cancel mixed and higher order harmonic terms in the formal
error and where

E = exp
�
i(kA x � ! A t + " 
 A; 1(ZB ; T) + "2
 A; 2(ZB ; T))

�
;

F = exp
�
i(kB x � ! B t + " 
 B; 1(ZA ; T) + "2
 B; 2(ZA ; T))

�
;

ZA = " (x � cA t + " A (X B ; T)) ; (4)
ZB = " (x � cB t + " B (X A ; T)) ; (5)
A j = A j (ZA ; T); B j = B j (ZB ; T); X A = " (x � cA t); X B = " (x � cB t): (6)

The internal dynamics of the wave packets will be described bythe variablesA j ; B j ; j = 1 ; 2,
whereas the interaction dynamics is described by the phase shifts 
 A;j ; 
 B;j ; j = 1 ; 2 and the
envelope shifts A ;  B . The terms A3; B3 play a crucial role in this work, since it turns out
that depending on the special choice forA1; B1 { well- or non-well prepared { they include
contributions to the envelope shift and hence make the envelope shift formulas invalid.

Well-prepared-pulse Non-well-prepared-pulse

Figure 1: Left: A well-prepared pulse. The envelope (dashed line) is a NLS 1-soliton. Right:
A non-well prepared pulse. The envelope (dashed line) can be anything \pulse like". Here we
chose an almost rectangular envelope.

Remark 2.1 a) The ansatz (3) is more general than the one in [CBSU07] where we essentially
choseA1 and B1 in the form of NLS 1-solitons. Here we allowA1 and B1 to be more general
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solutions of the respective NLS equation, see Figure 1. This thenrequires the introduction of
"2A2E; " 2B2F to describe the internal dynamics.

b) The phase shifts 
A; 1; 
 B; 1 turn out to be real functions. In order to describe the
interaction dynamics in more detail than in [CBSU07] we additionally introduce phase shift
corrections 
 A; 2; 
 B; 2, which turn out to be imaginary, and the envelope shifts A ;  B . These
last ones have already been introduced in earlier works like [OY74] or [TPB04] where they are
called pulse shifts. Our aim is to validate or invalidate the formulas for the envelope shifts not
only formally, but by rigorous estimates.

c) Furthermore, we change the notation: The variablesYA ; YB from [CBSU07] are now called
A3; B3, whereasA3; B3 from [CBSU07] are here contained in the termMmixed .

d) Finally, in the following we replace the argumentsX B ; X A of  A ;  B by ZB ; ZA . More
rigorously we may de�neZA ; ZB implicitly by

ZA = " (x � cA t + " ~ A (ZB )) ; ZB = " (x � cB t + " ~ B (ZA )) : (7)

Then  A and ~ A resp.  B and ~ B di�er by O(" ) terms which we may discard for our purposes.
Therefore, from now on we writeZB ; ZA for the arguments of A ;  B , respectively. c

Remark 2.2 At this point the notion of an envelope shift is somewhat ambiguous since by
Taylor-expansion w.r.t.  A and  B we have withX A = " (x � cA t); X B = " (x � cB t);

" 	( x; t ) =
�
"A 1(X A ; T) + "2A2(X A ; T) + "3(A3(X A ; T) +  A @1A1(X A ; T))

�
E

+
�
"B 1(X B ; T) + "2B2(X B ; T) + "3(B3(X B ; T) +  B @1B1(X B ; T))

�
F + O("4):

The terms "2A2 and "2B2 do not contribute to envelope shifts caused by interaction since they
are determined by internal dynamics of the individual pulses(see (12)). The termA3 is of the
same order as the envelope shift term@1A1 A , i.e., it accounts for both internal and interaction
dynamics, but it is neither clear to which amountA3 describes the interaction, nor in which way
{ as phase or envelope correction. In other words, it has to be checked, if the derived formulas
really quantify the entire envelope shift in the particular order. The validity of the envelope
shift formula is investigated numerically in Sec. 5 and explained analytically in Sec. 6. This
expansion obviously gives anO(" )-bound for the envelope shift if we can prove anO("3)-bound
in L1 for the terms indicated with O("4) and an O(1)-bound for A3 and B3. Then the vertical
bound O("3) only allows a ‘horizontal error’ ofO("1). The required bounds will be proven in
Proposition 4.3 and Lemma 4.7. c

