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Oscillons, i.e., immobile spatially localized but temporally oscillating structures, are the subject of intense study
since their discovery in Faraday wave experiments. However, oscillons can also disappear and reappear at a
shifted spatial location, becoming jumping oscillons (JOs). We explain here the origin of this behavior in a
three-variable reaction-diffusion system via numerical continuation and bifurcation theory, and show that JOs
are created via a modulational instability of excitable traveling pulses (TPs). We also reveal the presence of
bound states of JOs and TPs and patches of such states (including jumping periodic patterns) and determine
their stability. This rich multiplicity of spatiotemporal states lends itself to information and storage handling.

Time-dependent spatially localized states in dissipative
systems, such as action potentials in physiology [1–4] and
oscillons in Faraday waves [5–7], have attracted considerable
interest in the past half-century [8, 9]. Work in these fields not
only provided insights into the original model (e.g., neural and
cardiac) systems but also stimulated understanding of pattern
formation mechanisms, which in turn proved applicable in
other settings, such as in chemical reactions [10], nonlinear
optics [11–13], fluid convection [14–17], and even sound
discrimination in the inner ear [18]. Importantly, advances in
pattern formation theory require the development of nonlinear
methodologies and, specifically, numerical (continuation)
methods for differential equations [9], such as the packages
AUTO [19], MatCont [20], and pde2path [21]. These
assist in revealing complex pattern selection mechanisms
via computation of both stable and unstable solutions upon
variation of control parameters, and so provide insights that
are impossible to uncover otherwise. Thus, continuation
methods are essential means of analysis for spatially extended
complex systems regardless of the nature of the model
equations.

In 2006, Yang et al. [22] reported a hitherto unseen spatially
localized state they called a jumping oscillon (JO). Related
behavior, a jumping wave, was subsequently observed in
the Belousov–Zhabotinsky reaction in a microemulsion [23].
JOs resemble the oscillons observed in parametrically driven
systems [5, 6] but translate at the same time, whereby they
disappear and then reappear at a shifted location. The process
repeats, generating a time-periodic state in a frame moving
with the average translation speed, as shown in Fig. 1(a).
Yang et al. [22] and discovered these JOs in direct numerical
simulations (DNS) of a three-variable FitzHugh–Nagumo
(FHN) reaction–diffusion (RD) equation but provided little
explanation of the origin of these states and the plethora
of states associated with them. The simulations also show
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that these states can collide and either annihilate or combine
in a uniformly translating localized pulse and that they
can organize themselves into traveling rafts with a spatially
periodic or crystalline structure. Similar structures have also
been recently found in an active phase-field crystal model [24]
and in nonlinear optics [25], implying broader applicability.
Tailored patterns with spatiotemporal modulation, some of
which are exhibited in Fig. 1, can be envisioned as building
blocks of information and storage handling [26] especially in
the context of chemo-liquid computers [27–30].

(a) (d)

(b) (e)

(c) (f)

FIG. 1. Space-time plots showing a selection of states obtained
through DNS of (1) with periodic boundary conditions. (a) JO at
k1 = −8.25, (b) bound state of two JOs at k1 = −9, (c) 3JPP
state at k1 = −8.5, (d) bound 1JO1TP state at k1 = −7.8, (e)
2JO1TP bound state at k1 = −8.52, and (f) 1JO2TP bound state at
k1 = −8.26. Other parameters are as in (2). All plots show u(x, t),
with colorscale −1.7 to 1.5.
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In this Letter, we focus on the origin and the bifurcation
structure of stable and unstable JO branches, as well as
traveling wave (TW) and traveling pulse (TP) branches. In
view of the abundance of solutions of each type (Fig. 1),
numerical continuation must overcome possible branch
jumping (undetected switching to a nearby branch in the
predictor–corrector continuation setup). Nevertheless, the
method enables us to identify the origin of the JOs through a
modulational (Hopf) instability of already unstable TPs, and
to obtain the bifurcation structure of accompanying multi-JOs
[Fig. 1(b)] and jumping periodic patterns (JPP) [Fig. 1(c)] as
well as the multitude of mixed JO and TP states [Figs. 1(d-f)].

Model equations and wave instability – We employ
the Purwins system originally developed [31] as a
phenomenological model of an electrical discharge
system exhibiting multiple stationary and moving localized
states [32]. The system is a three-variable FHN system with
one activator and two inhibitors acting on distinct timescales,
and has broad applicability in studies of dissipative solitons
in excitable RD systems in both one (1D) and two (2D)
spatial dimensions (pulse interactions in 1D [33–37] and
time-dependent spots in 2D [31, 38–40]). The closely related
models studied in [41–46] exhibit similarly rich dynamics.

