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Possibly Dependent Probability Summation 
of Reaction Time 

HANS COLONIUS 

Purdue University 

The redundant target effect is frequently observed in certain reaction time experiments. A 
probability summation mechanism is commonly invoked to explain the observed decrease of 
reaction time (RT). Here, probability summation models of RT arc generalized by dropping 
the assumption of stochastic independence among processing times. An upper bound for the 
amount of statistical facilitation possible under negative dependence is derived for the 
bivariate case. Consequences for models of binocular summation and bisensory interaction are 
outlined and the main result is illustrated by a comparison of visual/auditory RT data with 
a simulated dependent probability summation mechanism. The impact of a base time 
component of reaction time in these simulations is characterized. Finally, it is shown that 
the detection paradigm can formally be treated under the reaction time paradigm. 5’ 1990 
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1. INTRODUCTION 

Consider an experimental situation where the subject is required to discriminate 
between two visual targets, X and Y, say. For example, in a two-choice reaction 
time (RT) task the subject may be asked to respond with a left-hand button press 
if target X is detected and with a right-hand button press if Y is detected. On a 
given trial, only targets assigned to a single response are displayed. Now assume the 
number of simultaneously presented targets is varied, e.g., two X’s are presented 
within each trial. A redundant targets effect is obtained if there is a decrease of 
(average) RT with an increasing number of targets. The effect is pervasive; 
redundancy gains have been observed with visual as well as with bimodal 
(visual/auditory) targets in choice RT as well as in single RT situations (e.g., 
Hershenson, 1962; Miller, 1982; Gielen, Schmidt, & van den Heuvel, 1983). 

The presence of a redundant targets effect suggests important conclusions about 
fundamental characteristics of the information processing mechanisms in a given 
experimental situation. For example, in the paradigm outlined above an assump- 
tion of serial processing of the redundant targets would obviously not be com- 
patible with a decrease in mean RT (given the assumption that individual target 
processing is performed at the same average speed in both the redundant and the 

Reprint requests should be addressed to Dr. Hans Colonius. Department of Psychological Sciences, 
Purdue University, West Lafayette, IN 47907. 

253 
0022-2496190 $3.00 

Copyright ii? 1990 by Academic Press. Inc. 
All rights of reproduction in any form reserved 



254 HANS COLONIUS 

single target condition). Not only the existence but also the magnitude of the 
redundant target effect is of interest, however. To see this consider the following 
prominent explanation of the effect, which will be the main topic of this paper. 
Assume that the targets are being processed in parallel and that the processing time 
for each of the targets has a random duration. If these distributions overlap, then 
some of the ‘longer’ RTs to Target X will be replaced by ‘shorter’ RTs to Target 
Y. Thus, on the average, RT will be faster with multiple targets than with a single 
one. According to this probability summation hypothesis, this redundancy gain is a 
statistical effect of facilitation. The force of this explanation, however, hinges on 
whether a probability summation mechanism is able to predict the observed 
magnitudes of the effect. This then, as shown in the remainder of this introduction, 
depends on the specifics of the postulated probability summation mechanism. 

In Section 2, two RT paradigms together with some empirical evidence for 
probability summation will be presented. In a subsequent theoretical section, the 
structure of bivariate dependence is explored. The concepts developed there are 
then employed in Section 4 to specify probability summation models in general and 
to characterize their RT predictions under different assumptions of dependence. 
Section 5 presents a small simulation study for demonstrational purposes. 
Moreover, effects of a base time (e.g. motor) component of RT are discussed. In a 
concluding section, it is shown that the detection paradigm can formally be treated 
under the RT paradigm and some open more general problems are touched upon. 

The concept of probability summation has a long history in psychological 
theorizing (see, e.g., Pirenne, 1943; Brindley, 1963). The basic idea, in the context 
of a detection task, is as follows: there are n elementary detector mechanisms each 
reporting the presence of a stimulus with a certain probability pi (i= 1, . . . . n), say; 
in the redundant target situation, each detector would be associated with one of the 
redundant targets. Assuming (1) that the subject reports detection if at least one 
detector is in the detection state, and (2) that all n detector mechanisms are 
stochastically independent, the probability of the subject reporting the presence of 
a stimulus amounts to 

P l....=l-(l-P1)(1-P,).“(l-P,). (1) 

The improvement of performance ensuing from having n detectors “at work” 
rather than one is articulated in the inequality following from (1 ), 

P l...n2max P,. (2) 1 
Moreover, P, .n is a nondecreasing function of n, the number of elementary 

detectors involved. Obviously, a number of other decision rules are conceivable 
and, perhaps, more realistic in certain detection situations; for example, one might 
require some fraction of the elementary detectors to report detection. The focus of 
this paper, however, is on modifying the other main assumption, viz. stochastic 
independence. 

