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Abstract

Infinite time horizon spatially distributed optimal control problems may show so–called

optimal diffusion induced instabilities, which may lead to patterned optimal steady states,

although the problem itself is completely homogeneous. Here we show that this can be con-

sidered as a generic phenomenon, in problems with scalar distributed states, by computing

optimal spatial patterns and their canonical paths in three examples: optimal feeding, opti-

mal fishing, and optimal pollution. The (numerical) analysis uses the continuation and bi-

furcation package pde2path to first compute bifurcation diagrams of canonical steady states,

and then time–dependent optimal controls to control the systems from some initial states

to a target steady state as t → ∞. We consider two setups: The case of discrete patches

in space, which allows to gain intuition and to compute domains of attraction of canonical

steady states, and the spatially continuous (PDE) case.

1 Introduction

Infinite time horizon optimal control (OC) problems with ODE constraints deal with maximizing
discounted time integrals

V (v0) := max
q(·)∈Q

J(v0, q(·)), J(v0, q(·)) :=

∫ ∞
0

e−ρtJc(v(t), q(t)) dt, (1.1a)

where Jc : Rn × Rnq → R is a given objective function, v = v(t) ∈ Rn are the states of a system,
q ∈ Q ⊂ L∞([0,∞),Rnq) is a control, ρ > 0 is a discount rate, and the states fulfill the initial
value problem

d

dt
v = f(v, q), v|t=0 = v0. (1.1b)

The max in (1.1a) runs over all admissible controls q, which will be specified below, and the
discounted time integral in (1.1a) is typical for economic problems, where “profits now” weight
more than mid or far future profits. See, e.g., [FH86, LW07, GCF+08] for a multitude of examples
from various settings, including classical economics, bioeconomics, and drug and terror control.

A major tool for (1.1) is Pontryagin’s Maximum Principle [PBGM62], which first has been
used for finite time horizon OC problems, where the integral in (1.1a) runs to some finite T , and
where there may be a scrap value at T added to the integral. For the infinite horizon problem, the
setting is as follows: Assume that an optimal control q∗ ∈ Q exists, and introduce the co-states
(or shadow prices, or Lagrange multipliers) λ = λ(t) ∈ Rn, and the Hamiltonian (density)

H = H(v, λ, q) = Jc(v, q) + λTf(v, q),
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where v, λ and f are column vectors and hence λTf is the standard Rn inner product of λ and
f . Under some technical asumptions, namely that optimal solutions are sufficiently smooth and
fulfill the limiting inter-temporal transversality condition

lim
t→∞

e−ρtλT (t)v(t) = 0, (1.2)

we obtain that at each time t > 0, necessarily

q∗(t) = argmax
q

H(v(t), λ(t), q), (1.3a)

which we assume can be solved uniquely for q = q(v, λ), and that (v, λ) must fulfill the so–called
canonical system

d

dt
v = ∂λH̃(v, λ) = f(v, q), v|t=0 = v0, (1.3b)

d

dt
λ = ρλ− ∂vH̃(v, λ) = (ρ− ∂vfT (v, q))λ, (1.3c)

where H̃(v, λ) = H(v, λ, q(v, λ)) is the maximized Hamiltonian. See [GCF+08, §3.7, §3.8], and
[Tau15] for precise statements of Pontryagin’s Maximum Principle yielding the necessary first
order optimality conditions (1.3), for (concavity) assumptions yielding sufficiency of (1.3), and a
guide to the vast literature. See also App.A for a formal derivation of (1.3) using classical calculus
of variations, in an extension to OC problems with PDE constraints, which are discussed below.

Problems similar to (1.1) can also be studied in a spatial setting, in at least two different ways.
First, we may assume that the states are defined at np ∈ N discrete patches (or sites), coupled
by discrete diffusion. For simplicity here using np = 2 and assuming scalar states and controls at
each patch, we thus have states v(t) = (v1(t), v2(t)) ∈ R2 and controls q(t) = (q1(t), q2(t)) ∈ R2,
and consider

V (v(0)) := max
q(·)

J(v(0), q(·)), J(v(0), q(·)) =

∫ ∞
0

e−ρtJc,a(v(t), q(t)) dt, (1.4a)

where Jc,a(v, c) = 1
2
(Jc(v1, q1) + Jc(v2, q2)) is the averaged objective, subject to

d

dt
v1 = floc(v1, q1) +D(v2 − v1),

d

dt
v2 = floc(v2, q2) +D(v1 − v2), (1.4b)

with diffusion coefficient D > 0, and where floc denotes the local right hand side. We call this
a two-patch problem (2P problem), in contrast to the single patch problem (1P problem) (1.1).
Pontryagin’s Maximum Principle with the Hamiltonian

H(v, λ, q) = Jc(v, q) + λT
(
f(v, q) +D

(
v2−v1
v1−v2

))
, (1.5)

f=(floc(v1, q1), floc(v2, q2)), costate vector λ=(λ1, λ2)T , and limiting transversality condition
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limt→∞ e−ρtλ(t)Tv(t)=0 yields qi = qi(vi, λi), and the 4–component canonical system

d

dt
v = f(v, q) +D

(
v2−v1
v1−v2

)
, v|t=0 = v0, (1.6a)

d

dt
λ = (ρ− ∂vf(v, q)T )λ−D

(
λ2−λ1
λ1−λ2

)
. (1.6b)

Second, instead of discrete patches we may assume continuous space x ∈ Ω ⊂ Rd, and that
the states v : Ω× [0,∞)→ RN and the control q : Ω× [0,∞)→ R are functions of x and t, and
consider objectives of the form

V (v0) := max
q(·,·)

J(v0, q(·, ·)), J(v0, q) :=

∫ ∞
0

e−ρtJca(v(·, t), q(·, t)) dt, (1.7a)

with Jca(v(·, t), q(·, t)) = 〈Jc(v(x, t), q(x, t))〉, where, to make results over different domains easily
comparable,

〈h〉 :=
1

|Ω|

∫
Ω

h(x) dx (1.7b)

is the spatial average of h : Ω→ R. The states fulfill the PDE initial value problem

∂tv = f(v, q) +D∆v, v|t=0 = v0, (1.7c)

together with some boundary conditions (BCs), which for simplicity we take as homogeneous
Neumann (aka zero–flux) BCs

∂nv = 0. (1.7d)

In (1.7c), D ∈ RN×N is a positive (semi–) definite diffusion matrix, and ∆ = ∂2
x1

+ . . .+ ∂2
xd

is the
Laplacian. Formally1, we may then proceed as above and define the Hamiltonian

H(v, λ, q) = Jca(t) + 〈λ(·, t)T (f(v(·, t), q(·, t)) +D∆v(·, t))〉, (1.8)

and require the limiting transversality condition

lim
t→∞

e−ρt〈λ(·, t)Tv(·, t)〉 = 0, (1.9)

leading to canonical systems of the form

∂tv = ∂λH̃(v, λ) = f(v, q) +D∆v, v|t=0 = v0, (1.10a)

∂tλ = ρλ− ∂vH̃(v, λ) = (ρ− ∂vf(v, q)T )λ−D∆λ, (1.10b)

with Neumann BCs for v and λ, and where H̃ denotes the pointwise maximized Hamiltonian

H̃ = H̃(v(x, t), λ(x, t)) = H(v(x, t), λ(x, t), q(v(x, t), λ(x, t))). (1.11)

1see Appendix A
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1.1 A solution method

In the canonical systems (1.3), (1.6) and (1.10), we only have initial conditions v|t=0 = v0 for
the states, while the costates (and hence the control) at t = 0 are free. Moreover, for instance
in (1.10b) we have “backward diffusion” such that (1.10) would be ill–posed as an initial value
problem. Nevertheless, roughly speaking we have reduced the choice of q in (1.7a) to the choice
of λ0 = λ|t=0 in (1.10), and similarly for (1.1) and (1.4). One way to proceed is to first compute
steady states (v̂, λ̂) ∈ R2n of (1.3), resp. (1.6) or (1.10). Here we first assume the ODE case, and
below comment on the PDE case with n = Nnp after spatial discretization, with np the number
of discretization points.

