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Statistics for surface modes of nanoparticles with shape fluctuations
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We develop a numerical method for approximating the surface modes of sphere-like nanoparticles
in the quasi-static limit, based on an expansion of (the angular part of) the potentials into spherical
harmonics. Comparisons of the results obtained in this manner with exact solutions and with a
perturbation ansatz prove that the scheme is accurate if the shape deviations from a sphere are
not too large. The method allows fast calculations for large numbers of particles, and thus to
obtain statistics for nanoparticles with random shape fluctuations. As an application we present
some statistics for the distribution of resonances, polariziabilities, and dipole axes for particles with
random perturbations.
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I. INTRODUCTION

The excitation of surface plasmons can cause strong in-
teraction between light and metallic nanoparticles. These
plasmons are hybrid modes of the electromagnetic field
and the electron gas and are confined to the surface of
the particle. They give rise to an enhancement of the
incident field by several orders of magnitude [1–3]. This
enhancement enables a variety of applications ranging
from the well-established surface-enhanced Raman spec-
troscopy (SERS), which allows the detection of even a
single molecule [4, 5], to the emerging field of plasmon-
ics [6, 7], which has led to prototypes of plasmonic wave-
guides which effectuate optical energy transfer below the
diffraction limit [6, 8, 9],
A simple realization of a plasmonic waveguide is a

chain of metallic spheres. A surface plasmon mode, typi-
cally a dipole mode, of the first sphere of the chain is ex-
cited and the scattered field of this first particle excites
a surface mode in a sphere nearby and so the excita-
tion can travel through the chain. There are two crucial
points for an efficient transport: The spatial structure
of the scattered field in the region of the neighboring
sphere must allow for an efficient excitation of the fa-
vored mode, and the overlap of the resonances of the
bordering spheres has to be big enough. Since any real-
ization of a sphere will deviate from an ideal one, thus
introducing random fluctuations, it is important to esti-
mate the typical magnitude of such deviations which still
allow for an efficient transport. Therefore a simple and
efficient numerical method for approximating the surface
modes of the sphere-likes particles is needed.
There are many numerical methods for the determina-

tion of the electromagnetic field in the present of nano-
sized scatterers, like the finite difference time domain
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approach (FDTD), or so called semi–analytical methods

based on expansions into special function systems like
the multiple multipole method (MMP), or the discrete
dipole approximation (DDA), see, e.g., [10, 11] for re-
views. Essentially, all methods able to calculate the fields
also allow to determine the surface modes. For example,
in [12] the DDA is used for the determination of the sur-
face modes of nanoparticles, and in [13, 14] a boundary
integral approach is proposed, which focuses on the sur-
face modes, and has been used in [15] to determine the
surface modes of single and coupled spheres, cylinders
and cube–like nanoparticles.
Here we use a semi-analytical approach based on an

expansion of the potentials into spherical harmonics, i.e.,
into modes rlY m

l (θ, φ) and r−(l+1)Y m
l (θ, φ), and on the

determination of the expansion coefficients by the phys-

ically motivated projection of the boundary conditions
onto the modes rlY m

l (θ, φ). See also [16, Sec. 6] for
a review of various ways to determine expansions from
the boundary conditions in a variety of related problems.
For nonspherical particles, our approach corresponds to
an expansion into non–orthogonal modes and therefore is
similar to the usage of the Rayleigh hypothesis in the the-
ory of scattering in optics, where the scattered field at a
perturbed interface is likewise expanded in the solutions
of the scattered field of the unperturbed one [17]. It is
known that such expansion methods may fail if the devia-
tions from the ideal geometry become too large, see, e.g.,
[18] and the references therein. Nonetheless, additional
to its simplicity and easy implementation the distinct
advantage of our approach is its computational efficiency
for nearly spherical particles. Thus it allows to calcu-
late the surface modes for many realizations of randomly
distorted nanospheres and so to statistically characterize
their optical responses.
The paper is organized as follows: The numerical

method is explained in Sec. II, and validated in Sec. III,
using the cases of an ellipsoid and of a sphere with cer-
tain shape distortions as benchmarks. In Sec. IV we give
a statistical study of the optical response of spheres and
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spheroids with random perturbations.