Remark 2.3 Since 
 A; 2; 
 B; 2 are supposed to describe interaction dynamics we may assume
that 
 A; 2 = 
 B; 2 = 0 initially. Moreover, due to the fact that 
 A; 2 and 
 B; 2 turn out to be
spatially localized, also after interactionE and F contain only phase shifts forjxj ! �1 ,
i.e. 
 A; 2 and 
 B; 2 play no role for the envelope shift. In detail, in Lemma 4.6 we prove the
O(1)-boundedness of 
A; 1 and 
 B; 1 in L1 and that 
 A; 2 and 
 B; 2 are O(1)-bounded inH s(m).
Thus, for instance, j
 A; 2(� B ; T)j � C=(1 + " jx � cB t j)m due to Sobolev’s embedding theorem
for s > 1=2. For the same reason we havejA j (� A ; T)j � C=(1 + " jx � cA t j)m and so, for large
t, i.e. for t > 1=",

jA j (� A ; T)j
 A; 2(� B ; T) = O(("t )� m ):
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Moreover, for well prepared pulsesjA j (� A ; T)j
 A; 2(� B ; T) is exponentially small. According
to the last remark, jA j (� A ; T)j
 A; 2(� B ; T) has to beo(" ), except during interaction. Thus we
require ("t )� m = O("1+ �m ) with � > 0 arbitrary small but �xed. This yields t � " � (1+1 =m+ � ) �
" � 2 for m � 2. In summary, for C1" � (1+1 =m+ � ) � t � C2" � 2 the corrections 
 A; 2 and 
 B; 2

play no role for the envelope shifts. In case of well prepared pulses this can be sharpened to
C1 ln(" )" � 1 � t � C2" � 2. c

3 Derivation of approximation equations

The so-called residual

Res(" 	) = � @2
t (" 	) + @2

x (" 	) � (" 	) + ( " 	) 3 (8)

describes how much an ansatz" 	 fails to satisfy the nonlinear wave equation (1). Plugging in
the ansatz (3) into the residual

Res(" 	) =
X

l;m;n

" l Res
l;m;n

E mF n (9)

leads to a number of conditions in order to make the residual assmall as possible, in particular
to Nonlinear Schr�odinger equations forA1 and B1.

Remark 3.1 The term Mmixed = Mmixed (A1; A2; A3; B1; B2; B3; E; F ) accounts for terms in-
volving higher order or mixed harmonics, i.e. for the frequencies which are generated by the
nonlinearity according to the formula

("A 1E + "2A2E + "3A3E + "B 1F + "2B2F + "3B3F + c.c.)3

=
X

k1+ :::+ k12=3 ;k j � 0

3!
k1! � � � k12!

("A 1E )k1 � � �
�
"3B3F

� k12 ;

however without the nonlinear terms generated atE or F . At "3E 2F for example the term
A2

1B1 appears. To cancel this term we extend the ansatz by� 21"3A2
1B1E 2F and get an algebraic

equation for � 21 of the form
�
1 + (2i ! A + i ! B )2 + (2i kA + i kB )2

�
� 21 = 3 :

The procedure is essentially the same for each such term leading to equations of the form
�
1 + ( l! A + j! B )2 + ( lkA + jk B )2

�
� lj = � lj :

Now Mmixed contains all these extensions. Thus, we can concentrate on the remaining terms of
the residual. c

Remark 3.2 Since A j ; j = 1 ; 2; 3; depend on the same variables and belong to the same
harmonic, the subsequent hierarchy of conditions (10){(15) reappears shifted in order, i.e. the
residual actually contains much more terms, for example" j (� k2

A + ! 2
A � 1)A j (ZA ; T)E; j = 1 ; 2; 3,

which we only listed for j = 1. Hence choosing the dispersion relation as solvability condition
cancels all terms. The exact same mechanism holds for the entiresystem of equations (10){(15),
so we tacitly left all these terms out to simplify the exposition. c
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Using the notation Resl;m;n from (8) for the coe�cients of " lE mF n we �nd the subsequent
hierarchy of equations.