A steady state (v̂, λ̂) of the canonical system is called a canonical steady state (CSS)2 , while a
time dependent solution is called a canonical path. For notational convenience3 we set u = (v, λ) ∈
R2n and write the canonical system in the condensed form

d

dt
u = −G(u), v|t=0 = v0 ∈ Rn. (1.12)

After computing CSSs û = (v̂, λ̂), together with their value J(û) = Jc(û)/ρ, we aim to find
canonical paths u : [0,∞) → R2n with limt→∞ u(t) = û for some CSS û = (v̂, λ̂). For this, the
initial states v0 ∈ Rn must lie in the stable manifold Ws(û) of û. Therefore, for generic v0 near v̂,
a necessary and sufficient condition for such a canonical path to û to exist is that dimWs(û) ≥ n.
On the other hand, from the structure of (1.3) it follows that dimWs(û) ≤ n, see, e.g., [GU17].
A CSS û with dimWs(û) = n is said to have the saddle point property (SPP), which can be seen
as a local stability, because if dimWs(û) = n then there generically exists a canonical path to û
from nearby initial states v0. We call d(û) := n − dimWs(û) the defect of the CSS û, such that
the SPP corresponds to d(û) = 0.

Importantly, the nonlinear canonical systems of type (1.12) typically come with a number
of parameters, e.g., the discount rate ρ, and thus a useful strategy is to search for CSSs in a
continuation and bifurcation setting. This quickly becomes difficult or impossible analytically,
and hence some numerics are useful. In particular, except for rare exceptional (basically linear)
cases, for the computation of canonical paths numerics are required. This typically proceeds by a
continuation procedure in the initial states in the form ṽ0 = αv0 + (1−α)v̂, starting with small α
and initial guess u(t) ≡ û for the canonical path. Using the last canonical path as an initial guess
for α+ δ, we may increase α, and if we can reach α = 1, then we have found the desired canonical
path u from v0 to û. In this case we say that v0 is in the domain of attraction A(û) of û, i.e.,

A(û) := {v0 ∈ Rn : there exists, by choice of λ0 ∈ Rn, a canonical path from v0 to û}. (1.13)

Numerically, the convergence limt→∞ u(t) = û is approximated by choosing a truncation time t0
and requiring that

‖u(t0)− û‖ < ε (in some norm), and u(t0) ∈ Es(û) (the stable eigenspace), (1.14)

as Es(û) close to û approximates Ws(û). Setting u=û+w yields the linearization d
dt
w=−∂uG(û)w,

and the decay of w to 0 is determined by the smallest positive (due to the convention d
dt
u = −G(u)

2the symbol ˆ is custom for a CSS and has nothing to do with Fourier transform
3here we deviate from standard notation in OC, where u often is the symbol for the control
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in (1.12)) eigenvalue µ1 of ∂uG(û). Thus, e−µ1t = ε yields an estimate

t0 = (− ln ε)/µ1 (1.15)

for the truncation time t0 in (1.14), which for small µ1 can be quite large.
All of the above applies equally to 1P and 2P problems. Moreover, any CSS û of the 1P

problem yields a CSS (v̂, v̂, λ̂, λ̂) (two identical copies) of the 2P problem, which hence we call a
spatially homogeneous or flat CSS (FCSS), and the same holds for canonical paths. Additionally,
the 2P problem may have inhomogeneous CSSs (v̂1, v̂2, λ̂1, λ̂2) with v̂1 6= v̂2 (and then typically
also λ̂1 6= λ̂2), which we call patterned CSSs (PCSSs).4 If (at some fixed parameter values) several
CSS û with d(û) = 0 exist, then from a given initial state v0 we can try to compute canonical
paths to each of them, and compare their values, which we approximate as

J=

∫ ∞
0

e−ρtJc(t) dt=

∫ t0

0

e−ρtJc(t) dt+

∫ ∞
t0

e−ρtJc(t) dt≈
∫ t0

0

e−ρtJc(t) dt+
e−ρt0

ρ
Jc(t0). (1.16)

The canonical path with the lower J is then clearly suboptimal, while the one with the higher J
might be optimal.

The continuation in the initial states is implemented in pde2path, with PDEs (PDE dis-
cretizations) in mind, and some more elaborate versions are also implemented, namely arclength
continuation in the initial states to pass around folds in α. See [dWU19] or [Uec21, Chapter
11] for algorithmic details. We write the PDE case (1.10) in condensed form for u = u(x, t) =
(v(x, t), λ(x, t)) ∈ R2N as

∂tu = −G(u) = g(u) +D∆u, in Ω, with D =

(
D 0

0 −D

)
, v|t=0 = v0 (1.17)

together with the pertinent BCs for v and λ (here always Neumann BCs). In summary, to obtain
solutions, we proceed in two steps:

1. First, we (numerically) compute CSSs (and their values) for (1.17). This is a more or less
standard (though possibly elaborate) problem for an elliptic system, and can conveniently
and efficiently be treated as a continuation and bifurcation problem by the package pde2path
[UWR14, Uec21], which uses the finite element method (FEM) for the spatial discretization.
The (branches of) CSSs can again be characterized as either flat (FCSS, i.e., spatially homo-
geneous), or patterned (PCSS, i.e., x–dependent). Moreover, also the saddle point property
can be naturally generalized to the PDE case (1.10): After spatial discretization with np
points we have an n = 2Nnp–dimensional ODE (resp. algebraic system for CSSs), and we
call a CSS û a saddle–point CSS if dimWs(û) = n, and call d(û) = n−dimWs(û) the defect
of û. For small np (coarse meshes), d(û) may depend on np, but for np → ∞ this becomes
mesh–independent, cf. [GU17].

2. In a second step, we again aim to compute canonical paths from some initial state v0 to one
or several SPP–CSSs û computed in the first step.

Remark 1.1. Numerically, the differences between (1.3), (1.6) and (1.10) are quantitative rather

than qualitative. In particular, we also use pde2path for the bifurcation analysis of CSSs of

(1.3) and (1.6), essentially by considering the 2P problem (1.6) as a “PDE-discretization” with

4By symmetry (spatial homogeneity), if (v̂1, v̂2, λ̂1, λ̂2) is a PCSS, then so is (v̂2, v̂1, λ̂2, λ̂1), and we generally do
not distinguish these two
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np = 2 discretization points. This then includes the 1P problem if we restrict to FCSSs (and flat

canonical paths), which, moreover, can be used to check the optimal diffusion–induced instability

(ODI) conditions (1.20) below, which give criteria if and where (primary) PCSSs (may) bifurcate.

Considering the genuine PDE–setting (1.10), may require a large np (e.g., if Ω ⊂ R2), and the

numerics, in particular for canonical paths, become somewhat expensive. Nevertheless, our method

works robustly and reasonably fast (on the order of minutes for the computation of canonical paths)

up to a few thousand spatial degrees of freedom n = Nnp. c

1.2 Optimal Diffusion–induced Instability (ODI)

An important question for (1.6) and (1.10) is whether PCSSs exist. A seminal analysis has been
put forward in [BX08], considering instabilities of FCSSs. For the case of scalar states, this yields
conditions on the Jacobian

J0 =

(
Hλv Hλλ

−Hvv ρ−Hvλ

)
(1.18)

of the “reaction part” ∂tu = (Hλ, ρλ−∂vH) of (1.10) with D = 0 at some FCSS, where we dropped
the ˜ in the maximized Hamiltonian H̃(v, λ) = H(v, λ, q(v, λ)). These conditions describe the loss
of the SPP at some parameter values and hence the possible bifurcation of (branches of) PCSSs,
for suitable choice of D > 0, or equivalently, the domain size. They are somewhat similar to
the conditions for the Turing instability [Tur52, Mur89] in a two–component reaction–diffusion
system, but due to the OC background the instability is aptly named optimal diffusion–induced
instability (ODI). In detail, we have two scalar functions,

h1(û) = 2Hvλ(û)− ρ and h2(û) = ρ2/4−Hλλ(û)Hvv(û), (1.19)

depending on the parameters, e.g., ρ, and the 1P CSS values û (which themselves depend on the
parameters). Necessary conditions for a defect d(û) > 0 of the FCSS û then are

h1(û) > 0 and h2(û) > 0, (1.20)

and thus we may for instance expect the bifurcation of a PCSS branch at a point on a FCSS
branch where, e.g., h1 > 0 and h2 changes sign. These conditions only concern the FCSSs û itself,
and hence can be checked analytically in some cases, but also numerically during the continuation
of FCSSs in a 1P setting (or 2P setting, as explained in Remark 1.1), see the examples below.