The Purwins system in 1D reads

∂tu = Du∂
2
xu+ k1 + k2u− u3 − k3v − k4w,

τ∂tv = Dv∂
2
xv + u− v, (1)

ϑ∂tw = Dw∂
2
xw + u− w,

where k4, τ , ϑ are parameters and Du, Dv , Dw are
diffusion coefficients. The JOs in [22] were obtained with
(k2, k3, k4, τ, ϑ,Du, Dv, Dw) = (2, 10, 2, 50, 1, 1, 50, 60)
and near k1 = −8.5. Here we consider a similar parameter
regime but with

(ϑ,Du, Dv, Dw) = (0.5, 2, 25, 100) (2)

in order to separate out the branches in the bifurcation
diagrams, and also employ k1 as a control parameter. We
supplement (1) with periodic boundary conditions on the 1D
domain x ∈ [−L/2, L/2], where L = 80, and let U ≡
(u, v, w). In our parameter regime, (1) has a unique spatially
homogeneous steady state U∗ = (u∗, u∗, u∗) (see SM S1),
which loses stability to a wave (finite wave number Hopf)
instability at k1 = k1c ≈ −7.6 with a critical wave number
q = qc associated with the critical wavelength λc = 2π/qc ≈
20; the dispersion relation at the onset is shown in SM S1.

The primary wave instability generates branches of
spatially periodic traveling and standing waves [47], hereafter
4TW and 4SW, with four wavelengths in the domain (see
SM S1). Subsequent primary bifurcations generate 3TW,
5TW, 6TW and eventually 2TW. In what follows, we focus
on traveling solutions that coexist with stable U∗, i.e. on
the excitable regime, and show that the JOs are related to a
temporal modulation of traveling solutions.

Continuation methodology – To compute solutions that
are steady in a comoving frame (TW or TP), we rewrite

(1) in a reference frame moving with speed s to the right,
i.e., we add −s∂x(u, v, w) to the right hand side of (1), set
the time derivatives to zero and solve the resulting nonlinear
eigenvalue problem for (U, s) using the phase condition

〈∂xUold, U〉
!
= 0, (3)

where Uold is the solution from the last continuation step,
and 〈f, g〉 ≡

´ L/2

−L/2
f(x)g(x) dx. This minimizes the L2

distance of the current step to translates of the previous
step [48]. The continuation is thus orthogonal to the group
orbit of translations u(x−ξ), with ∂x as generator of the
associated Lie algebra. We represent the traveling solutions

using the norm ||U ||2 ≡
√
L−1
´
[u(x)− u∗]2 dx, see the

TW branches in Fig. 2.
For solutions of JO type or more generally modulated TW

(mTW), we retain the time derivatives and solve for both the
(mean) frame speed s and the oscillation period T . To do so,
we extend the phase condition to

qH(U) :=

m−1∑
i=1

〈∂xU∗, U(ti)〉
!
= 0, (4)

where U∗ = U∗(x) is a reference profile (usually UH(x),
the spatial profile at the Hopf point) and t1, t2 . . . , T are
the grid points of the time discretization. Consequently, for
mTW we have the three unknowns (U, s, T ) and solve the two
equations (1) and (4) together with the additional temporal
phase condition

ˆ T

0

〈
d

dt
Uold(t

′), U(t′)

〉
dt

!
= 0, (5)

to make the continuation orthogonal to the group orbit of time
translates. We also modify the norm ‖ · ‖2 to

‖U‖2=

√
1

TL

ˆ T

0

ˆ L/2

−L/2

[u(x, t)−u∗]2 dxdt. (6)

For the TW (TP) branches we thus have nu + 2 unknowns
(including k1, see [48]) and nu+1 equations, where nu = 3np
and np is the number of spatial discretization points, while
for the mTW (and JO) branches we have mnu + 3 unknowns
(again including k1) and mnu + 2 equations, where m is the
number of temporal discretization points. For our domain,
we typically use np ≈ 1000 discretization points in space
and m = 50 in time (for mTW), yielding ≈ 150000 degrees
of freedom. The predictor/corrector continuation method
uses a corrector based on Newton’s method and carries the
danger of branch–jumping when many solutions are close
together. To mitigate this, we monitor the convergence
speed of the Newton loops, cf. [21, §3.6]. We also monitor
selected eigenvalues of the linearizations to check stability
and detect possible branch points, which are then localized,
for subsequent branch switching [49].