� At "E we �nd
Res
1;1;0

= ( � k2
A + ! 2

A � 1)A1(ZA ; T) != 0

which yields the linear dispersion relation

! 2
A = k2

A + 1 :

� At "2E we �nd
Res
2;1;0

= 2i( kA � cA ! A )@1A1(ZA ; T) != 0

which yields the linear group velocity

cA = kA =! A :

� At "3E we �nd
Res
3;1;0

= s31 + s32

with

s31 = 2i ! A @2A1(ZA ; T) + (1 � c2
A )@2

1A1(ZA ; T) + 3 jA1(ZA ; T)j2A1(ZA ; T);
s32 =

�
2(! A cB � kA )(ZA ; T)@1
 A; 1(ZB ; T) + 6 jB1(ZB ; T)j2

�
A1(ZA ; T):

Then s31
!= 0 yields the NLS equation

� 2i! A @2A1(ZA ; T) = (1 � c2
A )@2

1A1(ZA ; T) + 3 jA1(ZA ; T)j2A1(ZA ; T); (10)

and s32
!= 0 yields the phase shift formula


 A; 1(ZB ; T) =
3

kA � ! A cB

Z ZB

jB1(�; T )j2 d�; (11)

so 
 A; 1 is a real quantity and therefore apure phase correction.

� At "4E we �nd

Res
4;1;0

= 2 ! A i@2A2(ZA ; T) + (1 � c2
A )@2

1A2(ZA ; T) + s41 + s42 + s43 + s44 + s45 + s46

where

s41 =
�
6A2(ZA ; T)A1(ZA ; T) + 3 A2(ZA ; T)A1(ZA ; T)

�
A1(ZA ; T);

s42 = 2cA @1@2A1 (ZA ; T) ;

s43 = 6
�
B2(ZB ; T)B 1(ZB ; T) + B 2(ZB ; T)B1(ZB ; T)

�
A1(ZA ; T);

s44 = � 2! A A1(ZA ; T)@2
 A; 1(ZB ; T);
s45 = 2i @1A1(ZA ; T) (( kA � cB ! A )@1 A (ZB ; T) + (1 � cA cB )@1
 A; 1(ZB ; T)) ;

s46 =
�
i(1 � c2

B )@2
1 
 A; 1(ZB ; T) + 2 @1
 A; 2(ZB ; T)( ! A cB � kA )

�
A1(ZA ; T):
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The terms in s43; s44 are interaction terms in the sense that they are products of functions
such that both ZA and ZB appear as arguments. Thus, since we consider localized
solutions, they areO(1) only on an O(" ) time-scale and will, therefore, be moved into
the equations forA3 at "5E .
We are now left with a linear inhomogeneous evolution equation for A2,

� 2! A i@2A2(ZA ; T) = (1 � cA
2)@2

1A2(ZA ; T) + s41 + s42: (12)

Here, no coupling with terms involvingB -variables occurs such thatA2 describes internal
dynamics of a single pulse.
The terms in s45 together with (11) give theenvelope shift formula

 A (ZB ; T) =
3(1 � cA cB )

(cB ! A � kA )2

Z ZB

jB1(�; T )j2 d�: (13)

The terms in s46 yield the second order correction to the phase shiftin the form


 A; 2(ZB ; T) =
i(1 � c2

B )
2(kA � ! A cB )

@1
 A; 1(ZB ; T) =
3i(1 � c2

B )
2(kA � ! A cB )2

jB1(ZB ; T)j2; (14)

so 
 A; 2 is purely imaginary and therefore anamplitude correction, which however is alge-
braically small w.r.t. " except during collision of wave packets.