In [BX08], the theory is then applied to three example problems, namely a shallow lake OC
problem, and two optimal resource management problems. This means that the ODI conditions
(1.20) are discussed for the respective problems, together with their economic interpretations.
See also [BX10] for optimal harvesting in a 2–state vegetation–water system, which yields ODIs.
However, the actual bifurcations of branches of PCSS, their possible defects, their canonical paths
and ultimately their optimality are not discussed in [BX08, BX10]. As indicated above, this is in
general a rather nontrivial numerical problem, but the computation of canonical paths is necessary
to decide on optimality (or not) of a saddle–point CSS û, and, in particular in case of optimality,
to have the actual time-dependent control to govern the system from an initial state v0 to û.
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1.3 The models, and preview of results

In [Uec16, GU17], the analysis from [BX08] (and [BX10]) is extended by a numerical bifurcation
analysis of FCSSs and PCSSs for the shallow lake problem and the vegetation problem, in 1D and
2D, including the computation of canonical paths to FCSSs and PCSSs with the SPP, all based
on pde2path. However, patterned optimal steady states (POSSs, in short) could not be found
in the shallow lake model. For the vegetation–water system in [Uec16] we find large families of
POSSs, but this is to some extent to be expected as already the uncontrolled reaction–diffusion
system features Turing instabilities leading to pattern formation. In [GUU19], we use pde2path in
a similar setup to study CSSs and canonical paths in OC of fisheries with boundary catch, which
are hence a priori spatially inhomogeneous. Finally, in [UUHB21] genuine ODI pattern formation
with POSSs is found in a scalar state PDE model FEED, modeling feeding, or, more generally,
optimal stock–enhancement of a renewable resource, see below.

Here we complement these results by computing POSSs in two further scalar OC problems,
namely one of the optimal resource management problems FISH from [BX08], and a pollution
problem POLL based on [For75, TW96, Hed09]. Together with [UUHB21] this illustrates that
pattern formation via ODI leading to POSSs can be seen as a generic phenomenon, occuring in
open parameter sets in different classes of scalar PDE constrained OC problems, although some
fine tuning of parameters is typically required. Moreover, while (1.20) is derived for the PDE case,
we find it also convenient for the 2P versions of the models, and besides the PDE cases we discuss
these in some detail, as they can be used to gain intuition and discuss domains of attraction.
Another advantage of the 2P models is that [Tau15] applies for the rigorous derivation of the
canonical system, while again we remark that the derivation of (1.10) is somewhat formal, but it
yields results fully consistent with the case of discrete diffusion.

In §2 we review some results from [UUHB21] on the FEED model, and in §3 and §4 we discuss
the FISH and POLL models and results, aiming at the spatial setting, but starting with the 1P
canonical ODE systems, which, together with the ODI criterion (1.20) already give strong hints
about the occurence of PCSSs, and their possible domains of attraction. In §5 we close with a
brief summary and discussion. For comparison, here we collect Jc and the ODE right hand sides
for the three models, i.e., for their 1P forms (1.1), namely

FEED: Jc(v, a)= log v−γ
2
a2,

d

dt
v = av (1− v)− δv, feeding rate a as control; (1.21)

FISH: Jc(v, E)=αh−β
2
h2,

d

dt
v = rv(1− v/K)− h, h = Ev, effort E as control; (1.22)

POLL: Jc(v, c)= ln c−γ
2
v2,

d

dt
v=δc−βv(κ−v)−m(1−v), consumption c as control. (1.23)

For FEED, we renamed the control q to a as it takes the form of an amplification of the natural
growth rate of the stock v.5 The first term in Jc is the utility of the stock, the second the costs of
feeding; the term av(1− v) models logistic growth with rate a and carrying capacity 1, while −δv
models the natural decay of v. For FISH, the control is the fishing effort E, such that h = Ev
is the harvest, and the (fish) stock has logistic growth with rate r and carrying capacity K. For
POLL, the control is the consumption c, which drives the pollution stock v, but v is assimilated
(or degraded) by the logistic function −βv(K − v) with rate β and carrying capacity K, and
additionally there are cleaning efforts m(1 − c) proportional to the part 1 − c of the economy’s
output not used for consumption. The profit is similar to the one for FEED, but the roles of the

5Another motivation for naming the control a is that similar models appear in advertising, see [GCF+08, Ex.3.5],
where a is the advertising effort, and v is the goodwill of customers (the willingness to buy a product).
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control and the stock are reversed.

(a) FEED (b) FISH (c) POLL

Figure 1.1: 1D sample canonical paths going to a PCSS (top: control, bottom: states). (a) FEED. In

the PCSS (see (a) at t = 20), both, control a (feeding) and stock v, are large at the right boundary,

and the canonical path goes from a FCSS to a PCSS. (b) FISH. The PCSS can be seen as a type of

marine reserve, with little fishing effort E and high stock in the middle of the domain; however, the

harvest h = Ev is almost constant in the domain, see §3. (c) POLL. High pollution at the left, hence low

consumption. In all three cases, the control of the system from the initial states maximizes the profit,

and all three PCSSs can be considered as patterned optimal steady states (POSSs).

All three models share logistic growth (decay for POLL) of the stock, and Jc fulfills the typical
assumptions on objective functions such as concavity in v and q, and for FEED (POLL) infinite
marginal values at v=0 (at c = 0), i.e., ∂vJc(0, a) = ∞ (∂cJc(v, 0) = ∞). Of course, for instance
for FEED also limv↘0 Jc(v, a) = −∞, and the current value Jc(v, a) (and hence also the total value
J(v, a) =

∫∞
0

e−ρtJc(v, a) dt) can (and typically will) be negative, but this is only a question of
offset. What matters is the comparison of J for different controls a. In Fig. 1.1 we show a POSS
and an associated canonical path for each of the three models, but refer to the further sections for
discussion, parameter values, and domains and diffusion constants for the spatial models.6 There
we also give a few modeling and economic comments, but otherwise take the models as given and
focus on the mathematical (numerical) methods and results.

6In FEED and POLL we shall have dimensionless parameters, chosen for convenience and clarity of results; for
FISH we use the dimensional parameters from [BX08]. At this point we only remark that in all three models we
have ρ near 0.03, which means that the unit of t should be thought as years. In particular, for FISH and POLL in
Fig. 1.1 we then have a very long time horizon for the approach to the POSSs, which is essentially due to a small
stable eigenvalue µ1, cf. (1.15).
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2 Optimal feeding

To set the stage for the fishing and pollution models in §3 and §4, we review some results from
[UUHB21] on the FEED model. The dynamics and Jc are given in (1.21), i.e.,

Jc(v, a) = log v − γ

2
a2,

d

dt
v = f(v, a) := av (1− v)− δv, (2.1)

The control a is the growth rate (feeding) of the stock v, which gives the utility7 log v in Jc, but
feeding costs money, modeled by −γ

2
a2 in Jc. Applying Pontryagin’s Maximum Principle to the

spatial problem yields the canonical system

∂tv =
λ

γ
v2(1− v)2 − δv +D∆v, v|t=0 = v0, (2.2a)

∂tλ = λ(δ + ρ)− 1

γ
λ2v(1− 2v)(1− v)− 1

v
−D∆λ, (2.2b)

with a = λv(1 − v)/γ (pointwise in x and t), and with Neumann BCs for v and λ. For the 1P
problem we have (v, λ) = (v, λ)(t), dropping the D∆ terms, and for the 2P problem we replace
these by discrete diffusion.