Modulational instability of excitable pulses – Our first aim is
to understand the origin of the JO states. Figure 2 illustrates
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FIG. 2. Partial bifurcation diagram showing ||U ||2 as a function of k1 for the uniform branch (black line), traveling waves (blue), traveling
1–pulse (green), time-modulated (including JO, orange) pulses, and further TW branches as indicated, with stability indicated by solid lines.
The branch of modulated traveling pulses becoming JOs bifurcates from a Hopf point near k1=kfp1

1 (green bullet) and the JOs are stable for
kfp2
1 <k1.k1c; the locations kfpj

1 indicate other folds. Selected traveling (right) and time-modulated (top) solutions at different locations are
also shown. The black bullet labeled (a) on the orange branch corresponds to the JO shown in Fig. 1(a). Other parameters are as in (2).

our results. The primary 4TW (blue) branch bifurcates
subcritically from the primary Hopf point. Additional TW
states are also shown: primary branches of 3TW (brown)
and 6TW (gray), and two secondary TW branches that
arise from period doubling, namely the 3TW (light green,
from 6TW) and 2TW (pink, from 4TW). The dark green
branch corresponds to TP states obtained by continuation
from a stable 1TP state found in DNS starting from an initial
condition obtained by cutting out a part of the 4TW solution
(dark green square). The 1TP states are stable until the left-
most fold at k1 = kfp1

1 ≈ −9.9 where they lose stability.
Beyond the second fold, near k1 = k1c, the branch begins
to snake [9] forming 2TP and then 3TP states. The latter
fail to connect to a 3TW state and begin to snake downwards
until they connect at the pink bullet to the 2TW branch. In
the opposite direction the 1TP undergo complex behavior
before terminating back on the same 2TW branch (SM S2).
Thus, both the 1TP branch and the 2TW branch represent
branches that start and end on the same branch in secondary
bifurcations.

The properties of the JOs are closely related to these
background states. We find that the JO branch (orange)
emerges from the first Hopf bifurcation located on the
unstable portion of the 1TP branch (green bullet in Fig. 2).
Consequently, the JOs start out as an unstable small amplitude

modulation of the 1TP state, and turn into stable, fully
developed JOs (orange triangle in Fig. 2) only after the fold
near k1 = k1c, before losing stability again at the next fold at
k1 = kfp2

1 ; the time t = 0 state at the black bullet (a) was used
as initial condition for the DNS in Fig. 1(a). The stable JOs
have the highest travel speed s and shortest oscillation period
T along the whole orange branch (SM S3).

As the branch snakes below the fold at k1 = kfp2
1 , the

solutions become unstable (orange diamond in Fig. 2),
before turning into a (smaller amplitude) 2JO bound state
(at k1 ≈ kfp4

1 , orange square in Fig. 2), and then into a (yet
smaller amplitude) 3JO bound state (orange down-triangle
in Fig. 2). Beyond this point, the continuation becomes
unreliable in the sense that different numerical settings (finer
discretizations/tolerances) may lead to different behavior, but
the branch continues.

Bound states and mixed states – In Fig. 3, we plot several
branches that are associated with multi-JO solutions and
mixed JO/TP states. The starting point for finding these states
is a domain-filling 3JPP state (red branch in Fig. 3). These
extended 3JPP states are characterized by a pronounced phase
gradient and bifurcate from a 3TW (light green) branch via
a Hopf bifurcation just above k1 = kfp3

1 ≈ −9.5 and are
initially unstable. Stable states are found on the segment
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FIG. 3. Partial bifurcation diagram showing ||U ||2 for the 3TW
branch (green), the associated 3JPP branch (red) and branches of
bound states 1JO1TP (brown) and 1JO2TP (purple), with the JO
branch kept in the background in gray; solid lines indicate stability.
The 3JPP branch bifurcates from the Hopf point near k1 = kfp3

1 ;
other kfpj

1 points mark folds designating the limits of stability.
Selected time-modulated solutions at different locations are shown
in the top panels (square/diamond symbols) and labeled bullets
correspond to states shown in Fig. 1. Other parameters are as in
(2).

between the first two folds, kfp8
1 < k1 < kfp7

1 . Stability
is again checked using DNS, yielding for instance Fig. 1(c).
There are many other Hopf points along the 1TP branch,
along the 3TW branch, and along similar branches, which
give rise to further mTP branches. Many of these are pairwise
connected via small-amplitude mTW branches. We show one
example of such a branch in SM S4.