� At "5E we �nd

Res
5;1;0

= 2 ! A i@2A3(ZA ; T) + (1 � c2
A )@2

1A3(ZA ; T) + s51 + s52 + s53 + s54 + s55 + s56

where

s51 =
�
6A3(ZA ; T)A1(ZA ; T) + 3 A3(ZA ; T)A1(ZA ; T)

�
A1(ZA ; T);

s52 = � @2
2A1(ZA ; T) + 2 cA @1@2A2(ZA ; T);

s53 = 6A1(ZA ; T)jA2(ZA ; T)j2;

s54 = 6
�
B3(ZB ; T)B 1(ZB ; T) + B 3(ZB ; T)B1(ZB ; T)

�
A1(ZA ; T);

s55 = (1 � c2
A )@1A1(ZA ; T)@2

1 A (ZB ; T) + 2(1 � cA cB )@2
1A1(ZA ; T)@1 A (ZB ; T)

+2i
�
(1 � c2

B )A1(ZA ; T)@2
1 
 A; 2(ZB ; T) + 2(1 � cA cB )@1A1(ZA ; T)@1
 A; 1(ZB ; T)

�
;

s56 = � 2! A (A1(ZA ; T)@2
 A; 2(ZB ; T) + A2(ZA ; T)@2
 A; 1(ZB ; T))
+i

�
2cB @2A1(ZA ; T)@1
 A; 1(ZB ; T) + 2 cA @1A1(ZA ; T)@2
 A; 1(ZB ; T)
+2cB A1(ZA ; T)@1@2
 A; 1(ZB ; T)

�
:

The terms s51; s52 and s53 describe internal dynamics, whereass54; s55 and s56 are in-
teraction terms in the same sense ass43 and s44. We chooseA3 to satisfy the linear
PDE

� 2i! A @2A3(ZA ; T) = (1 � c2
A )@2

1A3(ZA ; T) + M 0[A3; B3] (15)
+ I (A1; A2; B1; B2; 
 A ;  A ) + " � 1(s43 + s44)

where M 0[A3; B3] = s51 + s54 is linear in its arguments andI (A1; A2; B1; B2; 
 A ;  A ) =
s52+ s53+ s55+ s56 contains inhomogeneous terms which areO(1) bounded on theO(1="2)-
time scale ifA1; : : : ;  B are O(1) bounded (up to second derivatives forA1; B1).

Finally we chooseB1; B2; B3; 
 B; 1; 
 B; 2, and  B to satisfy the counterparts to (10){(15).
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4 Validity of the approximation

As a consequence of the perturbation analysis of the last section the �rst non-vanishing terms
in the residual are formally of orderO("6). Below we will prove

Lemma 4.1 Let sA � s + 4 ; kA 6= kB ; kA ; kB > 0, and let AjT =0 ; B jT =0 2 H sA (2) \ H sA +4 (0).
Then for all T0 > 0 there exist"0 > 0; C > 0 such that for all " 2 (0; "0) we have

sup
t2 [0;T0="2]

k Res(" 	) kH s � C"11=2:

The di�erence between the exponents of the formal errorO("6) and O("11=2) in the lemma
follows from the scaling properties of theL2-norm. The weighted spacesH s(m) are used to
describe analytically the condition that the wave packets are spatially localized. This is needed
to estimate the interaction terms like for instances43 and s44.

As a direct consequence of Lemma 4.1 and of the fact that our original system (1) does not
contain quadratic terms, with a simple application of Gronwall’s inequality [KSM92] it follows
that the original system really behaves as predicted by the approximation.

Theorem 4.2 (similar to [CBSU07, Theorem 3.6]) LetsA � s + 4 ; kA 6= kB ; kA ; kB > 0, and
let AjT =0 ; B jT =0 2 H sA (2) \ H sA +4 (0). Then for all T0 > 0 there exist"0 > 0; C > 0 such that
for all " 2 (0; "0) we have

sup
t2 [0;T0="2]

ku(x; t ) � " 	( x; t )kH s � C"7=2:

From Theorem 4.2 we obtain by Sobolev’s embedding theorem

Proposition 4.3 Under the assumptions of Theorem 4.2 we have

sup
t2 [0;T0=" 2 ]

ku(x; t ) � " 	( x; t )kCs−1
b

� "7=2: (16)

As explained in Remark 2.2 this last estimate together with the subsequent Lemma 4.7
allows us to bound the magnitude of the envelope shift byC".