To appreciate the effect of dropping stochastic independence, consider the special 
case of n = 2. Let qii denote the probability that neither detector i nor detector j 
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is in the detection state. Under stochastic independence, we then have for the 
probability P, of detecting the stimulus with only detectors i and j involved 

P,=l-q, 

=l-(l-p,)(l-p,). (3) 

Positive dependence between i and j can be defined as 

(4) 

this implies that P, is smaller than under stochastic independence. Analogously, 
negative dependence (reversing inequality (4)) implies that P, becomes larger. 

In what follows, Smple reaction time (sRT) will be considered as a measure of 
sensitivity rather than detection probability. In the last section, we show that the 
detection situation can be formally subsumed under the sRT situation. For RT 
experiments, the idea of probability summation typically takes the form of a statisti- 
cal “race” between neural activities generated in different sensory channels. The 
“winning” channel will report activity to some central mechanism eliciting program- 
ming and execution of a button press response. In the next section, we sketch two 
empirical situations where probability summation mechanisms have been invoked 
to account for RT data. It will be argued that in order to improve assessment of 
the empirical validity of probability summation mechanisms, one should consider 
disposing of the commonly made a priori assumption of stochastic independence. 
To appreciate intuitively the effect of dropping independence, let us assume negative 
dependence between the channel processing times, random variables X and Y, say. 
Then large values of X tend to show up with small values of Y and vice versa. If 
the (marginal) distributions of X and Y are assumed invariant, increasing the 
degree of negative dependence between X and Y will force the mean of the mini- 
mum of X and Y to decrease, resulting in a speeding up to responses eventually 
beyond the minimum of the means of X and Y (see Proposition 4.5 below for a 
rigorous version of this argument). On the other hand, introducing positive 
dependence between X and Y has no facilitatory effect. In the case of very high 
positive correlation, for example, the mean of the minimum of X and Y cannot be 
inferior to the minimum of the means of X and Y. 

While it seems that stochastic independence of channel processing times has been 
postulated mainly for reasons of analytic tractability, the most obvious theoretical 
justification for assuming negative dependent processing relies on an ‘allocatable 
capacity’ argument. If total processing capacity is constant for two channels across 
trials, then a trial-by-trial reallocation of capacity between two channels would 
produce negative dependence between the corresponding processing times. As we 
will see, such capacity need not be limited in the usual sense of degraded average 
performance on a single channel with increased load (see, e.g., Townsend & Ashby, 
1983). Indeed, most of our later development will be devoted to unlimited capacity, 
taken in the sense that the marginal individual channel distribution is unchanged 
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whether or not the channel is active. Of course, a more specific justification for 
dependent processing is desirable and may in fact often be attainable by taking the 
particular experimental and theoretical setup into account. 

2. PROBABILITY SUMMATION MODELING OF REACTION TIME: 
Two PARADIGMS 

EXAMPLE 2.1: INTERSENSORY INTERACTION. A typical experimental setup is a 
bimodal detection task where auditory and visual stimuli are presented and the 
subject is instructed to respond with a button press as soon as a stimulus is per- 
ceived. On single-signal trials, only one signal is presented; on redundant-signal 
trials, both signals are presented either simultaneously or with a short interstimulus 
interval (ISI). The usual finding is that RT is shorter for redundant-signal trials. 
Raab (1962) proposed a probability summation mechanism (“statistical facilita- 
tion”) where the two signals are processed in parallel in different sensory channels 
with RT being determined by whichever stimulus modality is registered first at 
some central mechanism activating the response process. Given some overlap of the 
distributions of finishing times for the two response-activation processes, responses 
to redundant signals will be faster, on average, than responses to either of the 
stimuli presented alone. 

