Institut dir A nalysis, Dynamik und M odellierung, Universitt Stuttgart, Pfaenwaldring 57, D-70569 Stuttgart

Institut dir M athematik, Universidt Oldenburg, D-26111 Oldenburg

December 14, 2007

Abstract

We give a detailed analysis of the interaction of two NLS-described wave packets with different carrier waves for a nonlinear wave equation. By separating the internal dynamics of each wave packet from the dynamics caused by the interaction we prove that there is almost no interaction of such wave packets. We also prove the validity of a formula for the envelope shift caused by the interaction of well-prepared pulses and invalidate this formula by numerical experiments in case of non-well prepared pulses.

We consider the nonlinear wave equation

$$
\begin{equation*}
=\quad+ \tag{1}
\end{equation*}
$$

with 0 , and $=(1)$. For this equation the ansatz

$$
\begin{equation*}
()=(\mathrm{e}+\mathrm{c} \cdot \mathrm{c}+\mathrm{C})=(\mathrm{l})= \tag{2}
\end{equation*}
$$

where satisfy the linear dispersion relation $=+1$, where $=\quad=$ is the linear group velocity, and where $0 \quad 1$ is a small perturbation parameter, leads to the Nonlinear Schodinger (NLS) equation

$$
2 i \quad=(1 \quad) \quad+3
$$

describing slow modulations in time and space of the underlying carrier wave e . This procedure is common in nonlinear optics and allows to reduce the dimension of the problem in numerical simulations by a factor up to 10 , cf. [Ag01]. In modern ber optics, however, not only a single carrier wave, but a number of dierent carrier wa ves is used, cf. [HK 95].

In the particular case of two dierent carrier waves, i.e., $\quad=\quad$, the ansatz is given by

$$
()=(\quad \mathrm{e} \quad+(\mathrm{e}) \mathrm{e}+c . c .+1)
$$

leading to a system of

NLS equations

| 2 i | $=(1)$ | +3 | +6 |
| :--- | :--- | :--- | :--- | :--- |
| 2 i | $=(1)$ | +3 | +6 |

Since $=(\quad)=(\quad)=\quad$ and since the group velocities
$=$ of the wave packets are dierent, this system has still the multi ple scale character of the original problem. However, the interaction of localized wave packets will only happen on a very short time scale, such that asymptotically the interaction terms

$$
6(\quad)(\quad)=6(\quad)
$$

and

$$
6(\quad)(\quad)=6(\quad)
$$

are negligible. As a consequence, in lowest order we have a system o f
NLS equations

$$
\begin{array}{rlll}
2 i & & =(1 &) \\
2 i & & +3 \\
2 i &) & +3
\end{array}
$$

or, in other words, each band is described independently by a sin gle NLS equation.
In applications the neglection of the coupling terms is a com mon procedure, of [A g01]. There exist a number of mathematical papers [PW96, BF06, CBSU0 7] which validate this
procedure rigorously. Our research is dedicated to an improve ment of existing estimates for wave interaction aiming towards applications in optical commun ication lines which use wavelength division multiplexing technologies, cf.[HK 95].

In our previous work [CBSU07] we presented improved bounds for two waves modulated by (in the following called extend our results to waves whose envelopes are the NLS equation (in the following called these general wave packets that the interaction leads to an ()-phase shift of the carrier wave and to an ()-shift of the envelope. Thus, we improve the bound for the possib le envelope shift caused by the interaction of general localized NLS-descri bed wave packets from (1), cf. [PW 96], to () and generalize the ()-bound for the interaction of wave packets with NLS 1-solitons as envelope to general NLS-described wave packet s. M oreover, we invalidate by numerical experiments a formula for the envelope shift for general wave packets, but prove analytically the validity of this formula for pulses in the fo rm of NLS 1-solitons.
M any possibly dierent constants which can be chosen independen tly of 0
are denoted by . The space () consists of -times weakly dierentiable functions for which $=(\quad(\quad) \quad$ with $\quad()=\overline{1+}$ is nite, where we do not distinguish between scalar and vector-valued functio ns or real- and complex-valued functions. The space consists of -times continuously dierentiable functions for which $=\quad \sup _{R} \quad$ is nite. We sometimes write, e.g., () for the -norm of the function ().

The authors would like to thank Kurt Busch and his working grou p at the University of Karlsruhe for raising this question. The work is partially supported by the Deutsche Forschungsgemeinschaft DFG and the Land Baden-W urttemberg through the Graduiertenkolleg GRK 1294/1: A nalysis, Simulation und De sign nanotechnologischer Prozesse.