II. THE SCHEME

We are interested in the surface modes of sphere-
like nanoparticles, described as some bounded domain
Ω ⊂ R

3, with boundary ∂Ω. We restrict ourselves to
particles that are small compared to the relevant wave-
lengths and therefore employ the quasi-static approxima-
tion. In order to determine their surface modes we con-
sider an excitation from infinity (described by the poten-
tial Φext), and calculate the potential inside (Φ−) and
outside (Φ+) the particle. These potentials fulfill the
Laplace equation

∆Φ±(x) = 0 for x 6∈ ∂Ω. (1)

In addition, the boundary conditions on the surface ∂Ω
of the particle are

Φ+(x) = Φ−(x) for x ∈ ∂Ω, (2)

∂nΦ+(x) = ǫ∂nΦ−(x) for x ∈ ∂Ω, (3)

with the outward normal derivative ∂n and the permit-
tivity ǫ of the particle. The boundary condition (3) im-
plies that the particle is surrounded by vacuum, and is
homogeneous, isotropic, and non-magnetic; the dielectric
properties are assumed to be local.
There are two different methods to determine the sur-

face modes of a nanoparticle from (1)-(3). The first is
to assume that the potential vanishes at infinity, i.e. to
calculate the modes of the particle that can be present
without an external excitation. In this case the prob-
lem can be reformulated as an eigenvalue problem with
a real plasmonic eigenvalue ǫ for which a nontrivial solu-
tion of Eqs. (1)-(3) with lim

‖x‖→∞
|Φ+(x)| = 0 exists [19].

In this interpretation the variable ǫ in (3) is not regarded
as the generally complex permittivity of the particle, but
rather as a real eigenvalue. The second method is to
study the system (1)-(3) with an external excitation and
thus to regard the ǫ in (3) as the complex permittivity
ǫ(ω) of the particle. The system is then solved for differ-
ent values of the permittivity and a solution is called a
surface mode if the field inside and around the particle
is enhanced. If the imaginary part of the permittivity
does not vary too much, then the enhanced fields occur
when the real part of ǫ is equal to a plasmonic eigenvalue.
Thus the terms plasmonic eigenvalue and resonant value

are closely related and will be used interchangeably. In
general there will be a difference in the number of eigen-
values and resonant values. While there is a infinite num-
ber of eigenvalues, the used excitation will choose some
of these eigenvalues and only for these an enhanced field
will appear.
We study the response of a particle to an external field

and assume that the potential at infinity equals the po-
tential of the excitation;

lim
‖x‖→∞

|Φ+(x)− Φext(x)| = 0. (4)

The basic idea is to expand the potential inside and out-
side the particle into spherical modes which automati-
cally fulfill the Laplace equation (1),

Φ−(x) =

∞
∑

l=0

l
∑

m=−l

αl,mr
lY m

l (θ, φ), (5)

and Φ+ = ψ+ +Φext with

ψ+(x) =

∞
∑

l=0

l
∑

m=−l

βl,mr
−(l+1)Y m

l (θ, φ) (6)

and Φext(x) =
∞
∑

l=0

l
∑

m=−l

γl,mr
lY m

l (θ, φ). Here x =

r
(

cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)
)t

and the familiar
spherical harmonics are denoted by Y m

l (θ, φ) =
Pm
l (cos θ)eimφ: For m≥0, the associated Legendre poly-

nomials are Pm
l (s) = cml

1

2ll!
(1−s2)m/2

(

d

ds

)l+m

(s2−1)l

with the scale factors cml = (−1)m
√

2l+1
4π

√

(l−m)!
(l+m)! , and

Pm
l := (−1)mP−m

l for m < 0.
From (4) the coefficients γl,m are defined by the exci-

tation potential. Thus it remains to calculate the coeffi-
cients αl,m and βl,m from (2) and (3). In order to do this
we use the following numerical scheme. First we trun-
cate to |l| ≤ N such that (N + 1)2 coefficients αl,m and
βl,m have to be calculated. To get the required 2(N+1)2

equations we project the boundary conditions (2) and (3)
onto the modes rlY m

l (θ, φ) with degree equal to or less
than N . In detail, we require

∫

∂Ω

(Φ− − ψ+) r
lY m

l (θ, φ) dS (7)

=

∫

∂Ω

ΦExt r
lY m

l (θ, φ) dS,

∫

∂Ω

(ǫ∂nΦ− − ∂nψ+) r
lY m

l (θ, φ) dS (8)

=

∫

∂Ω

(∂nΦExt) r
lY m

l (θ, φ) dS.