Besides the existence of PCSSs for (2.2), a remarkable feature are their rather large domains
of attraction, which we shall discuss (also for the FISH and POLL models) in the 2P setting.
Recall from (1.13) that given a 2n dimensional canonical system with possibly several CSSs û, the
domain of attraction of a CSS û ∈ R2n is the set

A(û) := {v0 ∈ Rn : there exists, by choice of λ0 ∈ Rn, a canonical path from v0 to û}.

A CSS û is called globally stable if A(û) = Rn (or if A(û) = B if the dynamics is restricted to some
subset B ⊂ Rn, e.g., B = Rn

+). More generally, a CSS û may be considered important if A(û) is
“large” in a suitable sense. These definitions do not involve the optimality of a canonical path,
and if several CSSs exist, then their domains of attraction may have non–empty intersections.
Then, given an initial state v0 ∈ A(û(a))∩A(û(b)), the first step is to compare the value J(v0; û(a))
of the canonical path to û(a) with the value J(v0; û(b)) of the canonical path to û(b).

In Fig. 2.1 we summarize results for (2.2), with base parameter set

(ρ,m, β, γ) = (0.015, 0.01, 0.01, 0.01) (2.3)

and bifurcation parameter δ, with many more details and economic discussion given in [UUHB21].
(a) shows a phase portrait for the 1P version with δ = 0.3, with the unique fixed point û marked
by the red dot. This is a saddle point, and its stable (unstable) manifold is given by the green
(red) lines. The dashed lines are the nullclines, and the blue lines are selected orbits. The phase
portrait shows that û is globally stable: For any v0 > 0, we find a unique λ0 such that (v0, λ0) is
on Ws(û) (on the green line), and this uniquely determines the canonical path from v0 to û. In
particular, Ws(û) extends to large v0 and is “well behaved” there (this will be different for the
other models). It also extends to small v0, but becomes rather steep with large λ; this agrees with
economics, as small stocks have large “shadow prices” λ, and in particular λ → ∞ on Ws(û) as
v → 0, due to −1/v in (2.2b), which is a consequence of the infinite marginal value in Jc at v = 0
from log v.

7not necessarily as food; the utility may as well be, e.g., benefits for the eco–system, i.e. nature preservation
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Figure 2.1: (a) One patch phase portrait for FEED, parameters (2.3), δ = 0.3. (b) Top panel: 2P

continuation in δ with D = 0.25, with the black branch correponding to the FCSS, and the blue branch a

PCSS. Bottom: ODI indicator function h2 along the black branch. (c) canonical path FCSS to p1/pt36.

(d) values of p1/pt36. (e,f) 1D bifurcation diagram and sample solutions, D = 0.25.

In Fig. 2.1(b–d) we turn to the 2P model, using δ as a continuation and bifurcation parameter
for steady states. The black line (which is independent of D) in the top panel in (b) shows Jc,a
for the FCSS, and the bottom panel (red line) the ODI indicator function h2 from (1.20), which
shows that (for suitable choice of D) we obtain an ODI around δ = 0.56 (h1 is always positive).8

Choosing D = 0.25 we obtain the bifurcation of the blue PCSS branch at δ ≈ 0.565. This has
the SPP, and at δ = 1 we numerically obtain û = (v1, v2, λ1, λ2) ≈ (0.02, 0.085, 82, 166). In (c) we
then show a canonical path to û, starting at v0 ≈ (0.06, 0.06) (from the FCSS at δ = 0). The top
panel shows Jc,a and e−ρtJc,a along the canonical path, and the numbers

J0 = −678, J = −605, J1 = −601 (2.4)

give the values of the FCSS, of the canonical path, and of the target PCSS, respectively, using
(1.16) for the canonical path. The numbers (2.4) show that we can substantially increase the
profit by controling the system from the FCSS to the PCSS. The bottom panel in (c) shows v and
a along the canonical path; to control the system from the FCSS to the PCSS (with v2 > v1), we
start with a2 > a1, and the convergence to the PCSS is monotone and rather fast.

8Here and in the following, open circles in bifurcation diagrams (BDs) such as Fig. 2.1(b,top) or (e) indicate
bifurcation points. Numbers on branches indicate specific points on the branch, typically subsequently plotted,
like pt7 on the blue branch p1, and pt14 on the red branch p2, in (f).
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In Fig. 2.1(d) we characterize the domain of attraction of the PCSS ûPCSS (at δ = 1), by
sampling the initial states plane v0 = (v0,1, v0,2) and aiming (see Remark 2.1 for the algorithm) to
compute canonical paths to ûPCSS, indicated by the red ∗ in (d1) and the open circle in (d2). By
symmetry, cf. Footnote 4, if û is a PCSS, then so is Mû = (v2, v1, λ2, λ1). In (d2), obtained from a
Delaunay triangulation of (d1), we also mark MûPCSS, and indicate the diagonal by the blue line.
The main conclusions from (d) are as follows:

� A(ûPCSS) extends to large v0,1 and v0,2, and J(v0) is monotonously increasing in v0,1 and v0,2.
� For non–small v0,2, A(ûPCSS) contains v0,1 values beyond the diagonal. However, the mirrored

PCSS Mv̂ is not in A(û), i.e., a canonical path from Mv̂m (see the ∗ in (d2)) to ûPCSS does
not exist. Nevertheless, A(ûPCSS) and A(MûPCSS) have a large intersection. As J(v0;MûPCSS)
can be obtained from mirroring J(v0; ûPCSS) across the diagonal, A(ûPCSS)∩ {v1 = v2} forms
an obvious Skiba manifold [Ski78] for the 2P problem: Above (below) the diagonal it is
optimal to go to ûPCSS (to MûPCSS).

Remark 2.1. In Fig. 2.1(d) we use a fixed truncation time t0 = 20 for (1.14), and also a fixed

stepsize for the continuation algorithm in α for the continuation of canonical paths in the initial

states. If this yields a canonical path at α = 1, then we store v0 and J(v0) in an array, and this

gives the blue dots in (d1). As a result, A(ûPCSS) contains at least (the v0 values of) the dots in

(d1). In fact, by finer sampling of the v0 plane and fine tuning the canonical path computation

we can slightly increase the numerical A(ûPCSS), but altogether the characterization in (d) seems

somewhat sharp. c

In summary, (d), together with similar computations at other parameter values, illustrates
that for the FEED 2P problem we have a large A(ûPCSS). This will be quite different for the FISH
and POLL problems studied below. Intuitively, we attribute the large A(ûPCSS) for FEED to the
“well–behaved” (1D) stable manifold in the 1P problem; the analogous stable manifolds in the
FISH and POLL problems will turn out to be much less well-behaved.