In this and in the next section we derive approximation equati ons in order to describe the internal and interaction dynamics of the wave packets. In ord er to make the concept of internal and interaction dynamics more precise let be the nonlinear evolution operator of the nonlinear wave equation (1). The evolution () of one single initial wave packet is called internal dynamics. The solution to the sum of two single initial wave packe ts and evolves as $(+\quad)$. The interaction dynamics is then the dierence $(+\quad) \quad(\quad) \quad()$. It is the purpose of this paper to give a precise description of th is dierence. We are especially interested in improved estimates for carrier and envelope shif ts caused by the interaction.

In the case of one single wave packet with a wavenumber the dynamics can be described approximately by the ansatz (2). By adding higher order terms to the ansatz the formal error, or mo re precisely the later on introduced residual, can be made arbitrarily small. The NLS equation is then accompagnied by a system of linear PDEs and algebraic equations.

In the case of
the nonlinearity leads to an interaction between the wave pa ckets which in turn result in a modication of the pure internal dynamics. We improve the ansa tz from [CBSU07] and seek solutions of the form

$$
\begin{equation*}
=(+\quad+\quad+(+\quad+)+\text { c.c. }+ \tag{3}
\end{equation*}
$$

where the term serves to cancel mixed and higher order harmonic terms in the f ormal error and where

$$
\begin{align*}
& =\exp i(\quad+\quad(\quad)+\quad(\quad) \\
& =\exp i(\quad+\quad(\quad)+\quad(\quad) \\
& =(+()) \tag{4}\\
& =(\quad+\quad(\quad) \tag{5}\\
& =(1)=(1)=() \tag{6}
\end{align*}
$$

The internal dynamics of the wave packets will be described by the variables $=12$, whereas the interaction dynamics is described by the phase shif ts $=12$ and the envelope shifts . The terms play a crucial role in this work, since it turns out that depending on the special choice for \{ well- or non-well prepared \{ they include contributions to the envelope shift and hence make the envelo pe shift formulas invalid.

Figure 1: Left: A well-prepared pulse. The envelope (dashed li ne) is a NLS 1-soliton. Right: A non-well prepared pulse. The envelope (dashed line) can be an ything \pulse like". Here we chose an almost rectangular envelope.
a) The ansatz (3) is more general than the one in [CBSU07] where w e essentially chose and in the form of NLS 1-solitons. Here we allow and to be more general
solutions of the respective NLS equation, see Figure 1. This then requires the introduction of to describe the internal dynamics.
b) The phase shifts turn out to be real functions. In order to describe the interaction dynamics in more detail than in [CBSU07] we addit ionally introduce phase shift corrections , which turn out to be imaginary, and the envelope shifts . These last ones have already been introduced in earlier works like [OY 74] or [TPB 04] where they are called pulse shifts. Our aim is to validate or invalidate the for mulas for the envelope shifts not only formally, but by rigorous estimates.
c) Furthermore, we change the notation: The variables from [CBSU 07] are now called , whereas from [CBSU 07] are here contained in the term
d) Finally, in the following we replace the arguments rigorously we may dene implicitly by

$$
\begin{equation*}
=(\quad+\sim(1))=(\quad+\sim(1)) \tag{7}
\end{equation*}
$$

Then and \sim resp. and \sim dier by () terms which we may discard for our purposes. Therefore, from now on we write for the arguments of , respectively.

At this point the notion of an envelope shift is somewhat ambigu ous since by Taylor-expansion w.r.t. and we have with $=(\mathrm{l})$

The terms and do not contribute to envelope shifts caused by interaction sinc e they are determined by internal dynamics of the individual pulses (see (12)). The term is of the same order as the envelope shift term , i.e., it accounts for both internal and interaction dynamics, but it is neither clear to which amount describes the interaction, nor in which way \{ as phase or envelope correction. In other words, it has to be ch ecked, if the derived formulas really quantify the entire envelope shift in the particular o rder. The validity of the envelope shift formula is investigated numerically in Sec. 5 and explai ned analytically in Sec. 6. This expansion obviously gives an ()-bound for the envelope shift if we can prove an ()-bound in for the terms indicated with () and an (1)-bound for and. Then the vertical bound () only allows a `horizontal error' of (). The required bounds will be proven in Proposition 4.3 and Lemma 4.7.