Hence it remains to give theProof of Lemma 4.1. The assertion obviously follows if
we prove that the approximation equations (10){(15) possess order O(1)-bounded solutions
on the O(1="2)-time scale. We have to solve three di�erent kinds of equations. The �rst
set of equations, (10) and (12), describes internal dynamics. Since these two equations are
independent of the small parameter 0< " � 1 we have

Lemma 4.4 For all s � 2; m � 0, and initial condition A1jT =0 2 H s(m) \ H s+2 m (0) there
exists a timeT0 > 0 such that (10) has a unique solution

A1 2 C
�
[0; T0]; H s(m) \ H s+2 m (0)

�
:
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Proof: We apply the variation of constant formula and use the fact thati@2
X is the generator

of a strongly continuous semigroup inH s(m) \ H s+2 m (0), cf. [CKS95].

Note that T0 is independent of the weight. This can be proven like in [SW00, Lemma
6.4] such that the existence time is determined only by the local existence and uniqueness in
H s-spaces.

Since (12) is a linearized NLS equation forA2 with O(1)-bounded inhomogeneous terms
s41 + s42 with exactly the same arguments we �nd

Lemma 4.5 Let A1 2 C([0; T0]; H s(m) \ H s+2 m (0)) with s � 2 be a solution of (10). Then for
all initial conditions A2jT =0 2 H s(m) \ H s+2 m (0) there exists a unique solution of(12) with

A2 2 C
�
[0; T0]; H s(m) \ H s+2 m (0)

�
:

The second group of equations, namely (11), (13), and (14), describes the essential interac-
tion dynamics. By pure integration we �nd

Lemma 4.6 Let A1; B1 2 C([0; T0]; H s(m) \ H s+2 m (0)) be a solution of (10). Then

@1
 A; 1; @1
 B; 1; @ZB  A ; @ZA  B ; 
 A; 2; 
 B; 2 2 C([0; T0]; H s(m) \ H s+2 m (0));

and 
 A; 1; 
 B; 1;  A ;  B 2 C([0; T0]; Cs+2 m
b ).

In terms of local existence and uniqueness andO(1)-boundedness of solutions the only
nontrivial equation is (15) which is a linearized NLS equation for A3 with O(1)-bounded in-
homogeneous terms and terms" � 1(s43 + s44). Since the last terms are onlyO(" � 1) on an
O(" )-scale w.r.t. T we �nd

Lemma 4.7 For all s � 2 there exists aC > 0 such that for all " 2 (0; 1] the following holds.
System(15) with zero initial data has a unique solutionA3; B3 2 C([0; T0]; H s(m) \ H s+2 m (0)).
It satis�es

sup
0� T � T0

k(A3; B3)(T)kH s (m)\ H s+2m (0) � C:

Proof: [CBSU07, Lemma 4.2]

5 Numerical simulations

Before we discuss the validity of the envelope shift formula (13) in case of well-prepared pulses
we provide some numerical experiments to illustrate the aboveanalysis. As a result of our
experiments we invalidate the formula for the envelope shiftin case of non-well prepared pulses.

The numerical scheme used is accurate enough so that the true di�erences between the an-
alytical approximate solutions and the actual (numerical inthis case) solution can be detected.
The scheme also conserves energy which is necessary to have preciseestimates, according to the
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lower boundju � uapprox j � jj uj � j uapprox jj . Due to the multiscale character of the problem such
numerical computations are CPU and memory intensive and require extended periods of time
to run. Therefore, the analytical approximation solution isclearly preferable to the numerical
one, which is computed here only to draw comparisons. The initial value of the numerical
solution is de�ned on a large grid of equally spaced pointsxm , m 2 1; : : : ; N , and is de�ned as

unum (xm ; 0) = " 	( xm ; 0); (17)

where " 	( x; t ) is de�ned in (3). The numerical solution is generated at equally spaced values
of time tn , n 2 N, by integrating (1). In the examples belowkA ; kB ; xA , and xB are chosen such
that pulse A will travel through pulse B .