This yields a system of the form

(M1 + ǫM2)U =M3G (9)

where M1,M2,M3 ∈ C2(N+1)2×2(N+1)2 are matrices
which depend only on the geometry of the particle, G ∈

C2(N+1)2 depends only on the γlm, and U ∈ C2(N+1)2

contains the unknown coefficients αlm and βlm.
For a sphere Sr0 of radius r0 the spherical harmon-

ics Y m
l are an orthogonal (orthonormal if r0 = 1) ba-

sis of L2(∂Sr0). Thus, (9) decouples in the case of a
sphere (becomes block diagonal, see A for the precise
structure) and yields (N +1)2 exact solutions of (1)–(3).
For a perturbed sphere the Y m

l are no longer orthogonal,
and the physically motivated idea of projecting onto the
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modes rlY m
l (instead of, e.g., projecting onto the spher-

ical harmonics Y m
l , which at first might appear more

natural) is as follows: we may expect the fields to be
localized near parts of ∂Ω with high curvature, and for
perturbations of spheres (of radius r0) these occur most
naturally for parts bulging out, i.e., for r > r0. Thus,
to minimize the error, it appears reasonable to weight
the spherical harmonics as test functions in (7),(8) with
rl. This also complies with the folklore rule to use the
same functions as test functions and as ansatz function.
On the other hand, this rule is rather ambiguous here
since we have (N + 1)2 more ansatz functions, namely
r−(l+1)Y m

l . However, these tend to localize near “flat”
parts of the perturbed sphere and are therefore less useful
as test functions. We evaluated all three sets of test func-
tions (rlY m

l )l,m, (Y m
l )l,m, and (r−(l+1)Y m

l )l,m, against
available exact solutions for spheroids (see Sec. III) and
found that (rlY m

l ) works best while (Y m
l ) and even more

so (r−(l+1)Y m
l ) yield slower convergence.

As already pointed out in the Introduction, expansions
like those given by Eqs. (5) and (6) are conceptually re-
lated to the Rayleigh hypothesis, and may fail to converge
if the deviation of the geometry considered from the ideal
geometry is too large. Therefore it is of great importance
to test the method against known exact solutions, and to
control the error. As shown below, for the present prob-
lem it turns out that already moderate N yield quite ac-
curate results if the deviations from a sphere are not too
large. The achievable accuracy, however, also depends on
the quantities one wants to compute. We find that typi-
cally N = 7, which yields Mj ∈ C

128×128, is sufficient to
calculate the resonant value of ǫ with high accuracy.
The generation of the matrices Mj is the most expen-

sive part of the scheme since each entry requires the eval-
uation of surface integrals similar to the ones in Eqs. (7)
and (8). However, once the matrices Mj are generated,
for any given Φext we only need to first calculate the
coefficients γlm and then solve some rather small linear
system with given ǫ. In particular, the scheme allows for
a fast parameter scan when solving the system (9) for dif-
ferent G, i.e., when rotating the incident field. For fixed ǫ
we may also define a T–matrix T = (M1 + ǫM2)

−1M3 to
obtain U = TG. The calculation of the γlm is quite sim-
ple; for instance, for a constant field in (x, y, z)t-direction
the coefficients are γlm = 0 for l 6= 1 and γ1,−1 = −x− iy,
γ1,0 = z and γ1,1 = x− iy.
We use the GNU Scientific Library [20] for the spher-

ical harmonics and the Cuba library [21] for calculating
the projection integrals (7),(8). The linear system (9) is
then solved with a standard method from LAPack [22].

III. COMPARISON WITH EXACT SOLUTIONS

AND A PERTURBATION ANSATZ

As test cases for our scheme we consider the surface
modes of an ellipsoidal particle, for which an exact solu-
tion exists [2], and the case of a sphere with certain Gaus-

sian perturbations. For the latter we compare our results
with the results of a recently developed perturbation-
theoretical ansatz [23].