Since are supposed to describe interaction dynamics we may assume that $=0$ initially. M oreover, due to the fact that and turn out to be spatially localized, also after interaction and contain only phase shifts for i.e. and play no role for the envelope shift. In detail, in Lemma 4.6 we p rove the (1)-boundedness of and in and that and are (1)-bounded in (). Thus, for instance, () (1+) due to Sobolev's embedding theorem for 12 . For the same reason we have () ($1+$) and so, for large , i.e. for 1 ,

$$
(\quad) \quad(\quad)=(())
$$

Moreover, for well prepared pulses () () is exponentially small. According to the last remark, () () has to be (), except during interaction. Thus we require () = () with 0 arbitrary small but xed. This yields
for 2. In summary, for the corrections and play no role for the envelope shifts. In case of well prepared pul ses this can be sharpened to $\ln ($)

The so-called residual

$$
\begin{equation*}
\operatorname{Res}()=(1)+() \quad()+(\quad) \tag{8}
\end{equation*}
$$

describes how much an ansatz fails to satisfy the nonlinear wave equation (1). Plugging in the ansatz (3) into the residual

$$
\begin{equation*}
\operatorname{Res}()=\quad \operatorname{Res} \tag{9}
\end{equation*}
$$

leads to a number of conditions in order to make the residual as small as possible, in particular to Nonlinear Schodinger equations for and

The term $=(\quad)$ accounts for terms involving higher order or mixed harmonics, i.e. for the frequen cies which are generated by the nonlinearity according to the formula

$$
\begin{array}{rllllll}
(& + & + & + & + & + & + \text { c.c. }) \\
& & & \sum_{1} & 12! & ! &)^{1}
\end{array}
$$

however without the nonlinear terms generated at or . At for example the term
appears. To cancel this term we extend the ansatz by and get an algebraic
equation for of the form

$$
1+(2 i+i)+(2 i+i \quad) \quad=3
$$

The procedure is essentially the same for each such term leading $t \quad 0$ equations of the form

$$
1+(+)+(+)=
$$

Now contains all these extensions. Thus, we can concentrate on the re maining terms of the residual.

Since $=123$ depend on the same variables and belong to the same harmonic, the subsequent hierarchy of conditions (10) $\{(15) r$ eappears shifted in order, i.e. the residual actually contains much more terms, for example ($\quad(1)(1)=123$, which we only listed for $=1$. Hence choosing the dispersion relation as solvability condit ion cancels all terms. The exact same mechanism holds for the entire system of equations (10) \{(15), so we tacitly left all these terms out to simplify the exposition.

Using the notation Res from (8) for the coecients of we nd the subsequent hierarchy of equations.

At we nd

$$
\operatorname{Res}=(\quad+\quad 1) \quad(\quad)=0
$$

which yields the linear dispersion relation

$$
=\quad+1
$$

At wend

$$
\operatorname{Res}=2 \mathrm{i}(\quad) \quad(\quad)=0
$$

which yields the linear group velocity

$$
=
$$

At wend

$$
\text { Res }=\quad+
$$

with

Then $\quad=0$ yields the NLS equation

$$
\begin{equation*}
2 i \quad(\quad)=(1 \quad) \quad(\quad)+3 \quad(\quad) \quad(\quad) \tag{10}
\end{equation*}
$$

and $\quad=0$ yields the

$$
\begin{equation*}
(\quad)=\frac{3}{(\quad) d} \tag{11}
\end{equation*}
$$

so is a real quantity and therefore a
At wend

$$
\text { Res }=2 \quad \text { i } \quad(\quad)+(1 \quad) \quad(\quad)+\quad+\quad+\quad+\quad+\quad+
$$

where

$$
\begin{aligned}
& =6()^{-}(1)+3^{-}(1)(1) \\
& =2 \quad(\quad) \\
& =6 \quad()^{-}(\quad)+^{-}(\quad) \quad(\quad) \quad(\quad) \\
& =2(1) \\
& =2 i \quad()(() \quad()+(1)) \\
& =\mathrm{i}(1) \quad(1)+2 \quad()
\end{aligned}
$$

The terms in are interaction terms in the sense that they are products of fun ctions such that both and appear as arguments. Thus, since we consider localized solutions, they are (1) only on an () time-scale and will, therefore, be moved into the equations for at .
We are now left with a linear inhomogeneous evolution equati on for

$$
\begin{equation*}
2 \text { i } \quad(\quad)=(1 \quad) \quad(\quad)+\quad+ \tag{12}
\end{equation*}
$$

Here, no coupling with terms involving -variables occurs such that describes internal dynamics of a single pulse.
The terms in together with (11) give the

$$
\begin{equation*}
(\quad)=\frac{3(1 \quad)}{(\quad)} \quad(\quad d \tag{13}
\end{equation*}
$$

The terms in yield the in the form

$$
\begin{equation*}
(\quad)=\frac{i(1)}{2(1)} \quad(\quad)=\frac{3 i(1 \quad)}{2(\quad} \quad(\quad) \tag{14}
\end{equation*}
$$

so is purely imaginary and therefore an , which however is algebraically small w.r.t. except during collision of wave packets.