Theorem 4.2 is con�rmed numerically by computing the di�erence

r (tn ) = sup
m

junum (xm ; tn ) � " 	( xm ; tn )j

as a function of time. Moreover, in order to numerically compute the phase shifts and the enve-
lope shifts, the two-pulse solution is compared with the sum of twocorresponding single pulse
solutions. The phase shift was computed by �nding the average di�erence between adjacent
roots of the shifted (two-pulse solutions) and non-shifted solution (two single pulse solutions).
For kB = 0 the envelope shift can be estimated by looking at the positionof the maximal
amplitude. This is due to the fact that the carrier wave withkB = 0 will be identical to its
modulating envelope, which makes it easier to detect the actual envelope shift. In the case
that kB 6= 0 the envelope was �t with an appropriate function including a parameter for the
envelope shift.

The con�rmation and quanti�cation of analytical results is as follows

� It was shown in [CBSU07] that if " 	 is the sum of two well-prepared pulses with the
corrections" 
 A; 1; " 
 B; 1 for the phase shifts taken into account, then

sup
t2 [0;� 0="2]

r (t) = O("3);

see also the discussion following Lemma 6.2 for the relation of theansatz in [CBSU07]
to our ansatz " 	 in (3). We �rst numerically con�rm this result and compare it t o the
standard ansatz where no phase shift corrections are taken into account. In the left panel
of Figure 2 a plot ofr (t) is shown. Before interaction the di�erence between the standard
and the improved solution is negligible. For times after the interaction the approximate
solution with the 
 A;B corrections isO("3) accurate and onlyO("2) without it. This
procedure was carried out for various values of" in order to deduce the asymptotic
behavior as " ! 0. The results are plotted in the right panel of Figure 2, with the
improved approximation clearly superior. Figure 3 shows a comparison of numerically
computed shifts with those predicted by the formulas given in (11) and (13).

� We turn our attention to the case where the envelope is not described by a 1-soliton, but
rather an arbitrary solution to the NLS equation. These solutions are called non-well
prepared pulses, see Figure 1 for an example. Using the ansatz (3) weagain achieve
O("3)-order accuracy without the assumption that the envelope is well-prepared, see the
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Figure 2: Left: Plot of error function, r (t), for " = 0 :9. Right: Plot of supx2 R r (t) for various " .
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Figure 3: Plot of numerically computed phase and envelope shifts (markers) and the analytical
values (lines); both shifts areO(" ) and the analytical shifts are close to the computed ones.

left panel of Figure 4. The phase and envelope shifts are computed in the same way as
described above. Both exhibit anO(" )-trend but the formula for the envelope shift is
invalid, see the right panel of Figure 4.

Summary. We �nd an O(" )-shift of the phase and of the envelope. The formula for the
phase shift is valid in case of well and non-well prepared pulses. In contrast, the formula for
the envelope shift is only valid in case of well prepared pulses, but makes wrong predictions in
case of non-well prepared pulses.

6 The validity of the envelope shift formula

As already alluded to in Remark 2.2, it is not clear if the correction term A3 contributes to
the description of the envelope shift or not. Therefore, in order to distinguish between the
parts of A3, which account for internal and interaction dynamics respectively, we introduce the
following de�nition.
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Figure 4: Left: Plot of error for non-well prepared pulses. When taking into account the phase
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De�nition 6.1 Let A (c)
3 ; B (c)

3 be a solution to the coupled system

2i! A @2A3(ZA ; T) = ( c2
A � 1)@2

1A3(ZA ; T) � M 0[A3; B3] � I (A1; A2; B1; B2; 
 A ;  A ) � " � 1LA ;

2i! B @2B3(ZB ; T) = ( c2
B � 1)@2

1B3(ZB ; T) � M 0[B3; A3] � I (B1; B2; A1; A2; 
 B ;  B ) � " � 1LB ;

whereLA = s43 + s44 and LB respectively. LetA (u)
3 ; B (u)

3 be a solution to the uncoupled system

2i! A @2A3(X A ; T) = ( c2
A � 1)@2

1A3(X A ; T) � M 0[A3; 0] � I (A1; A2; 0; 0; 0; 0);
2i! B @2B3(X B ; T) = ( c2

B � 1)@2
1B3(X B ; T) � M 0[B3; 0] � I (B1; B2; 0; 0; 0; 0):

We call the envelope shift formula (13)valid, if

kA (u)
3 � A (c)

3 kCs
b

� C" � ; (18)

for an � > 0, and respectively forB (u)
3 ; B (c)

3 .