A. Surface modes of an ellipsoid

We start with a spheroid, i.e. an ellipsoid with two
identical semi–axes. The spheroid is oriented such that
the two identical axes are along the x- and y- axis of the
coordinate system. Furthermore, we choose the semi-
diameter in x- and y- direction as 1[25]. Thus the geom-
etry of the test case is described by one parameter R, the
semi–axis in z-direction. As the dipole modes of a sphere
are excitable by a constant field, and we are interested
primarily in dipole-like modes, we use a constant incident
field in the test cases.
Considering a constant incident field in z-direction, the

exact solution for the resonant value of the permittivity
ǫ is [2]

ǫ(R) = 1−
1

L(R)
(10)

with the depolarization coefficient L(R) given by

L(R) =
R

2

∞
∫

0

ds
1

(s+R)2
√

2(s+ 1)(s+R2)
. (11)

Numerically we determine the resonances as follows:
After calculating the matrices Mj we solve Eq. (9) for
different values of ǫ[26], and define the resonant value
as that value of ǫ which produces the biggest dipole-like
near field, i.e., we search the value of ǫ which maximizes
√

|β1,−1|2 + |β1,0|2 + |β1,1|2.
In Fig. 1 we compare the resonances thus obtained nu-

merically with the exact ones, for different N and for
two different incident fields. The results are remarkably
good, even for small N . Indeed, for an incident field in
z-direction and R = 1.5, for example, the exact result
figures as ǫ ≈ −3.29, while the numerical procedure with
N = 1 gives ǫ = −3.18, and differs from the exact result
by less than 10−2 with N = 7. Thus, for the calculation
of the resonant values our method gives accurate results
even with only few spherical harmonics, and even when
the shape deviates significantly from that of a sphere.
On the other hand, the method is in general not well

suited for the calculation of the fields with high accuracy
if the deviations from the sphere become large. For illus-
tration, we first show in Fig. 2 (a) the potentials inside
and outside a spheroid with R = 1.4, for an incident field
in z-direction. The linescan in (b) shows that along the
particular line indicated in (a) the boundary conditions
(2), (3) are reasonably well fulfilled for N = 7, while the
jumps for N = 1 indicate that in this case N = 1 is not
sufficient, as expected.
From a systematic viewpoint, a more relevant basic

check of the accuracy of the potentials is the total relative
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FIG. 1: Comparison of the exact resonant values for a
spheroid with the ones calculated within our approach for
different N , and an incident field oriented along the x-axis
(a), and the z-axis (b). In the later Fig. 4, where we show the
polarizability of a spheroids, the dependence of the resonant
values on N can be seen in more detail.

error in Eqs. (2), (3). In Fig. 3 we plot the L2–norms of
these errors, again as functions of R and N , henceforth
denoted by

e1 :=
2‖Φ+ − Φ−‖

‖Φ+‖+ ‖Φ−‖
, e2 :=

2‖∂nΦ+ − ǫ∂nΦ−‖

‖∂nΦ+‖+ ‖∂nΦ−‖
,

where ‖f‖ = (
∫

∂Ω
|f |2 dS)1/2. For R close to 1, say 0.8 ≤

R ≤ 1.3, we find that e1 and e2 are small and decrease
monotonously in N . However, e1,2 become large rather
quickly when R falls outside this range. Moreover, they
then no longer decay inN , which we attribute to a failure
analogous to that of the Rayleigh hypothesis for such
strongly deformed spheres.
Similar effects can be observed for various other test

particles: The approximation of resonant values of ǫ is
typically much better than e1,2. Thus the performance
of the method strongly depends on what one wants to
compute. As a rule of thumb we find that for e1,2 ≤
0.2 we obtain very good approximations of the resonant
values, and also of the polarizabilities and of the dipole
axes, as shown below; these three observables are the
quantities we are mainly interested in. Therefore we have
made sure that in all calculations presented below we
have e1,2 < 0.1. For the solution shown in Fig. 2 with

-2
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Im
(φ

)
z

φ-

φ+

φ+

N=7
N=1

(b)

FIG. 2: (Color online) (a) Calculated potentials inside and
around a spheroid for R = 1.4 and N = 7. The imagi-
nary part of the potential is plotted for the resonant value
of the permittivity and the potential is normalized such that
the maximum of the imaginary part is 1. The shape of the
spheroid is indicated by the black ellipse. The linescans in (b)
are taken for x = 0; the one with N = 1 is shifted downwards
by 1 for clarity.

N = 7 we have e2 slightly larger than 0.1, so that this
solution would be discarded.