Figure 2.1(e,f) shows the bifurcation diagram for the 1D PDE case with Ω = (−1.5, 1.5) and
D = 0.25. The blue branch contains PCSSs with the SPP and wave number k = 0.5 (see top panel
in (f) for a sample solution), and it bifurcates close to δ = 0.56 as predicted by the ODI criterion
h2 > 0, i.e., the sign change of h2. The red branch contains PCSSs with wave number k = 1 (see
bottom panel in (f)), which have defect d = 1. The PCSSs on the blue branch again have quite
large domains of attraction, although a precise characterization as in (d) for the 2P case is no
longer feasible for the now infinite dimensional (or, after spatial discretization, high dimensional)
phase space. In any case, the FCSS is in the domain of attraction of the blue PCSS for all δ > δ0,
and in Fig. 1.1(a) we show the canonical path from FCSS/pt17 to p1/pt7. For the values we have

J0 ≈ −678 (FCSS), J ≈ −556 (canonical path), and J1 ≈ −555 (target PCSS), (2.5)

showing that going to the PCSS can significantly increase the profit compared to, e.g., staying in
the FCSS.

Remark 2.2. a) While we have not actually proved that the CSSs from Fig. 2.1 with the SPP

are (locally) optimal (as we assumed sufficient smoothness of optimal solutions and the pertinent

inter–temporal transversality conditions), we believe that this holds beyond reasonable doubt, and

hence they are patterned optimal steady states (POSSs).

b) See [UUHB21] for results for (2.2) in 2D, and more elaborate bifurcation diagrams including

secondary bifurcations. This yields further PCSS branches and in particular multiple PCSSs with

the SPP, and each of these saddle–point PCSSs has a non–small domain of attraction. c
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3 Optimal fishing and marine reserves

In the model (1.22), following [BX08, §5.2.1.1], v is the biomass of fish, for which we assume
logistic growth with rate r and carrying capacity K. The catch (or harvest) is h = h(E, v) = Ev
with harvesting effort E as control, and the local current value is Jc(h) = αh− β

2
h2. The spatially

continuous model is, to recall, with f(v, E) = rv(1− v/K)− Ev,

Jc(h) = αh− β

2
h2, h = h(E, v) = Ev with effort E as control, (3.1a)

∂tv = f(v, E) +D∆v, x ∈ Ω, t ≥ 0, ∂nv|∂Ω = 0, v|t=0 = v0, (3.1b)

Remark 3.1. The model (3.1) with Jc = Jc(h) which depends only on h, but not separately on

v and E, appears somewhat oversimplified. In reality, we may for instance expect that Jc also

depends on E, e.g., Jc = αh − βh2/2 − γE with γ > 0, as the effort itself also costs money.

However, for γ = 0 the algebra is much simpler, and, moreover, the results stay qualitatively the

same for γ > 0 (up to γ = 108 for the other parameters chosen below), and hence we stick to the

original model. c

We use the discount rate ρ as the bifurcation parameter, and otherwise essentially the param-
eter specifications from [BX08], namely9

(r,K, α, β) = (0.08, 400 000, 75 000, 10), (3.2)

were we changed α from 80 000 ([BX08]) to α=75 000 for graphical reasons, i.e., to better distin-
guish branches. Due to the dimensional parameters, and to gain intuition, in Fig. 3.1(a) we give
simple plots of Jc(h) and f(v, E), in pertinent regimes. Obviously, Jc is maximal at h∗ = α/β =
7500, and f(v, 0) is positive for v ∈ (0, K). For instance for v∗ = 1.5 ∗ 105 we may then aim to
choose E = E∗ = 0.05 to have h = Ev = h∗, and this corresponds to a fixed point of d

dt
v = f(v, E).

Similarly, for v < v∗ we may aim at E > E∗ to still have the harvest h∗ which maximizes Jc.
Then, however, we may have d

dt
v = f(v, E) < 0, and it remains to be seen how to exactly choose

E optimally.10

We apply Pontryagin’s Maximum Principle and obtain E =
α− λ
βv

, and the canonical system

∂tv = f(v, E) +D∆v, v|t=0 = v0, (3.3a)

∂tλ = (ρ− ∂vf(v, E))λ−D∆λ. (3.3b)

The associated 1P model is (3.3) with (v, λ) = (v, λ)(t) ∈ R2 and the ∆v and ∆λ terms dropped,
and in the 2P model we have (v, λ)(t) = (v1,2, λ1,2)(t) ∈ R4 with ∆v and ∆λ denoting discrete
diffusion. The pertinent FCSS is

û = (v̂, λ̂) =

(
K(r − ρ)

2ρ
,
r(2α−K) + ρK

βr(r + ρ)

)
, (3.4)

9The values for (r,K) are from [Cla90, p49], corresponding to the antarctic fin-whale, with units [r] = 1/y,
[K] = w = #of whales, and consequently ([α], [β], [ρ]) = ($/w, $y/w,1/y).

10For instance, we might simply choose E = h∗/v leading to the constant harvest h∗. This leads to extinction of
v in finite time t∗, i.e., limt→t∗ v(t) = 0, and, importantly, turns out not to be optimal, see Remark 3.2.
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Figure 3.1: FISH. (a) Plots of Jc(h) and of f(v,E) for illustration. (b) Phase portrait for the 1P problem

near the nontrivial CSS, ρ = 0.03. (c) The larger scale phase portrait; two saddle points (red dots), and

an unstable node at (v, λ) = (150000, 0); the black arrows indicate the flow on the invariant λ = 0 axis.

(d) The ODI indicator function h2 for continuation of the CSS from (a) in ρ.

and the ODI condition (1.20) for (3.3) is

h2 =
ρ2

4
− f ′′(v̂)λ∗/Q′′(v̂) = ρ2/4− 2rλ̂/(βK) > 0, (3.5)

as here f ′′ = −2r/K and Q′′ = −β are independent of v and λ. Using (3.4), this can in principle
be evaluated analytically, but instead, as in the FEED model, we just compute h2 (and h1, which
is always positive) while continuing the FCSS (3.4) in parameters.

Figure 3.1(b) shows the phase portrait for the 1P problem, locally near the CSS (3.4), and
(c) gives a more global picture. For ρ > 0.01, the 1P CSS (3.4) (red dot) is a saddle, with stable
(unstable) manifolds Ws(û) (Wu(û)) in green (red). Importantly, the southeast part of Ws(û) is a
heteroclinic orbit connecting for t→ −∞ to a second (trivial) FP û∗ = (v̂∗, 0) with

v̂∗ = K/2−
√
K2/4−Kα/(rβ), (3.6)
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(v̂∗ = 150000 in Fig. 3.1(a,d)), with defect d = 1, and there is a third FP û◦ = (v̂◦, 0) with

v̂◦ = K/2 +
√
K2/4−Kα/(rβ) (3.7)

(v̂◦ = 250000 in Fig. 3.1(b)), which is again a saddle. An immediate consequence of this phase
portrait is that for the 1P problem with initial states v0 > v̂∗ a canonical path to û does not exist.
Instead, the only CSS that can be reached is û◦, and the canonical path has λ ≡ 0 and hence
E = α/(βv), i.e., the constant harvest h = α/β. All this agrees with the intuition gained from
(a), and the 1P domain of attraction of û being bounded above by v̂∗ means that for the spatial
problems (2P or PDE) we should not expect large domains of attraction of (saddle point) PCSSs.
See below for further discussion. In (d) we plot h2 from (3.5), showing that we have an ODI at
ρ0 ≈ 0.028.

In Fig. 3.2 we consider the 2P problem with D = 2/300, starting with the black FCSS branch
as a function of ρ. In (rough, since we did not optimize for D) agreement with Fig. 3.1(d), at
ρ ≈ 0.027 a PCSS branch (b1, blue) bifurcates from the FCSS ûFCSS = (û, û) towards larger ρ,
with a fold at ρ = ρf ≈ 0.048, where it gains the SPP.11 At b1/pt15 (ρ = 0.04),

ûPCSS ≈ (85900, 191000, 14020, 2170), and (E1, E2) ≈ (0.07, 0.038), (3.8)

which means that patch 2 can be interpreted as a marine reserve (which turns out to be optimal,
see below): In patch 2 we have a smaller fishing effort E2 and a larger fish stock v2. However,
the harvest h = Ev = 103(6.1, 7.28) is actually larger in patch 2 than in patch 1, and intuitively,
the reason for J(ûPCSS) > J(ûFCSS) is that for ûPCSS the harvest in patch 2 is closer to the optimal
h∗ = 7500. Given the larger v2, this is achieved by a small effort E2, and at the same time v
being maximal in patch 2 yields diffusion to patch 1 which keeps the large v2 in steady state. The
converse arguments apply to patch 1, where (after the fold) we also have h1 closer to h∗ than in
the FCSS.