Raab’s model fell slightly short of predicting all the facilitation reported in 
Hershenson (1962) and this was replicated in a number of later studies. Raab 
assumed the response-activation processes to be independent and normally dis- 
tributed with equal variances. In a more recent study, Gielen et al. (1983) dropped 
these distributional assumptions by numerically estimating the redundant-signal 
distribution from the single-signal distributions. Nonetheless, they found mean RT 
in the redundant-signal situation to be 12-13 msec faster than predicted by their 
probability summation-type model (p < .05). As will become clear from our 
theoretical results below, it is conceivable that introducing a maximal negative 
correlation in Gielen et al.3 model could result in a better lit. On the other hand, 
in an interesting simulation study using the inversion method to generate negative 
dependence (see Section 5 below) Miller (1986) could still reject the probability 
summation model for his data. 

EXAMPLE 2.2: BINOCULAR INTERACTION. The superiority of binocular over 
monocular viewing on a variety of visual tasks is well documented; see, e.g., the 
review papers by Blake and Fox (1973) and by Blake, Sloane, and Fox (1981). The 
phenomenon is often referred to as “binocular summation”. While most studies deal 
with measuring binocular sensitivity vs. monocular sensitivity at threshold levels 
(e.g., Campbell & Green, 1965) or use matching procedures (e.g., Legge & Rubin, 
1981), some studies have examined probability summation in binocular RT (Blake, 
Martens, & Di Gianlillipo, 1980; Blake, Martens, Garrett, & Westendorf, 1980; 
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Harwerth, Smith, & Levi, 1980). When simple RT to the onset of sinusoidal 
gratings is measured, binocular stimulation consistently yields shorter RTs regard- 
less of grating contrast or spatial frequency. Binocular RT is about 10% faster than 
monocular RT. In analogy to the intersensory interaction studies, the issue is 
whether (or how much of) binocular summation could be due to a probability 
summation mechanism between the eyes. Again, the typical finding is that binocular 
probability summation falls short of predicting all of the facilitation reported for 
binocular RT. This conclusion, however, is based on assuming stochastically 
independent processing (see, e.g., Blake, Martens, Garrett, & Westendorf, 1980; 
Westendorf & Blake, 1988). On the other hand, even after negative dependence is 
introduced there will most likely remain a certain proportion of the binocular 
advantage that may be due to some genuine neural summation. This is suggested 
by studies involving conditions where neural interaction between the eyes is ruled 
out, such as stimulation of noncorresponding retinal areas, separation of the two 
monocular inputs over time, and stimulation with dissimilar monocular targets 
(e.g., Eriksen & Greenspon, 1968). Under conditions where only probability sum- 
mation could be responsible for the binocular advantage, the improvement of 
binocular vs. monocular RT is less than observed under conditions allowing for 
neural summation to occur (see Blake, Martens, & Di Gianlillipo, 1980). 

To sum up, in empirical RT studies of intersensory and of binocular interaction, 
the concept of probability summation is commonly invoked to account for 
part-though not all-of the RT facilitation observed with bimodal or binocular 
stimuli, respectively. Thus, in order to assess the true amount of neural summation 
showing up in these experiments, it seems essential to estimate the limits of perfor- 
mance set by probability summation alone. 

3. THE STRUCTURE OF BIVARIATE DEPENDENCE 

To prepare the definition of probability summation models given in the next 
section, we need some facts from probability theory characterizing the structure of 
bivariate distributions, which we collect in the lemmas below. However, readers 
more interested in the applications may skip this section. 

For any cumulative distribution function (cdf) F, its inverse is defined by 
F-‘(z) = inf{x: F(x) B z}. 

LEMMA 3.1 (cf. Hoeffding, 1940; Frechet, 1951; Whitt, 1976). Let B(F,, Fr) be 
the set of all bivariate cdfs H on R2 having F, and F, as marginal cdf’s for random 
variables X and Y with finite positive variances. Then 

(a) for any HE~(F~, Fr) and all (x, y)~ R*, 

maxCF&) + F,(Y) - LO1 d H(x, y) d min[F,(x), F,,(y)]; (5) 
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(b) the bounds H-(x, y) = max[F*(x) + F,(y) - 1, 0] and H+(x, y) = 
min[F,(x), F=(y)] are elements of O(F,, Fr) and achieve minimal and maximal 
correlation between X and Y, resp., among all bivariate distributions with these given 
marginals; 

(c) let U be a uniform random variable; then 

[F,;‘(U), F;‘(U)] has cdf H’ 

and 

[F;‘(U), F~l(l- U)] has cdf HP. 