The overall picture of localized and extended JO
states is quite robust with respect to parameter changes,
although details of the connections between branches depend
sensitively on parameters, as shown in SM S4 for Dv < 25.
One quantitative effect of decreasing Dv is the loss of the first
two Hopf points on the 1TP branch (see SM S4 for details),
resulting in a shift of the Hopf point from which the JO branch
originates.

Figure 3 demonstrates that the continuation method can
also be used to identify the bifurcation structure of more
complex states, including mixed JO/TP states. Starting from

(stable) bound states of JO and TP obtained from DNS, e.g.,
1JO1TP [Fig. 1(d)] and 1JO2TP [Fig. 1(f)] and identifying
the period T and frame speed s we can use continuation to
compute both stable and unstable regimes associated with
such solutions. Stable 1JO1TP (brown branch) states exist for
k1 > kfp8

1 while stable 1JO2TP (purple branch) are present
between kfp11

1 < k1 < kfp10
1 . Moreover, unstable states (see

the square and diamond symbols in Fig. 3) provide initial
conditions that converge, via DNS, to stable 2JOs [Fig. 1(b)]
and 2JO1TP [Fig. 1(e)], respectively. The continuation of
these states (not shown) follows the same procedure as used
for single JOs.

Discussion – We have shown that a successful understanding
of the origin of the 1JO and associated states, such as the 2JO
and 1JO1TP bound states or the JPP state discovered in [22],
can be achieved within a careful continuation/bifurcation
setting – the only currently existing technique for such
purposes. For the three-variable FHN model (1), the
continuation of excitable states turned out to hold significant
challenges: while for the TW and TP we only have spatial
degrees of freedom to deal with, for the mTP and mTW,
as relative time-periodic orbits, we need a fine temporal
resolution as well, leading to 105 (and more) necessary
degrees of freedom, even on the small domain used here. We
have checked that our results persist to larger domains with
more turns on the 1TP branch as it snakes (not shown), and
similar behavior of the JO state, although some differences are
inevitably present. The numerical difficulties mount, however,
due to the abundance of states and possible branch jumping,
issues that (mostly) do not arise on smaller domains or in
DNS. We showed here that the origin of stable JOs is highly
subtle, requiring first and foremost an understanding of the
underlying 1TP states and their stability, but that our approach
is up to the task. Moreover, 2D DNS in the corresponding
parameter range yield target-like jumping waves similar to
those observed experimentally in the Belousov–Zhabotinsky
reaction in a microemulsion [23], as shown in SM S5. Thus
our approach yields useful insight into the extremely rich
solution structure of (1) in the excitable regime, and in
particular into the origin of JOs and their subsequent snaking
forming 2JOs, 3JOs,..., and ultimately domain-filling JPP
arrays.

Like the wide interest stimulated by the discovery of
oscillons [5–7], we expect that the methodology developed
here for JOs will also lead to new theoretical questions
as well as potential applications in other multi-variable
excitable RD media. The rich yet programmable JO patterns
strengthen the suggestion in [26] that localized states could be
useful for data storage in computers with RD kinetics [27–30].
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SUPPLEMENTARY MATERIAL

S1. DISPERSION RELATION AND WAVE INSTABILITY

The spatially homogeneous steady state is U∗ = (u∗, u∗, u∗) [22], where

u∗ =
3
√
δ + k1/2− 3

√
δ − k1/2,

with δ =
√

(k1/2)2 + (p/3)3 and p = k3+k4−k2. Linear stability of U∗ is computed numerically from the dispersion relation
associated with the ansatz U − U∗ ∝ exp[σt − iqx], where σ is the temporal growth rate corresponding to wave number q. In
Fig. S1(a), we show the dispersion relation at k1 = k1c. The state U∗ is linearly stable if Reσ(q) < 0 for all q ∈ R.