The subcritical bifurcation of b1 yields a range ρ ∈ (ρ1, ρf ) where both, the FCSS and the
PCSS have the SPP, and it is interesting to compare their domains of attraction and values.
In (b,c) we show two canonical paths from initial states v0 = 105(0.5, 1.5), which are chosen
rather carefuly (by trial and error) to be in A(ûFCSS) ∩ A(ûPCSS). In (b) we target the FCSS
with J1 := J(ûFCSS) ≈ 6.75 ∗ 109, and obtain J = 6.3921 ∗ 109 for the canonical path. In (c),
we target ûPCSS with J1 = 6.91 ∗ 109, and obtain a slightly larger J̃ = 6.3924 ∗ 109 for the
canonical path. However, J̃ = J , up to 4 digits, which shows that for this v0 the difference
between going to the PCSS and the FCSS is rather marginal, although the FCSS has a somewhat
smaller CSS value. Naturally, for going to the FCSS the harvesting efforts become equal for
t→∞; for going to the PCSS, we have E1(t) > E2(t) throughout, and E1, E2 are monotonously
increasing/decreasing. If, e.g., v0 = 105(1.5, 0.5), then we would of course target the mirrored
PCSS MûPCSS ≈ (191000, 85900, 2170, 14020).

However, altogether the domains of attraction of both, the FCSS and the PCSS, are not large,
and, moreover, have a small intersection, see (d). This can be related to the 1P phase portrait.
As discussed above, the 1P domain of attraction of the FCSS is bounded above by v̂∗, and this is
essentially inherited by the 2P domain of attraction of ûFCSS: Canonical paths to ûFCSS only exist
for max(v0,1, v0,2) ≤ v̂∗+δ, where δ depends von D, but is small compared to v̂ ≈ 105, i.e., δ ≤ 103

in our experiments. Otherwise, J(v0) is as expected, i.e., monotonously increasing in v1 and v2.
For v0,1 near 105, canonical paths to ûPCSS also exist for larger v0,2 (v0,2 = 3 ∗ 105, say) but not

11We continue these branches as long as λ1,2 ≥ 0, which for both, the FCSS and the PCSS, gets violated near
ρ = 0.02.
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Figure 3.2: FISH 2P. (a) bifurcation diagrams. FCSS branch (black), and PCSS branch (blue, respec-

tively blue (patch 1) and red (patch2)). (b,c) canonical paths to ûFCSS and ûPCSS at ρ = 0.04, both starting

from v̂0 = 105(0.5, 1.5), and both giving almost equal values J ≈ 6.39 ∗ 109, while J(ûFCSS) < J(ûPCSS).

(d) value diagrams for the FCSS (d1) and the PCSS (d2) at ρ = 0.04, and both together in (d3).

for “small” v0,2, see (d2). On the (small) intersection of these numerical A(ûPCSS) and A(ûFCSS), the
canonical paths to ûPCSS yield a slightly larger J than for the canonical paths to ûFCSS. However,
due to a small stable eigenvalue µ2, cf. (1.15), the approach to the target PCSS is rather slow
with a time horizon of at least 1000 years. For the canonical paths at ρ = 0.04 (annual discount
rate) we obtain a significant contribution to J only for t < t1 with t1 = 10/ρ = 250 (years), as
e−ρt < e−10 ≈ 4.5 ∗ 10−5 for t > t1, such that the long–time control to reach the PCSS hardly
matters. This means that our method may not be practically useful for the model, but nevertheless
we obtain a proof–of–principle for optimal marine reserves.

Remark 3.2. As a sanity check, Fig. 3.3 shows what happens for the greedy overfishing choice

E(t) = h∗/v(t), i.e., h(t) ≡ h∗, by simple time integration of the 1P model (1.22). For any

v(0) < v̂∗ = 1.5 ∗ 105 we have v(t)↘ 0 in finite time t∗ (panel (a)), with limt→t∗ E(t) =∞, which

in any case is unrealistic, cf. Remark 3.1. However, even though the effort E is for free (on h

appears in Jc), the choice E(t) = h∗/v(t) is not optimal. As Jc = J∗ = αh∗ − βh2
∗/2 is constant,

the value of the choice is J =
∫ t∗

0
J∗e
−ρt dt = J∗(1−eρt∗), which is below the values of the canonical
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paths to ûFCSS, see panel (b). Similar results can be obtained for greedy ad hoc choices in the 2P

models. c
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Figure 3.3: Dynamics (a) and values (b) for the greedy overfishing choice E(t) = h∗/v(t) for (1.22),

leading to extinction of v in finite time, and yielding suboptimal values J(v0), see Remark 3.2.
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Figure 3.4: FISH 1D, Ω = (−2.5, 2.5), D = 0.01, other parameters as before. (a) bifurcation diagrams.

(b) PCSS sample solution. (c) h on the canonical path to the PCSS (see Fig. 1.1(b) for E and v), starting

near (but not in) the v̂ from the FCSS.

In Fig. 3.4(a) we give bifurcation diagrams for the 1D PDE case, choosing Ω = (−2.5, 2.5) and
D = 0.01. The black branch represents ûFCSS and at ρ ≈ 0.0275 the blue PCSS branch bifurcates,
with a sample solution at ρ = 0.03 in (b). Again the PCSS has the SPP after the fold; from just v
and E, it has a nice interpretation of an at least locally optimal marine reserve, with low fishing
and high stock now in the middle of the domain. However, again the harvest h is actually larger
in the middle (the reserve) than at the boundaries. The domains of attraction of these PCSSs are
not very large, and we refer to Fig. 1.1(b) for an example canonical path to b1/pt10, with initial
state close to v ≡ 1.5 ∗ 105, which yields J = 7.04 ∗ 109, while J(ûPCSS) = 6.96 ∗ 109. Figure 3.4(d)
shows the harvest along the canonical path.

In Fig. 3.5 we give results for (3.3) on a square domain. This 2D case naturally gives a richer
bifurcation diagram of PCSS. The black branch is again the FCSS, and at the first branch point at
ρ ≈ 0.027 we have a two–dimensional kernel, spanned by, e.g., vertical and horizontal stripes. By
symmetry ([GS02, Hoy06], and [Uec21, §2.5]), we then have two (isotropy classes of) bifurcating
branches, namely stripes (b) (same as in 1D in Fig. 3.4, on half the domain) and spots (c), where
the latter in lowest order correspond to an equal amplitude superposition of vertical and horizontal
stripes. The stripes extend to ρ ≈ 0.037 and have d = 0 between the fold and the next secondary
branch point at ρ ≈ 0.032, while the spots extend to larger ρ but are unphysical there as they
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Figure 3.5: FISH on Ω = (−lx, lx)2, lx = 1.25, with D = 0.01. (a) bifurcation diagram, Jc and max v

over ρ, FCCS branch (black), and two primary PCSS branches, spots (b1, blue), and stripes (b2, red).

(b,c) A sample stripe, with E, and a sample spot, unphysical at pt20 (u1 means v). (d) canonical path

to b2/9, top row E, bottom row v, with t as indicated. Right: Jca along the canonical path, with value

J = 8.235 ∗ 109, and value J1 = 8.0002 ∗ 109 of the target.

feature negative v, see the first plot in (c). Altogether, all spots are either unphysical (v < 0 in
part of the domain) or unstable (d ≥ 1), or both. In (d) we thus content ourselves with illustration
of one canonical path to the stripe at ρ = 0.035, from a v0 which has some y modulation. On this
canonical path, it may again appear counter–intuitive that from the start the larger effort E (top
row) is at low v (bottom row), but this again can be explained by the system aiming to have the
harvest close to the optimum h∗ = 7500, everywhere in x and t on the canonical path.