At wend

$$
\text { Res }=2 \quad \mathrm{i} \quad(\quad)+(1 \quad) \quad(\quad)+\quad+\quad+\quad+\quad+\quad+
$$

where

$$
\begin{aligned}
& =6()^{-}(\quad)+3^{-}(1)(1) \\
& =(1)+2 \quad() \\
& =6(\quad) \quad(\quad) \\
& =6(1))^{-}(\quad)+(\quad) \\
& =(1) \quad(1)+2(1) \quad() \\
& +2 i \quad(1) \quad(\quad) \quad(\quad)+2(1) \\
& =2(1) \quad(1)+() \\
& \left.\begin{array}{cccccc}
+i 2 & (&) & (&)+2 & (
\end{array}\right)
\end{aligned}
$$

The terms and describe internal dynamics, whereas and are interaction terms in the same sense as and . We choose to satisfy the linear PDE
where $[\quad]=+$ is linear in its arguments and $\quad(\quad=$ $+\quad+\quad$ contains inhomogeneous terms which are (1) bounded on the (1)time scale if are (1) bounded (up to second derivatives for).

Finally we choose
, and to satisfy the counterparts to (10) \{(15).

As a consequence of the perturbation analysis of the last section t he rst non-vanishing terms in the residual are formally of order (). Below we will prove

$$
0
$$

$$
\begin{array}{rl}
+4 & =0 \\
0 & 0 \tag{0}
\end{array}
$$

The dierence between the exponents of the formal error () and () in the lemma follows from the scaling properties of the -norm. The weighted spaces () are used to describe analytically the condition that the wave packets ar e spatially localized. This is needed to estimate the interaction terms like for instance and

A s a direct consequence of Lemma 4.1 and of the fact that our orig inal system (1) does not contain quadratic terms, with a simple application of Gronwal I's inequality [K SM 92] it follows that the original system really behaves as predicted by the app roximation.

From Theorem 4.2 we obtain by Sobolev's embedding theorem

$$
\begin{equation*}
\sup _{02}(\quad) \quad(\quad) \quad-1 \tag{16}
\end{equation*}
$$

As explained in Remark 2.2 this last estimate together with the su bsequent Lemma 4.7 allows us to bound the magnitude of the envelope shift by

Hence it remains to give the
The assertion obviously follows if we prove that the approximation equations (10) \{(15) possess or der (1)-bounded solutions on the (1)-time scale. We have to solve three dierent kinds of equation s. The rst set of equations, (10) and (12), describes internal dynamics. Si nce these two equations are independent of the small parameter 0

1 we have
20
(10)
0
(0)

$$
\left[\begin{array}{lll}
0 &] \tag{0}
\end{array}\right.
$$

We apply the variation of constant formula and use the fact that
is the generator of a strongly continuous semigroup in () (0), cf. [CK S95].

Note that is independent of the weight. This can be proven like in [SW 00 , Lemma 6.4] such that the existence time is determined only by the loca I existence and uniqueness in -spaces.

Since (12) is a linearized NLS equation for with (1)-bounded inhomogeneous terms $+\quad$ with exactly the same arguments we nd
$\left(\begin{array}{ll}0 &] \\ (\end{array}\right)$
(0))
(0)

2
[0] ()
(0)

The second group of equations, namely (11), (13), and (14), desc ribes the essential interaction dynamics. By pure integration we nd

([0])

In terms of local existence and uniqueness and (1)-boundedness of solutions the only nontrivial equation is (15) which is a linearized NLS equatio n for with (1)-bounded inhomogeneous terms and terms (+). Since the last terms are only () on an
()-scale w.r.t. we nd

2
(15)
$\sup _{0}(1)(1)+2$
[CBSU 07, Lemma 4.2]

B efore we discuss the validity of the envelope shift formula (13) in case of well-prepared pulses we provide some numerical experiments to illustrate the above analysis. As a result of our experiments we invalidate the formula for the envelope shift in case of non-well prepared pulses.