Another quantity of immediate physical interest is the
polarizability α which relates the incident field (Eext) to
the excited dipole moment (pex). In general this quan-
tity is a tensor, but for the case of a spheroid with an
incident field oriented along one of the principal axes the
polarizability is a scalar [27], i.e., pex = ǫ0αEext. In
Fig. 4(a) the exact and the numerically calculated polar-
izability of a spheroid with R = 0.8 is depicted, more
precisely its absolute value for an incident field in z-
direction, i.e. |αz | ∝

√

|β1,−1|2 + |β1,0|2 + |β1,1|2. The
width and the magnitude of the polarizability are ex-
cellently reproduced by our scheme and the agreement
between the exact solution and the numerical one is very
good already for N ≥ 3, and even for N = 1 the approx-
imation already reproduces the shape of the resonance
quite well. Fig. 4(b), which depicts the coefficients βl,m
for the expansion (6), shows that the dominant part of
the field stems from l = 1, but higher spherical harmonics
also give non-negligible contributions.

We have also checked our scheme against the exact so-
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FIG. 3: (a) L2-norm of the boundary condition (2), and (b)
of the condition (3), for the indicated N .

lution for an ellipsoid with three different semi-diameters,
and an incident field that is not oriented along one of the
principal axes. Again the agreement between the exact
solution [2] and our results is very good as long as the
semi-diameters are not too different.

B. Surface modes of a sphere with a perturbation

In Sec. IV we perform a statistical analysis for the sur-
face modes of nanoparticles with a random shape, de-
scribed by

r(θ, φ) = 1 + s

n
∑

i=1

hi exp

(

−0.5

(

dist(θi, φi; θ, φ)

wi

)2
)

(12)
where s is a scaling factor, dist(θi, φi; θ, φ) is the Eu-
clidean distance between two points on the unit sphere,
one specified by θi and φi and the other by θ and φ. In
these later studies, θi, φi, hi and wi will be randomly dis-
tributed. Thus, the nanoparticles then are spheres with
n Gaussian perturbations with height hi and width wi.
In order to assess our method for such cases, we first
consider a particle with three perturbations, study how
the resonance is shifted by varying the scaling parame-
ter s, and compare the results with those of a perturba-
tion ansatz for the surface modes of a nanoparticle [23].
For the perturbation ansatz a geometry close to the

0
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z|

/|α
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|β
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|
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FIG. 4: (Color online) Comparison of the exact and numer-
ically calculated polarizability of a spheroid with R = 0.8
(a). The polarizability is normalized to the one of a sphere
with radius 1 and a dielectric function of −2 + 0.01i. In the
right panel (b) the coefficients of the spherical harmonics are
presented for N = 7 and a value of ǫ close to the resonant
value.

given one is needed, for which an exact solution for the
surface modes exists. In the following that geometry is
called the ideal geometry, and the geometry for which
the surface modes are to be calculated is called the per-
turbed geometry. It is assumed that the perturbation
strength is described by a scalar parameter. In our case
the ideal geometry is the unit sphere and the parame-
ter that characterizes the deviation from the sphere is
the scaling amplitude s. When making the perturbation
ansatz the resonant values ǫ(s) are expanded in a series
with respect to s:

ǫ(s) = ǫ(0) + sǫ̇(0) +
s2

2
ǫ̈(0) + · · · . (13)

In Ref. [23] an explicit formula for ǫ̇ is presented against
which we can compare our numerical results. Since the
dipole mode of a sphere is threefold degenerate, there are
in general three different values of ǫ̇, characterizing the
three dipole-like modes.
The test particle with three Gaussian perturbations is

depicted in Fig. 5(a), whereas (b) compares the results
provided by (9) with the perturbation method. We only
present the results for N = 7 but remark that the results
are stable for N ≥ 5. There is a very good agreement
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FIG. 5: (Color online) Sketch of the used perturbed sphere
(a), and the corresponding resonant values of ǫ (b). The plot
(a) refers to a scaling factor of s = 0.5; the color scale de-
picts the distance from a point on the surface to the center
of the underlying unit sphere. The resonant values in (b) are
calculated with N = 7; the inset shows a blow-up near s = 0.

between the projection and the perturbation method for
small s. As expected there are deviations for larger scal-
ing factors, because these are beyond the scope of the
(first order) perturbation method.