4 Optimal pollution

Production and consumption of goods may lead to pollution, and choosing an optimal trade–
off between utility of consumption and disutility (costs) of pollution is a classical and much
studied problem in OC, see, e.g., [For75, TW96, Hed09], and the references therein. Here we
extend the modification (1.23) of the model from [TW96] to a spatial setting. The consumption
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c : Ω× [0,∞)→ R+ is the control, and the pollution stock v = v(x, t) ≥ 0 evolves according to

∂tv = δc− a(v)−m(1− c) +D∆v, (4.1)

where a : R+ → R+ is an “assimilation” (or pollution degradation) function of the environment,
D ≥ 0 is the diffusion constant, m ≥ 0 is a coefficient, and 1 − c is the fraction of the economy
(with output 1) assigned to pollution abatement. A simple choice for a is a(v) = βv with β > 0,
but much empirical data shows that this linear assimilation is only correct at low v, while for larger
v, the “healing” capacity of the environment deterioates. Thus, following [TW96] we choose a
κ > 0 and let

a(v) = βv(κ− v). (4.2)

In particular, a(v) < 0 for v > κ, which can be thought as “runaway pollution”, beyond which
the pollution catalyses itself (think of global warming and permafrost thawing). Here we mostly
choose this for mathematical simplicity. An alternative is to set a(v) ≡ 0 for v ≥ κ (no assimilation
beyond the carrying capacity, but no runaway either, just “irreversible pollution”). This makes a
non–differentiable at v = κ and non–concave, which complicates matters, as discussed in [TW96,
Hed09]. However, for the spatial setting the version (4.2) is interesting enough for us.

The local objective function is

Jc(v, c) = ln c− γ

2
v2, (4.3)

where ln c is the utility from consumption, and γ
2
v2 with γ > 0 models the costs of pollution.

Pontryagin’s Maximum Principle yields

c(λ) = − 1

(δ +m)λ
, (4.4)

and the canonical system reads

∂tv = −1

λ
− a(v)−m+D∆v, v(0) = v0, (4.5a)

∂tλ = (ρ+ a′(v))λ+ γv −D∆λ, (4.5b)

with the associated 1P and 2P models as before (∆v and ∆λ terms dropped or replaced by discrete
diffusion, respectively). We use the base parameters

(δ, β, κ, γ,m) = (0.1, 0.01, 2, 0.01, 0.01), (4.6)

and ρ > 0 as the primary bifurcation parameter.
In Fig. 4.1(a) we start with the 1P phase portrait at ρ = 0.015. The red dot is the unique

SPP CSS û, and, as before, the green line is the stable manifold Ws(û), the red line the unstable
manifold Wu(û), the dashed lines are the nullclines, and the blue lines are selected orbits. For
0 < v0 < v̂ we have a canonical path to û, along which v and λ are monotonously increasing and
decreasing, repectively, and consequently consumption starting at a high level but decreasing via
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Figure 4.1: POLL 1P problem. (a) phase portrait, ρ = 0.015. (b) Continuation of the CSS in ρ. (c)

canonical path to the CSS at ρ = 0.02 for s(0) = 0.5; high initial consumption, decreasing c and Jc,

increasing s. (d) s(0) = 2.25, increasing c and J , decreasing s.

(4.4). However, for

v0 ≥ vmax =
κ

2
+

√
κ2

4
+
m

β
, (4.7)

we always have d
dt
v > − 1

λ
> 0 along any canonical path. Thus, for v > vmax a canonical path to

û does not exist. This is due to our simple choice a(v) = βv(κ − v) which becomes negative for
v > κ. In [TW96, Hed09], it is discussed (for a more elaborate model with a(v) ≡ 0 for v ≥ κ)
that for v0 > vmax irreversible pollution paths with d

dt
v ≥ 0 and converging to another CSS û∗

with v̂∗ > v̂ may be optimal. Here we restrict to the simpler model (4.2), and thus for the 1P
model to v0 < vmax. For v̂ < v0 < vmax, λ(t) is monotonously increasing along the canonical path
to û, and hence also c = −1/((δ +m)λ) is monotonously increasing.

Figure 4.1(b) shows v, c and Jc for a continuation of the CSS in ρ, together with vmax = 1+
√

2
for the parameter set (4.6). There exists a ρ∗ ≈ 0.028 such that v̂ ↗ vmax and λ̂→ −∞ as ρ↗ ρ∗,
and altogether the 1P model makes sense only for 0 < ρ < ρ∗. In (c) we show the canonical path
to û for small initial pollution v(0) = 0.5, while in (d) we let v(0) = 2.25. The canonical paths are
as predicted by Ws(û) in (a), but we remark that again the time–scale for the approach to û is
rather long, and e−ρtJc(t) hardly contributes to J for t > 500, say, since, e.g., e−0.015∗500 ≈ 5∗10−4.

In Fig. 4.2 we consider the 2P problem for (4.5). The ODI criterion h2 > 0 in (a, top) yields
the SPP for the FCSS up to ρ = ρ0 ≈ 0.0235. Choosing D = 0.01, the blue PCSS branch ûPCSS

bifurcates at ρ ≈ 0.0238, which yields a larger Jc than the FCSS (a, bottom), and consists of
saddle points. At point 26 we have

ûPCSS = (1.503, 2.617,−116.9,−362.7), c = (0.0085, 0.0027). (4.8)

An interesting feature of the PCSSs is that at larger ρ we have v̂j>vmax for the patch j with
the larger pollution stock (here j=2). Thus, diffusion allows one patch (one part of space) to be
poisoned without runaway pollution as v may diffuse to (relatively) clean areas, where assimilation
works and consumption is still relatively high. In (b) we give the value diagram of v1,2(0) for
controlling to ûPCSS at ρ = 0.027, marked by the circle. As expected, J decreases with increasing
initial pollutions v1,2(0). For fixed truncation time t0 = 2000, the numerical domain of attraction
A(ûPCSS) extends almost to the diagonal, and choosing larger t0 we can obtain a somewhat larger
A(ûPCSS), but as already noted above, the canonical paths for t > 500 already hardly contribute
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Figure 4.2: POLL, 2P, D = 0.008, (a) bifurcation diagram. (b) Value diagram for the PCSS ûPCSS at

ρ = 0.027 (marked by the circle). The domain of attraction of ûPCSS extends almost towards the diagonal.

For v1(0) > v2(0) we get the mirror image by controlling to MûPCSS. (c,d) two canonical paths to ûPCSS

at ρ = 0.027.

to the value J .
Figure 4.2(c,d) shows two such canonical paths. In (c) we have small v1(0) = 0.5 and v2(0) =

2.9 > vmax, and the “natural” strategy is to to choose c2 very small initially, to let v2(t) come
down via diffusion; c1(t) is almost constant, and v1(t) approaches v̂PCSS

1 monotonously. For large
initial pollution(s) (v1(0), v2(0)) = (2, 2.1) in (d) there is some decreasing initial consumption (also
in patch 2), further increasing both pollutions. After this initial “consume what you can” phase,
both c1,2(t) increase again to their PCSS values.

In Fig. 4.3(a,b) we present the bifurcation diagram and a sample solution for the 1D PDE case
with Ω = (−1.5, 1.5), D = 0.01, illustrating again that in the PCSS at large ρ we can have v > vmax

in part of the domain. For the canonical path in Fig. 1.1(c) we choose v0 ≡ αvmax + (1−α)v̂ with
α = 0.975, i.e., v0 close to vmax but already slightly moved towards v̂, to reduce the time scale
needed to reach the PCSS. The optimal strategy is to start with slightly smaller c on the right.
This lets v initially decay there, after which consumption can increase as v is in the “optimal
assimilation regime” v≈1.5. On the other hand, the left part of the domain is “poisoned”, but
the diffusion is preventing runaway pollution.