The numerical scheme used is accurate enough so that the true di erences between the analytical approximate solutions and the actual (numerical in this case) solution can be detected. The scheme also conserves energy which is necessary to have precise estimates, according to the
lower bound
. Due to the multiscale character of the problem such numerical computations are CPU and memory intensive and requ ire extended periods of time to run. Therefore, the analytical approximation solution is clearly preferable to the numerical one, which is computed here only to draw comparisons. The initi al value of the numerical solution is dened on a large grid of equally spaced points , 1 , and is dened as

$$
\left(\begin{array}{ll}
(0)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \tag{17}
\end{array}\right)
$$

where () is dened in (3). The numerical solution is generated at equa Ily spaced values of time , by integrating (1). In the examples below , and are chosen such that pulse will travel through pulse.

Theorem 4.2 is conrmed numerically by computing the diere nce

$$
(\quad)=\sup \quad(\quad) \quad(\quad)
$$

as a function of time. M oreover, in order to numerically comp ute the phase shifts and the envelope shifts, the two-pulse solution is compared with the sum of two corresponding single pulse solutions. The phase shift was computed by nding the average di erence between adjacent roots of the shifted (two-pulse solutions) and non-shifted soluti on (two single pulse solutions). For $\quad=0$ the envelope shift can be estimated by looking at the position of the maximal amplitude. This is due to the fact that the carrier wave with $=0$ will be identical to its modulating envelope, which makes it easier to detect the actu al envelope shift. In the case that $\quad=0$ the envelope was t with an appropriate function includin g a parameter for the envelope shift.

The conrmation and quantication of analytical results is a sfollows
It was shown in [CBSU07] that if is the sum of two well-prepared pulses with the corrections for the phase shifts taken into account, then

$$
\sup _{0}()=()
$$

see also the discussion following Lemma 6.2 for the relation of the ansatz in [CBSU 07] to our ansatz in (3). We rst numerically conrm this result and compare it t 0 the standard ansatz where no phase shift corrections are taken into a ccount. In the left panel of Figure 2 a plot of () is shown. B efore interaction the dierence between the stand ard and the improved solution is negligible. For times after the i nteraction the approximate solution with the corrections is () accurate and only () without it. This procedure was carried out for various values of in order to deduce the asymptotic behavior as 0 . The results are plotted in the right panel of Figure 2, with t he improved approximation clearly superior. Figure 3 shows a com parison of numerically computed shifts with those predicted by the formulas given in (11) and (13).

We turn our attention to the case where the envelope is not descr ibed by a 1-soliton, but rather an arbitrary solution to the NLS equation. These solution s are called non-well prepared pulses, see Figure 1 for an example. Using the ansatz (3) we again achieve ()-order accuracy without the assumption that the envelope is w ell-prepared, see the

Figure 2: Left: Plot of error function, () for =0 9. Right: Plot of sup $\left.\mathrm{R}^{(}\right)$for various.

Figure 3: Plot of numerically computed phase and envelope shif ts (markers) and the analytical values (lines); both shifts are () and the analytical shifts are close to the computed ones.
left panel of Figure 4. The phase and envelope shifts are comput ed in the same way as described above. Both exhibit an ()-trend but the formula for the envelope shift is , see the right panel of Figure 4.

We nd an ()-shift of the phase and of the envelope. The formula for the phase shift is valid in case of well and non-well prepared pulses. I n contrast, the formula for the envelope shift is only valid in case of well prepared pulses, b ut makes wrong predictions in case of non-well prepared pulses.

As already alluded to in Remark 2.2, it is not clear if the corre ction term contributes to the description of the envelope shift or not. Therefore, in ord er to distinguish between the parts of , which account for internal and interaction dynamics respec tively, we introduce the following denition.

Figure 4: Left: Plot of error for non-well prepared pulses. Whe n taking into account the phase shift again an () trend is shown. Right: Plot of numerically computed phase and envelope shifts (markers) and analytical values (lines) for non-well pr epared pulses; both shifts are (), but only the predicted phase shift value is valid.

Let be a solution to the coupled system
$\left.\begin{array}{llllllll}2 \mathrm{i} & (&)=(& 1) & (&) & {[} &] \\ 2 \mathrm{i} & (&) & =(& 1) & (&) & {[}\end{array}\right]$
where $=+$ and respectively. Let
be a solution to the uncoupled system

2 i	1	$)=($	1)	1)		$0]$	1		$000)$
2 i	($)=($	1)	()	[0]	1		$000)$

We call the envelope shift formula (13)
, if
for an $\quad 0$, and respectively for

So the envelope shift formula (13) is only valid, if the correc tion terms internal dynamics (at least in leading order).