An outline of the proof of this lemma is given in the appendix. The left and right 
hand sides of inequality (5), HP and H+, are known as the lower and upper 
Frechet bounds. Both H+ and HP are singular bivariate distributions; H+ assigns 
probability 1 to the set ((x, y): F,(x)= F,(y)} and H- to the set ((x, y): 
F,(x) + F,(y) = 1 }. These extremal cdfs and the associated extreme correlations 
will be used to characterize dependent probability summation mechanisms. Part (c) 
of Lemma 3.1 is instrumental in simulating H+ and H- (see Section 5). 

The sense in which the Frechet bounds constitute dependence is directly opposite 
to that of stochastic independence: there exists a perfect monotone relation between 
the two random variables (‘monotone dependence’). 

LEMMA 3.2 (Kimeldorf & Sampson, 1978, p. 898). Let X, Y be random variables 
with continuous cdf’s F, and F,; the joint cdf of (X, Y) is H+ (HP) tf and only if 
there exists an increasing’ (decreasing) function g for which P[ Y = g(X)] = 1. 

The structure of a bivariate distribution can be decomposed into two logically 
independent parts, the marginals and the way the marginals are combined to 
generate the bivariate distribution. To be more precise, let H(x, y) be a continuous 
cdf with marginal cdf’s F, and F,. The uniform representation U, of H2 as defined 
by Kimeldorf and Sampson (1975) then is 

U,(u, v) = HCF,‘W, F;‘Wl, Odu, ud 1. 

Observe that U,(U, v) is a cdf on the unit square with both marginals being uniform 
on [0, 11. The class of all continuous cdf’s can be decomposed into equivalence 
classes determined by the equivalence relation 

H-K if and only if u, = u,. 

’ Note that by ‘increasing’ (‘decreasing’) is meant ‘nondecreasing’ (‘nonincreasing’) throughout this 
paper. 

‘Continuity is assumed here to assure uniqueness of U,. For a slightly more general delinition 
(‘copula’) see Schweizer and Wolff (1981). 
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EXAMPLE 3.3: FARLIE-GUMBEL-MORGENSTERN (FGM) DISTRIBUTION. The 
bivariate cdf of the FGM distribution (see, e.g., Johnson & Kotz, 1972; for an 
application, see Colonius, 1986) with marginals F, and F, is 

H(x, y) = F,(x) FAY){ 1 + aCl- Fx(x)lCl - F,(y)1 >t (6) 

with c( E [ - 1, 11; its corresponding uniform representation is 

U,(u, o)=uu[l +c((l -u)(l -u,] 

withOdu,u<landaE[-l,l]. 

(7) 

EXAMPLE 3.4: FRANK'S DISTRIBUTION. Frank (1979) introduced, and Genest 
(1987) further analyzed the bivariate cdf 

H(x, y)=log,{l + [(LP)- l)(aG’-“‘- 1)/(X- I)]) (8) 

with c( E (0, 1) u (1, 03) and marginals F(x) and G(y); its uniform representation is 

U,(u, 0) = log, { 1 + cc cc- l)(cP- I)/(@- l)]} 

with 0 < u, u d 1 and CI as before. 

(9) 

The uniform representation of a bivariate distribution captures those properties 
of the joint distribution which are invariant under increasing transformations of the 
random variables. This is contained in the following lemma. 

LEMMA 3.5 (Kimeldorf & Sampson, 1978, p. 900). Let (X, Y) and (V, W) have 
continuous biuariate cdf ‘s H and K, respectively. Then H - K if and only $ there exist 
increasing functions g, and g, such that the joint cdf of g,(X) and gz( Y) is K. 

To summarize, any continuous bivariate distribution function can be decom- 
posed into its ‘structure,’ defined by the equivalence class determined by its uniform 
representation, and its marginals. Conversely, given any uniform representation and 
a pair of continuous univariate distributions, there exists a unique bivariate dis- 
tribution with these two components. According to Lemma 3.1, if the marginals are 
given, the structures achieving minimal and maximal correlation are the lower and 
the upper Frechet bound, respectively, corresponding to the uniform representa- 
tions max(u + u - 1,0) and min(u, u). 