So the envelope shift formula (13) is only valid, if the correction terms A3; B3 only describe
internal dynamics (at least in leading order).

In [CBSU07] we constructed well-prepared pulses as follows.

Lemma 6.2 Let s � 2, k0 > 0 and  0 < 0. For su�ciently small " > 0 there exists a
two-dimensional family of approximate modulating pulse solutions to (1) of the form

u(x; t ) = "vk0(x � cgt + x0; k0x � !t + 
) ; (19)

parameterized by the envelope shiftx0 2 R and phase shift
 2 [0; 2� ), wherevk is 2� -periodic
in its second argument,! = ! 0 +  0"2 + O("4) = k0cp with phase velocitycp = c0

p +  1"2 + O("4),
wherec0

p = ! 0=k0 is the linear phase velocity, 1 =  0=k0, and with group velocityc = k0=! =
1=cp. Moreover,

"vk0(�; y ) = " ~Apulse("� )eiy + c.c. + O("3e� r" j� j) (20)
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with ~Apulse given by the homoclinic solution

~Apulse(X ) = �
�

2C1

C2

� 1=2

sech (C1=2
1 X ) (21)

of

@2
X

~A = C1
~A � C2

~A3; C1 = � 2 0! 0=(1 � c2
0); C2 = 3=(1 � c2

0); (22)

wherec0 = k0=(1 + k2
0)1=2 is the linear group velocity and

j ~Apulse(X )j � Ce� r jX j ; r =

s
� 2 0! 0

1 � c2
0

:

Finally, the residual ful�lls
kRes("vk0)kH s � C"11=2: (23)

Following this construction we �nd ! 2 = k2 + 1 + ~ (" )"2 with ~ (0) < 0. By this choice the
NLS-equation changes into

� 2i! A @2A1(ZA ; T) = (1 � c2
A )@2

1A1(ZA ; T) + ~ 1(0)A1 + 3 jA1(ZA ; T)j2A1(ZA ; T);

and similar in the equations forA2 and A3. The well prepared pulses are constructed via the
stationary solutions of the last equations, i.e. in case of well prepared pulses we �nds42 = 0.
As a consequence, we can chooseA2 = B2 = 0 such that s43 = 0. Since @2
 A; 1 = 0 for such
pulses, we also haves44 = 0. Now the coupled and uncoupled version of the evolution equations
for A3 only di�er through the coupling terms, which areO(" ) on an O(1) time scale w.r.t. T .
Hence, the envelope shift formula is valid in this special case.

Remark 6.3 For general wave packets we haves42 6= 0, such that we need the correction given
by A2 and hence neithers43 nor s44 vanish. Since" � 1

RT
0 ks43 + s44k d� = O(1) already for

T = O(" ) we have that
kA (u)

3 � A (c)
3 kCs

b
= O(1);

also already forT = O(" ) and the envelope shift formula can be expected to be invalid for the
general situation of non-well prepared pulses as our numerical experiments con�rm.

Conclusions. In leading order the two-wave propagation is given by a linear superposition of
the individual waves as long as they are well separated. The nonlinear behavior appears during
collision which causes a phase shift that translates into an envelope shift. Hence, the solitary
wave interaction is elastic in leading order { a scenario reminiscent of integrable equations.
Since

"g(" (x + "a)) � "g("x ) = "g0("x )"2a + O
�
" ("2a)2

�
= O("3)

the estimate (16) immediately shows that an envelope shift larger than O(" ) is not possible.
This estimate is valid both for well- and non-well prepared pulses, however, quantitatively, the
derived envelope shift formula (14) is only valid for well-prepared pulses, whereas for general
wave packets additional contributions must be taken into account.
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