For s ≥ 0.4 more than three resonances occur, notably
one with a real part of the permittivity of about −1.6.
By plotting the potential (or alternatively inspecting the
expansion coefficients βl,m) we find that these modes are
shifted and perturbed quadrupole modes of the unper-
turbed sphere, which due to the perturbations can be
excited by a constant field. For the unperturbed sphere
these occur at Re(ǫ) = −1.5. Of course these modes
are in principle present in all cases, but it depends on
the respective geometry if these modes could be excited
effectively by a constant field.

To conclude the test of our scheme: Already with quite
few spherical harmonics (typically N ≤ 7), and even if
the errors e1,2 in the boundary conditions are significant,
the numerical data for the resonant values and the po-
lariziabilities provided by our method are stable and in
remarkable agreement with exact solutions (if available),
or with the results of the perturbation ansatz.

IV. PARTICLES WITH RANDOMLY

DISTRIBUTED GAUSSIAN PERTURBATIONS

We now assume that we are given a set of nom-
inally identical nanospheres which suffer from uncon-
trolled shape imperfections induced during the fabrica-
tion process. The task then is to characterize the optical
properties of this set in a statistical sense. Ideally, one
would have at least a good idea how the imperfections
are distributed, based on an inspection of a representa-
tive number of specimen, then generate a corresponding
ensemble, and compute the resonances of each individ-
ual member. Since we are not considering any particular
case, here we simply assume that the random shape fluc-
tuations correspond to Gaussian distortions as described
by Eq. (12). We start with n = 4, set s = 1, and choose
randomly distributed θi, φi, hi, and wi with i = 1, . . . , 4.
The positions of the distortions, described by the angles
θi and φi, are uniformly distributed on the sphere, hi is
normally distributed with a mean of 0.2 and a standard
deviation of 0.1; the normally distributed widths wi have
a mean value of µw = 0.7 and a standard deviation of
σw = 0.3. Clearly, perturbations with a negative width
wi are discarded, and we admit only perturbations with
hi

wi
≤ 2 in order to avoid sharp peaks. Therefore each

realization is a sphere with four or less perturbations.

In order to get significant results we generate 1000 re-
alizations of the perturbed sphere, calculate for each re-
alization the matrices Mi, and solve the system of equa-
tions (9) for 100 different incident fields, i.e. we consider
100000 cases. We choose N = 7, and require e1,2 ≤ 0.1 as
explained in Sec. III A, which has resulted in an ensemble
with 42829 members.

In Fig. 6(a) we present a histogram of the resonant
values of the real part of the permittivity. Here we count
a peak in the absolute value |αin| of the polarizability
of a particle as a resonance if |αin| is at least 0.1 times
the value |αin,sphere| of a perfect sphere. Hǫ denotes the
number of the resonances in the corresponding interval of
Re(ǫ) divided by the number of particles. In the follow-
ing pictures Hα and Hθ are defined in an analogous way.
As seen in Fig. 6(a) the shape fluctuations result in a rel-
atively broad distribution of the resonant values around
the unperturbed value Re(ǫ) = −2, and the maximum is
shifted to a slightly bigger value.

Not only the position of the resonance is of interest,
but also the magnitude of the induced dipole moment.
Therefore we present in Fig. 6(b) a histogram of this
magnitude, considering for each ensemble member only
the resonance with the largest dipole moment. Due to the
fact that the polarizability of a sphere scales with its vol-
ume and a typical realization of our perturbed spheres is
somewhat bigger than a sphere with radius 1, we normal-
ize the polarizability to that of a sphere with the same
volume as the perturbed one. In the large majority of
cases the polarizability of the perturbed sphere is smaller
than that of the unperturbed one. This is due to the fact
that for the sphere there are no principal axes. Therefore
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FIG. 6: Histogram of the resonant values Re(ǫ) for the ensem-
ble of perturbed spheres (a), and histogram of the magnitude

of the maximum dipole moment α
(max)
in (b).

the polarizability is independent of the direction of the
incident field, and for any field the induced dipole mo-
ment points into the direction of the incident field. But
if the symmetry of the sphere is destroyed by the per-
turbations, there are three distinguished principal axes
with different resonant values of the permittivity. So for
a fixed permittivity in general only one resonant condi-
tion is matched and therefore essentially only the part
of the incident field that points into the direction of the
corresponding principal axis contributes significantly to
the induced dipole moment. This results in an induced
dipole moment which typically is smaller than that of a
perfect sphere, and is not parallel to the incident field.