On the other hand, for a given bivariate structure, one may also ask for the 
amount of dependence this structure allows to occur from choosing an appropriate 
pair of marginals. Kimeldorf and Sampson (1978) introduced a measure of 
dependence that is invariant under all order-preserving or order-reversing transfor- 
mations of X and Y. Their monotone correlation rho* between two nondegenerate 
random variables X and Y is defined by 

rho*(X Y)=suprho[f(X), g( VI. (10) 



260 HANS COLONIUS 

where the supremum is taken over all monotone functions f, g for which 
0 < Var[f(X)] < CC and 0 < Var[g( Y)] < co and with rho the ordinary (Pearson 
product moment) correlation coefficient. 

Obviously, Irho(X, Y)l d rho*(X; Y). It can be shown that rho*(X; Y) = 0 if and 
only if X and Y are stochastically independent, and that a perfect monotone 
relation between X and Y implies rho*(X, Y) = 1 (see Kimeldorf & Sampson, 1978). 
Moreover, it follows directly from Lemma 3.5 that 

(X Y)-(K w implies rho*(X, Y) = rho*( l’, W). 

Thus, for a given bivariate structure, rho* characterizes the amount of dependence. 
In particular, as the following lemma shows, the maximum achievable product 
moment correlation (from choosing an appropriate pair of marginals) is exactly the 
monotone correlation rho*. 

LEMMA 3.7 (Kimeldorf and Sampson, 1978, Theorem 5). Let (A’, Y) have a 
continuous bivariate cdf H. Then 

rho*(X, Y) = sup{ Irho( I’, W)l: (I’, W)- (A’, Y)}. 

The usefulness of rho* is limited, however, since there is no general procedure to 
compute it (see, however, Kimeldorf, May, & Sampson (1982) for the case of finite, 
discrete X and Y). Sometimes the possible range of dependence is severely restricted 
by the very structure of the bivariate distribution. For example, it follows from a 
result in Schucany, Parr, and Boyer (1978) (see also Huang & Katz, 1984) that 
Irho( Y, Y)l < c(/3 for the FGM distribution (Eq. 6) if A’, Y have absolutely 
continuous marginals. 

4. PROBABILITY SUMMATION MODELS OF RT 

The aim of this section is to give a definition of probability summation of RT and 
to explore its properties. In general, we have to discriminate between two types of 
experimental conditions, the single-channel condition and the multiple- or n-channel 
condition, where n > 2. For example, the monocular viewing condition where only 
one eye is stimulated is a single-channel condition, while simultaneous visual and 
auditory stimulation in intersensory interaction experiments represents a 2-channel 
condition. In accordance with most of the RT literature (see, e.g., Lute, 1986), it is 
assumed here that observable RT can generally be decomposed into two additive 
random components, processing time and base time. In the single-channel-condition, 
processing time is the time from the presentation of the stimulus to the point where 
neural activity in the channel is first registered at some central mechanism. In the 
n-channel-condition, each channel is assigned some processing time starting from 
the presentation of the stimulus. Overall processing time then is assumed to be 
some nondecreasing function of these channel processing times. Probability summa- 



PROBABILITY SUMMATION 261 

tion models specify this function. The base time encompasses all other hypothetical 
components of the reaction time like motor programming and response execution. 
The results in the next two sections are limited to the n = 2 case. In Section 6 
specific problems for the n > 2 case are touched upon. Since there is no extra effort 
involved, however, the following definitions are written down for n 3 2. 

DEFINITION 4.1. Let (Xi, . . . . X,) be a continuous random vector, where Xi 
(i= 1 2 “‘2 n) represents the channel processing time of channel i in an n-channel con- 
dition; let Z be a continuous random variable with cdf F, representing the overall 
time; an n-variate probability summation model is a pair (H, F,), where H is an 
n-variate cdf of (Xi, . . . . X,) such that 

Z = min( X, , . . . . X,). (11) 

Thus, according to probability summation models, overall processing time is 
determined by the channel processing time of the channel finishing first. Assuming 
the existence of a common underlying probability space for Z and B, where B is the 
corresponding base time component, observable RT in the n-channel condition is 

RT=Z+B 

= min(X,, . . . . X,,) + B. 
(12) 

Commonly, stochastic independence between Z and B is surmised. In most empiri- 
cal situations, including the two paradigms dealt with in Section 2, channel proces- 
sing times are unobservable in the multiple-channel condition. Even if the contribu- 
tion of the base time component is assumed negligible, the experimenter registers 
only the overall processing time, which-according to the probability summation 
model-is the minimum of the channel processing times. This severely limits 
identifiability of a given probability summation model (H, F,): the n-variate cdf H 
cannot be determined without further assumptions. A popular assumption exploits 
the information given from the single-channel conditions. This assumption of 
context independence3 holds that the processing times in single-channel conditions 
that correspond to a multiple-channel condition have cdf’s identical to the respec- 
tive marginal cdf’s in the multiple-channel condition. In binocular summation, for 
example, this amounts to saying that left and right eye processing times in both 
monocular conditions have cdf’s identical to the left and right eye marginals in the 
binocular condition. 