In [CBSU07] we constructed well-prepared pulses as follows.
2
0
0
0
(1)
()$=0 \quad+\quad+$

$$
\begin{equation*}
=+\quad+(\quad)= \tag{02}
\end{equation*}
$$

$$
=
$$

$$
=+\quad+\left(\begin{array}{l}
\text {) } \\
=
\end{array}\right.
$$

1

$$
\begin{equation*}
{ }_{0}(\quad)=\sim() e+\quad(\mathrm{e}) \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& \sim(1)=2 \operatorname{sech}(\quad) \\
& \sim \sim \sim \sim 2(1)=3(1) \\
& =(1+) \\
& \sim(1)=\overline{2} \\
& \operatorname{Res}\left({ }_{0}\right) \tag{23}
\end{align*}
$$

Following this construction we nd $=+1+\sim()$ with $\sim(0) \quad 0$. By this choice the NLS-equation changes into

$$
2 \mathrm{i} \quad(\quad)=(1 \quad) \quad(\quad)+\sim(0)+3 \quad(\quad) \quad(\quad)
$$

and similar in the equations for and. The well prepared pulses are constructed via the stationary solutions of the last equations, i.e. in case of well pr epared pulses we nd $=0$. As a consequence, we can choose $==0$ such that $=0$. Since $=0$ for such pulses, we also have $\quad=0$. Now the coupled and uncoupled version of the evolution equa tions for only dier through the coupling terms, which are () on an (1) time scale w.r.t. . Hence, the envelope shift formula is valid in this special case.

For general wave packets we have $\quad=0$, such that we need the correction given by and hence neither nor vanish. Since $+d=(1)$ already for $=$ () we have that $=(1)$
also already for $=()$ and the envelope shift formula can be expected to be invalid f or the general situation of non-well prepared pulses as our numerica I experiments conrm.

In leading order the two-wave propagation is given by a linea r superposition of the individual waves as long as they are well separated. The no nlinear behavior appears during collision which causes a phase shift that translates into an envel ope shift. Hence, the solitary wave interaction is in leading order \{ a scenario reminiscent of integrable equati ons. Since

$$
((+)) \quad()=()+1)=()
$$

the estimate (16) immediately shows that an envelope shift larg er than () is not possible. This estimate is valid both for well- and non-well prepared pu Ises, however, quantitatively, the derived envelope shift formula (14) is only valid for well-pr epared pulses, whereas for general wave packets additional contributions must be taken into acc ount.
[Ag01] G.P. A grawal. Nonlinear fiber optics. , 3. ed., 2001.
[BF 06] A. Babin, A. Figotin. Linear superposition in nonlinear wave dynamics. 18:971-1053, 2006.
[CBSU 07] M. Chirilus-Bruckner, G. Schneider, and H. Uecker. On the interaction of NLS-described modulating pulses with different carrier waves.
, 30:1965-1978, 2007.
[CK S95] W. Craig, T. K appeler, W. Strauss. Microlocal dispersive smoothing for the Schrödinger equation.

48:769-860, 1995.
[Den93] J. Denzler. Nonpersistence of breather families for the perturbed sine Gordon equation. 158(2):397-430, 1993.
[HK 95] A. Hasegawa, Y. K odama. Solitons in optical communications. , 1995.
[K SM 92] P. Kirrmann, A. Mielke, G. Schneider. The validity of modulation equations for extended systems with cubic nonlinearities.

122, 85-91, 1992.
[OY 74] M. Oikawa, N. Yajima. A Perturbation Approach to Nonlinear Systems. 2: Interaction of Nonlinear M odulated Waves. , 37:486-496, 1974.
[PW 96] R.D. Pierce and C.E. Wayne. On the validity of mean field amplitude equations for counterpropagating wavetrains. , 8:433-457, 1996.
[SW 00] G. Schneider and C.E. Wayne. The long-wave limit for the water wave problem. I. The case of zero surface tension. 53:1475-1535, 2000.
[SS99] C. Sulem, P.-L. Sulem. The nonlinear Schrödinger equation. , SpringerVerlag, Vol. 139 ,1999.
[TP B 04] L. T keshelashvili, S. Pereira, and K. B usch. General theory of nonresonant wave interaction: Giant soliton shift in photonic band gap materials. , 86(2):205-211, 2004.