In a plasmonic waveguide, consisting of a chain of
metallic nanoparticles, a random angle between the in-
duced dipole moment p and the incident field Eext influ-
ences an efficient transport, because the near field of one
particle should excite the neighboring particle. Therefore
designing a plasmonic waveguide requires the knowledge
of the spatial structure of the near field. Because a sphere
has no principal axes, any arbitrarily small perturbation
will pick three axes and therefore affects the orientation
of the induced dipole. Thus, with perturbed spheres we
may expect that there are only very few cases in which
p is nearly parallel to Eext. To illustrate this quantita-
tively, we present histograms of the angle between p and
Eext in Fig. 7. In Fig. 7(a) we consider all resonances,

whereas in Fig. 7(b) only the biggest resonance for every
member is used. The main result is that realizations with
p nearly parallel to Eext are indeed negligible, and the
orientation of the dipole relatively to the external field
is nearly random. This can be seen from the solid line
in Fig. 7(a), proportional to sin(θ), which corresponds
to a completely random choice of the orientation of the
dipoles. This figure also illustrates that the only cases
which are suppressed when the spheres are perturbed are
those in which p and Eext are almost perpendicular.
As expected, when only the largest resonances are con-

sidered the angle is typically smaller because, as already
pointed out, in a resonant situation only that part of the
incident field contributes that is parallel to the accord-
ing dipole axis. Moreover, the distribution of this angle,
shown in Fig. 7(b), is quite broad, which demonstrates
the substantial variability in the spatial structure of the
field around our perturbed spheres.

0 0.5
0

0.15

θ/π

Hθ

(a)

0 0.5
0

0.1

θ/π

Hθ

(b)

FIG. 7: Histogram of the orientation (relative to Eext) of
the induced dipole moment for all resonances (a), and only
the biggest ones (b). The solid line in (a) is obtained if the
orientation of the dipole axis is entirely random.

Therefore, we now consider the surface modes of per-
turbed spheroids. As spheroids already have at least one
distinguished principal axis, we expect that perturba-
tions of a spheroid do not have such a strong effect on
the orientation of the induced dipoles. We employ the
same kind of Gaussian perturbations, but now the un-
perturbed particle is a spheroid with semi-axes Rx = 1,
Ry = 1, and Rz = 1.2. Hence, the shape of a particle is
described by
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r(θ, φ) =

[

(sin θ)2 +

(

cos θ

1.2

)2
]−0.5

(14)

+

n
∑

i=1

hi exp

(

−0.5

(

dist(θi, φi; θ, φ)

wi

)2
)

.

Again, θi and φi are uniformly distributed on a sphere,
hi are normally distributed with a mean value of 0.2 and
a standard deviation of 0.1, and the normally distributed
wi have a mean value of 0.7 and a standard deviation of
0.3. We consider 10000 realizations of the spheroid and
calculate the response to a constant field in z-direction
for each. Here the numerical criterion e1,2 ≤ 0.1 leaves
us with 4323 particles.
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on
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ce
s/
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ar

tic
le

s (a)

0 0.5
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0.2

θ/π
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FIG. 8: Location of the resonances ((a): all) and orienta-
tion of the induced dipole moments ((b): largest only) for
the perturbed spheroids. The vertical lines in (a), labeled
by z and x,y, indicates the resonant values for the unper-
turbed spheroid and an incident field along respective coordi-
nate axes.

In Fig. 8 we present histograms for the location of the
resonances and for the orientation of the induced dipoles.
Again the resonances are shifted to somewhat bigger val-
ues of the permittivity. However, now the angle between
the incident field and the induced dipole moment for the
biggest resonance is much smaller, and also the distribu-
tion of the angle is narrower than in the previous case of

the perturbed spheres. This comparison can be roughly
quantified by the respective mean values, and the widths
of the distributions of the angles. We focus again on the
biggest resonances only, and determine the mean value
θ of the angle and the interval Iθ , centered around the
mean value, which contains two-thirds of the resonances.
For the case of the sphere this results in θ = 1.04 and
Iθ = [0.65 : 1.43], whereas θ = 0.23 and Iθ = [0.09 : 0.37]
for the case of spheroids.