Even under context independence, however, the n-variate cdf H is still not 
uniquely determined without assuming, in addition, stochastic independence among 
the channel processing times. In fact, this is the starting point for considering 
possibly dependent probability summation models in this paper. If observed RT in 

3 This notion corresponds to Ashby and Townsend’s (1986) ‘temporal separability’ concept. It would 
typically be associated with unlimited, but perhaps allocatable, capacity, as noted earlier. 
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the multiple-channel condition is found to be faster than predicted from a stochasti- 
tally independent probability summation model, introducing negative dependence 
may be an interesting alternative. The following fictitious example illustrates the 
effect. 

EXAMPLE 4.2 (LOWER FRBCHET BOUND OF A BIVARIATE EXPONENTIAL DISTRIBU- 
TION). Let X, Y be exponentially distributed random variables with parameter 1, 
i.e., 

P(X< t) = P( Y< t) = 1 - eC’. 

Under stochastic independence, it can be shown that 

E[min(X, Y)] = 0.5. 

To achieve maximum negative correlation we now take the lower Frechet bound 
H-(x, y) as the bivariate cdf of (X, Y) (see Lemma 3.1): 

HP(x,y)=max[(l-e--‘)+(l-eP1’)-l,O] 

=max[l-ee”-em”‘,O). 

To compute E[min(X, Y)], consider first 

E[max(X, Y)] =su [l--H-(?, t)] dt 
0 

s 

zc 
= min(2eP’, 1) dt 

0 

=ln2+ 1, 

after some algebra. Obviously, 

E[min(X, Y)] = E[X] + E[ Y] - E[max(X, Y)] 

=l+l-(ln2+1) 

z 0.31. 

In this case, by the introduction of negative dependence the expected value of 
min (A’, Y) has been reduced by about 40%. The proposition below will show in 
which sense this example generalizes to arbitrary bivariate distributions. The 
following definition is useful in this context. 

DEFINITION 4.3. Let (H, F,) be a bivariate probability summation model; 
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assume H has marginals F,, F,; then the uniform representation of H (cf. 
Section 3) 

U,(u, 0) = H[IF,‘(u), F;‘ON, 0624, u61, 

is called the type of (H, F,). 

It follows from the exposition in Section 3 that the dependence structure of a 
probability summation model is captured in its type. More precisely, the type of 
(H, F,) remains invariant under (possibly different) increasing transformations of X 
and Y and has a value of rho*, the monotone correlation, that is independent of 
the marginals. Given the marginals, a probability summation model is completely 
determined by its type. Moreover, the class of all bivariate probability summation 
models can be partitioned into equivalence classes delined by models of the same 
type. 

EXAMPLE 4.4. The model 

U,--(u,u)=max[u+u-l,O], o<u, udl, 

is the type of all probability summation models having the lower Frtchet bound 
HP as bivariate cdf. Since rho( U, V) = - 1, we have rho*( 17, V) = 1. 

PROPOSITION 4.5. For given marginafs F,, F,, the biuariate probability summa- 
tion model of the low)er Frkchet bound type achieves minimum expected overall 
processing time; specifically, 

E[min(X, Y)] = J” [l - F.Y(t) - FY(t)] dt, (13) 0 

u,here 
t*=inf(t : 1 -F,(t)-F,(t)<O}. (14) 

Proof: For any probability summation model with bivariate cdf H(x, -v) and 
marginals F,, F,, we have 

P[min(X, Y) < t] = FX(t) + F,.(t) - H(t, f) for all t. (15) 

From Lemma 3.1, for all t 

H-(t, t)< H(t, t); 

thus, inserting HP for H in Eq. (15) maximizes the right hand side of Eq. (15) over 
all types of bivariate probability summation models. Considering the well-known 
identity 

E[min(X, Y)] = joX { 1 - P[min(X, Y) d t]} dt (16) 
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settles the minimality assertion of the proposition. Inserting (15) into Eq. (16) with 
H= H- yields 

E[min(X, Y)]=jO= {l- [F,(t)+F,(t) 

-max{F,(t)+F,(t)- 1, 0})} dt 

= 
s 

X max{l -F,(t)-P,(t),O} dt 
0 

= 
s 

I* [l -F,-(t)-F,(t)] dt 
0 

with t* defined as above. Q.E.D. 