In the parameter regime considered, U∗ is linearly stable for sufficiently negative k1, and the first instability sets in at k1 =
k1c ≈ −7.6 as k1 increases and is of wave (finite wave number Hopf) type. At k1c we have Reσ(q 6= qc) < 0, with Reσ(qc) = 0
and q = qc ≈ 0.285. Thus, qc is the critical wave number at the onset with corresponding critical frequency Imσ(qc) ≈ 0.45.
The resulting bifurcation is a Hopf bifurcation with O(2) symmetry, which gives rise to families of standing and traveling
solutions (SW and TW, respectively), both of which bifurcate subcritically (i.e., in the direction of stable U∗), and are therefore
initially unstable [47], as shown in Fig. S1(b).
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FIG. S1. (a) Dispersion relation plotted at k1 = k1c ≈ −7.59. (b) Bifurcating branches of 4TW (blue) and 4SW (purple) from the Hopf onset
with wavelength λ = 20 ≈ 2π/qc on a domain of size L = 80. The inset shows a space-time plot of u(x, t) corresponding to a 4SW state at
k1 = −8, as indicated by the bullet.

S2. COMPLETE BRANCH OF TRAVELING EXCITABLE PULSES

In the main text (Fig. 2), we showed a partial branch of traveling pulses (1TP). The complete branch is shown in Fig. S2.

S3. TRANSLATION SPEED AND TEMPORAL OSCILLATION PERIOD OF JUMPING OSCILLONS

In the main text (Fig. 2), we showed the 1JO branch in terms of the ||U ||2 norm. In Fig. S3, we complement this by showing
the same 1JO bifurcation diagram in terms of (a) the mean translation speed s and (b) the oscillation period T in the moving
frame.

S4. OTHER HOPF BIFURCATIONS OF EXCITABLE PULSES TO MODULATED TRAVELING WAVES

In the main text (Fig. 2), we showed the 1JO solutions that bifurcate from the first Hopf bifurcation of the traveling pulses
on the 1TP branch. In Fig. S4(a), we show an additional example of the emergence of mTW (brown) that bifurcate from a
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FIG. S2. Complete 1TP branch, together with the 2TW and 4TW branches. Solid lines mark stable regions and bullets indicate the branching
points (see main text for details). The profile of a traveling excitable pulse at k1 = −8.2 (green square) is shown on the right in all three
variables. The color scheme is as in Fig. 2 of the main text.

subsequent Hopf bifurcation (brown bullet). The branch reconnects back to the 1TP branch via another Hopf bifurcation at a
lower ||U ||2 (also marked by brown bullet). This behavior is typical for many of the mTW branches that bifurcate from the 1TP
branch.

When parameters are changed, Hopf points may be created or destroyed. For instance, decreasing Dv from Dv = 25 we
find that the first Hopf point, responsible for our primary 1JO branch, annihilates with the second Hopf point, resulting in a
shift in the onset of the 1JO branch. Figure S4(b) shows that at Dv = 20 the 1JO branch bifurcates at k1 ≈ −8.2. At first,
the bifurcating mTP branch follows the former brown branch [see (a)] towards more negative k1 before following the branch
obtained at Dv = 25, and so needs an extra fold before the solutions turn into genuine (stable) JOs.
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FIG. S3. Branch of 1JO solutions shown in terms of (a) the mean translation speed s and (b) the oscillation period T along the branch, both as
a function of k1. Solid lines mark stable regions and the triangle marks the location of stable JO shown in Fig. 1(a) of the main text.
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FIG. S4. (a) A second branch of modulated TW states (brown) that emerges from the second Hopf point (left brown bullet) on the 1TP branch
(green); the branch of 1JO (gray) is shown in the background. Parameters are as in Fig. 2 of the main text. (b) Partial branch of 1TP (green)
and a bifurcating (green bullet) branch of 1JO (orange) at Dv = 20. Other parameters are as in (a). In both figures, solid lines indicate stable
solutions.

S5. JUMPING TARGET WAVES

In the main text, we have presented a study of JOs in 1D and here in Fig. S5 and supplementary movies m1 and m2 we
demonstrate, using DNS, that solutions such as those displayed in Figs. 1(a,d) can also be obtained in 2D. Solutions similar to
those in Fig. S5(a) have been found in experiments by Cherkashin et al. [23].

(a)

(b)

FIG. S5. DNS showing the evolution of jumping waves (JWs) u(x, y, t) at selected times over two temporal periods. (a) 1JW and (b) 1TP1JW,
corresponding, respectively, to Figs. 1(a) and 1(d) of the main text. See also the supplementary movies m1 and m2. In both cases the initial
condition corresponds to an axisymmetric version of the corresponding 1D solution and boundary conditions are of Neumann (no-flux) type.