V. CONCLUSION

We have presented a simple-to-implement and efficient
numerical scheme for calculating important character-
istics for surface modes of sphere-like nanoparticles in
the quasistatic limit, based on an expansion of the “in-
ner” and “outer” potentials into spherical harmonics. Al-
though the spherical harmonics do not constitute an or-
thogonal basis for particles which are not exactly spher-
ical, and therefore encounter problems similar to those
connected with the Rayleigh hypothesis when the de-
viation from an exact sphere becomes too strong, they
still remain a useful system of functions, in particular so
when the boundary conditions are interpreted in an in-
tegral manner, with a physically motivated choice of test
functions.

We have validated this scheme against exact solutions
for ellipsoids, and against perturbation-theoretical cal-
culations for deformed spheres. These comparisons and
also additional intrinsic numerical tests both show that
our method is able to yield accurate results for the res-
onant permittivities and the polariziabilities even when
only quite few spherical harmonics are employed, that is,
with quite small basis sets.

This high computational efficiency allows to perform
statistical studies of large ensembles of randomly per-
turbed nanoparticles. This ability is indispensable when
designing, e.g., plasmonic waveguides from nanoparticles
with small, but uncontrolled fabrication-induced shape
fluctuations. On the one hand, typical effects of such im-
perfections on the performance of these devices can be
quantified in this manner; on the other, admissible toler-
ances can be determined. While the specific distribution
of shape fluctuations employed for demonstration pur-
poses in our example given in Sec. IV may not be realis-
tic, the key steps of such a large-scale statistical analysis
proceed along exactly the same route as outlined there.
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Appendix A: Structure of the matrices

The structure of the matrices in Eq. (9), i.e. (M1 + ǫM2)U =M3G, is:

M1=





























a0,0,0,0 a1,−1,0,0 · · · aN,N,0,0 b0,0,0,0 b1,−1,0,0 · · · bN,N,0,0

a0,0,1,−1 a1,−1,1,−1 · · · aN,N,1,−1 b0,0,1,−1 b1,−1,1,−1 · · · bN,N,1,−1

...
...

. . .
...

...
...

...
. . .

a0,0,N,N a1,−1,N,N · · · aN,N,N,N b0,0,N,N b1,−1,N,N · · · bN,N,N,N

0 0 · · · 0 d0,0,0,0 d1,−1,0,0 · · · dN,N,0,0

...
...

. . .
... d0,0,1,−1 d1,−1,1,−1 · · · dN,N,1,−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 d0,0,N,N d1,−1,N,N · · · dN,N,N,N





























,

M2 =

(

0 0

(cl,m,l′,m′) 0

)

, M3 =

(

(al,m,l′,m′) 0

(cl,m,l′,m′) 0

)

,

where 0 is the (N + 1)2 × (N + 1)2 zero matrix. The coefficients al,m,l′,m′ , · · · , dl,m,l′,m′ are defined by projections

of the boundary conditions (2),(3) onto the modes rl
′

Y m′

l′ on the surface of the particle ∂Ω:

al,m,l′,m′ =

∫

∂Ω

r(s)l+l′Y m
l (s)Y m′

l′ (s) dS ,

bl,m,l′,m′ = −

∫

∂Ω

r(s)−(l+1)+l′Y m
l (s)Y m′

l′ (s) dS ,

cl,m,l′,m′ =

∫

∂Ω

∂n
(

r(s)lY m
l (s)

)

r(s)l
′

Y m′

l′ (s) dS ,

dl,m,l′,m′ = −

∫

∂Ω

∂n

(

r(s)−(l+1)Y m
l (s)

)

rl
′

Y m′

l′ (s) dS .

Thus, for a sphere with radius 1 the coefficients are: al,m,l′,m′ = δll′δmm′ , bl,m,l′,m′ = −δll′δmm′ , cl,m,l′,m′ =
lδll′δmm′ , dl,m,l′,m′ = (l + 1)δll′δmm′ , and so only four block diagonals of the matrix M1 + ǫM2 have nonzero en-
tries. The vectors U and G in the system (9) are defined by the coefficients αl,m, βl,m and γl,m of the expansion of
the potentials (5) and (6) as

U = (α0,0, α1,−1, . . . , αN,N , β0,0, β1,−1, . . . , βN,N)t , G = (γ0,0, γ1,−1, . . . , γN,N , 0, . . . , 0)
t
.
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[13] F. J. Garćıa de Abajo and J. Aizpurua, Phys. Rev. B 56,



10

15873 (1997).
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