Assuming context independence and neglecting the effect of the base time compo- 
nent, the right hand side of Eq. 13 may serve as a lower bound for mean RT under 
possibly dependent probability summation in the 2-channel condition. It can be 
evaluated by either simulation or numerical integration (see next section). From 
( 13), we immediately have the upper bound 

E[min(X, Y)] < t* (17) 

which need not be sharp, however (consider Example 4.2, where we have 
t* = In 2 z 0.69). 

Proposition 4.5 gives a lower bound for the minimum achievable mean overall 
processing time under any probability summation model. Thus, in view of the dis- 
cussion of intersensory and binocular interaction studies in Section 2, this bound 
can be used to assess the proportion of RT facilitation possibly due to a probability 
summation mechanism rather than some true neural interaction. On the other 
hand, if observed RT facilitation is less pronounced, a probability summation 
model of a moderate degree of negative dependence may be called for. In the 
following, we propose one way to order probability summation models by negative 
dependence and give some illustrative examples. The following definition of 
negative dependence was introduced by Lehmann (1966). A bivariate cdf H is 
negatively quadrant dependent (NQD) if 

W-x, .Y) 6 F,(x) F,,(y) for all (9, y) E R2, (18) 

where F,, FY are the marginals of H. Using Hoeffding’s Lemma (see Appendix) it 
is easy to show that NQD random variables have nonpositive product moment 
correlation coefficients. NQD distributions can be ordered as follows (Ebrahimi, 
1982): bivariate cdf Hz is more negatively quadrant dependent than H, 

(H2 hQD H, 1 if 

HA-y, Y) < H,(x, Y) for all (x, y) E R2, (19) 
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where both H, and H, have marginals F, and F,, i.e., H,, H, E B(F,, Fy). The 
NQD ordering of distributions implies a corresponding ordering of correlations: 
let rho,(X, Y), rho,(X, Y) be the product moment correlation coefficients corre- 
sponding to H, and Hz, respectively; then, again from Hoeffding’s Lemma, 

H,aNQDH, implies rho,(X, Y) d rho,(X, Y) < 0. (20) 

The requirement of identical marginals is necessary here if the degree of negative 
dependence is to be assessed by rho, because rho is not invariant under monotone 
transformations of the scale. Note, moreover, that the above implication (20) is not 
reversible in general. The following definition seems natural in view of the above. 

DEFINITION 4.6. Let (H,, Fg’) and (H2, Fg’) be probability summation models 
with H,, H,EO(F,, Fy); then (Hz, FT’) is more negative dependent than (H,, F$‘) 

~~H~~NQDHI. 

This definition implies, in particular, that 

rho,(X, Y) 6 rho,(X, Y), 

Now consider two bivariate cdf’s on the unit square with uniform marginals, U, 
and U,, representing two probability summation model types. If they can be 
ordered with respect to negative dependence, U, >NQD U,, say, then we have an 
ordering of model types which is reflected in the corresponding rho values. 

Comparing two probability summation models (with identical marginals) with 
respect to their degree of negative dependence is especially simple if their bivariate 
cdf’s belong to the same one-parameter bivariate distribution family. The FGM 
distribution as well as Frank’s distribution we considered in Section 3 belong to 
this category. For these distributions, the >NoD ordering is isomorphic to the 
scalar ordering of the dependence parameter. In addition, if the product moment 
correlation coefficient is a monotone function of the dependence parameter, then 
implication (20) is in fact an equivalence. Let us consider a further example. 

EXAMPLE 4.7: GUMBEL'S BIVARIATE EXPONENTIAL DISTRIBUTION. Gumbel 
(1960) has studied the bivariate cdf 

H(x,y)= 1 -e-‘-e--~+e-‘--‘-“” (x, y > 0; 0 d E d 1). 