In Fig. 4.3(c,d) we choose a modified v0, namely v0(x)=v̂FCSS − x/5, such that the left part of
the domain is already initially polluted beyond the healing capacity. However, diffusion and the
healing on the right again help. With small initial consumption, the assimilation lets v quickly
decay on the right, after which consumption can increase as v ≈ 1.5. The last plot in (d) shows
the strongly negative shadow prices λ for this relatively large ρ. However, for slightly larger initial
pollution on the left, e.g., v1(x)=v̂FCSS − x/4, a canonical path to ûPCSS can no longer be found.
Choosing different Ω (1D or 2D), and/or different diffusion constants D, many more PCSS can
be generated, but here we content ourselves with the results from Fig. 1.1(c) and Fig. 4.3.

5 Discussion

We gave examples of patterned optimal steady states (POSSs) and their canonical paths in three
spatially extended infinite time horizon OC problems, FEED, FISH, and POLL. These show that
POSSs occur in a variety of settings for scalar problems, in open sets in parameter space.

Our most robust example is FEED, already discussed in [UUHB21], in the sense that the
POSSs have quite large domains of attraction, and going from some (homogeneous, say) initial
states to a POSS yields a significant increase of the profit. This includes going from (the states

20



(a) (b)

0.02 0.025 0.03

-4

-3.5

-3

-2.5

J c

33

17

0.02 0.025 0.03

2

2.5

3

m
a
x
 v

33

17

-1 0 1

x

0.5

1

1.5

2

2.5

p1/pt17

v

10*c

v
max

(c) (d)

Figure 4.3: POLL, Ω=(−1.5, 1.5), D=0.01. (a,b) bifurcation diagrams and a sample solution. (c) Initial

states v0(x)=v̂FCSS−x/5 and v1(x)=v̂FCSS−x/4, and vmax. For v0, there exists a canonical path to ûPCSS

at b1/17 in (d), but not for v1.

of) the FCSS to the POSS, and the FCSS, which may be thought as the “natural” strategy, for
instance for historical reasons, is clearly not optimal.

In the FISH example we get, in large parts of parameter space, bistability of a POSS ûPCSS with
a saddle point FCSS ûFCSS, such that the values of canonical paths (if they exist) to both should
be compared. However, the intersection A(ûPCSS) ∩ A(ûFCSS) is rather small, and the practical
applicability of our method and our results is somewhat reduced by the long transients in canonical
paths which make the final convergence to the CSSs somewhat irrelevant. Nevertheless, the POSS
ûPCSS can be considered as an optimal marine reserves, and it remains to be seen if similar POSSs
exist in related fishing (harvesting) models with faster convergence of canonical paths towards
them.

In the POLL example, which arguably is our most simplified example and probably needs
the most further modeling and parameter fitting to become “realistic”, we again have POSSs
with non–small domains of attraction, and probably their most striking feature is that diffusion
may prevent runaway pollution: A part of the domain may be completely poisened (beyond the
carrying capacity), but the pollution is balanced by diffusion of the pollution to cleaner areas,
where the self–healing of the environment is still intact.

A Derivation of the CS

The canonical system (1.10) in the PDE case can be derived from the Lagrangian

L =

∫ ∞
0

e−ρt
(∫

Ω

Jc(v, q)− λT (∂tv +G(v, q)) dx

)
dt, (A.1)
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where G(v, q) = −f(v, q)−D∆v, and where λ = (λ1, . . . , λN) (for N ≥ 1 components for v) can
directly be identified as Lagrange multipliers to the constraint (1.10a), i.e., ∂tv + G(v, q) = 0.
Using integration by parts in x with the Neumann BCs ∂nv = 0 and ∂nλ = 0 we have∫

Ω

λT (D∆v) dx =

∫
Ω

(D∆λ)Tv dx,

and using integration by parts in t with the intertemporal transversality condition (1.9) yields

−
∫ ∞

0

e−ρt
∫

Ω

λT∂tv dx dt =

∫
Ω

λ(x, 0)Tv(x, 0) dx+

∫ ∞
0

e−ρt
∫

Ω

(∂tλ− ρλ)Tv dx dt.

Thus, L can also be written as

L =

∫
Ω

λ(x, 0)Tv(x, 0) dx (A.2)

+

∫ ∞
0

e−ρt
(∫

Ω

Jc(v, q)+(∂tλ+ρλ+D∆λ)Tv+λTf(v, q) dx

)
dt,

and (1.10a,b) are the first variations of L with respect to λ (using (A.1)) and v (using (A.2))
with v(0, x)=v0(x). The Hamiltonian density H = e−ρt(Jc + λT (D∆v + f(v, q)) is related to the
Lagrangian density L = e−ρt(Jc− λT (∂tv−D∆v− f)) as H = L+ e−ρtλT∂tv, or after integration
by parts in t, H = L + e−ρt(ρλ − ∂tλ)Tv. Together, this yields the easy to remember general
“Hamiltonian form” (1.10), i.e.,

∂tv = ∂λH̃, ∂tλ = ρλ− ∂vH̃, (A.3)

where H̃ is the maximized Hamiltonian. As already said, both computations, i.e., the one with
L and the one with H in [BX08], are somewhat formal, and in particular the necessity of the
transversality condition (1.9) is subject to active research.
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[GU17] D. Grass and H. Uecker. Optimal management and spatial patterns in a distributed shallow

lake model. Electr. J. Differential Equations, 2017(1):1–21, 2017.

[GUU19] D. Grass, H. Uecker, and T. Upmann. Optimal fishery with coastal catch. Natural Resource

Modelling, (e12235), 2019.

[Hed09] W. Hediger. Sustainable development with stock pollution. Environment and Development

Economics, 14:759–780, 2009.

[Hoy06] R.B. Hoyle. Pattern formation. Cambridge University Press., 2006.

[LW07] S. Lenhart and J. Workman. Optimal Control Applied to Biological Models. Chapman Hall,

2007.

[Mur89] J. D. Murray. Mathematical biology. Biomathematics. Springer-Verlag, Berlin, 1989.

[PBGM62] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko. The Mathemat-

ical Theory of Optimal Processes. Wiley-Interscience, New York, 1962.

[Ski78] A. K. Skiba. Optimal growth with a convex-concave production function. Econometrica,

46(3):527–539, 1978.

[Tau15] N. Tauchnitz. The Pontryagin maximum principle for nonlinear optimal control problems

with infinite horizon. J. Optim. Theory Appl., 167(1):27–48, 2015.

[Tur52] A. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B, 237:37–72, 1952.

[TW96] O. Tahvonen and C. Withagen. Optimality of irreversible pollution accumulation. Journal

of Economic Dynamics and Control, 20(9-10):1775–1795, 1996.

[Uec16] H. Uecker. Optimal harvesting and spatial patterns in a semi arid vegetation system. Natural

Resource Modelling, 29(2):229–258, 2016.

[Uec21] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Bookseries

Mathematical Modeling and Computation, 2021. 380p, to appear.

[UUHB21] T. Upmann, H. Uecker, L. Hammann, and B. Blasius. Optimal stock enhancement activities

for a spatially distributed renewable resource. Journal of Economic Dynamics & Control,

123:104060, 2021.

[UWR14] H. Uecker, D. Wetzel, and J.D.M. Rademacher. pde2path – a Matlab package for continuation

and bifurcation in 2D elliptic systems. NMTMA, 7:58–106, 2014.

23


	Introduction
	A solution method
	Optimal Diffusion–induced Instability (ODI)
	The models, and preview of results

	Optimal feeding
	Optimal fishing and marine reserves
	Optimal pollution
	Discussion
	Derivation of the CS