It can be shown (see also Johnson & Kotz, 1972, p. 262) that rho(X, Y) is a 
decreasing function of ~1, reaching the minimum value rho(X, Y) = -0.40365.. for 
Q = 1. X and Y are independent for ~1= 0. Thus, the family of probability summa- 
tion models corresponding to Gumbel’s bivariate exponential distribution can be 
ordered with respect to negative dependence by using either the parameter values 
cx or the bNob order relation on the bivariate cdf’s. 

We conclude this section by observing a simple but informative connection 
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between the Frtchet bounds and two well-known probability distribution 
inequalities for the overall processing time. 

PROPOSITION 4.8. Let (HP, F; ) and (H+, F,t ) be bivariate probability summa- 
tion models of the lower and, resp., upper FrPchet bound type with marginals F,Y and 
F,; then, for any bivariate probability summation model (H, F,) with the same 
marginals, 

for all t, where 

F,‘(t)bFz(t)dF;(t) (21) 

Ft(t) =maxCF,(t), Fy(f)l 

and 

F;(t) = min[FX(t) + F,,(t), 11. 

The left (resp. right) hand side of the above inequality follows easily by insertion 
of H+(t, t) (resp. H-(t, t)) for H(t, t) into Eq. (15). The upper bound in (21) was 
first used by Miller (1982) in testing the probability summation model. The lower 
bound in (21) was utilized by Grice, Canham, and Gwynne (1984) to evaluate 
distraction effects in redundant target trials (see also Ulrich & Giray, 1986). 
An analogous inequality is given in Ashby and Townsend (1986, Theorem 7) as a 
performance parity test of temporal separability (cf. Footnote 3). 

5. A STUDY OF INTERSENSORY INTERACTION 

The purpose of this section is to illustrate on a set of real data (a) the effect of 
dropping the stochastic independence assumption and (b) the computation of mean 
overall processing time according to Proposition 4.5. Moreover, eventual effects of 
the base time component will be discussed. 

The data are taken from a study of intersensory interaction (see Example 2.1) 
presented in Diederich and Colonius (19871, where also the details of the 
experimental procedure can be found. Stimulus presentation in the redundant-signal 
condition consisted of a flash followed by a sinusoidal tone d msec later, with d = 0, 
10, . ..) 80, the.stimulus onset asynchrony (SOA) values. Subjects were instructed to 
press the response buttons with both index lingers as soon as they detected either 
signal (a double response simple RT task). In the single-signal conditions, only 
stimuli of one modality were presented. Each stimulus condition was presented in 
10 blocks of 20 trials each in randomized order, amounting to 2200 responses from 
each of the subjects. 

Let RT,, RT,, and RTVAcd, denote random variables corresponding to reaction 
times under the different stimulus conditions in obvious notation. where RT is 
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measured from the appearance of the (first) stimulus up to the button press. The 
amount of RT facilitation occuring in the redundant-signal conditions is defined by 

FAC,= min[E(RT,,), E(RT, + d)] - E(RT,,(,,). (22) 

Ignoring effects of the base time component for a moment, the probability summa- 
tion model stipulates 

RT vald) = min(RT,, RT, + d). 

The amount of RT facilitation is estimated from (22) by replacing the expected 
values by sample means (N = 200). Observed mean RTs for the redundant-signal 
distributions are listed in column 2 of Table 1 below. Observed values of RT 
facilitation (in msec) are given in column 4. To estimate the amount of RT facilita- 
tion predicted from probability summation mechanisms, simulated RTs for the 
redundant-signal situations were obtained by sampling two RTs (one from each 
single-signal distribution), adjusting them appropriately for SOA, and selecting the 
minimum adjusted RT. Column 5 lists the RT facilitation obtained under inde- 
pendent sampling from the two single-signal distributions (N= 1000 for all 
simulated values reported here). The values in parentheses in this column indicate 
the percentage of observed facilitation that can be accounted for by independent 
probability summation. Column 6 contains the RT facilitation that results from a 
probability summation model of the lower Frtchet bound type, where maximum 
negative correlation between the channel processing times is achieved. The mean 
RT under this model could have been estimated from a numerical computation of 
the integral in Proposition 4.5. Alternatively, we used a simulation by ‘antithetic 
variates’ (see, e.g., Hammersley and Handscomb, 1964; Miller, 1986). Essentially, 
the procedure is to construct pairs of RTs from the two single-signal distributions 
as follows: take the fastest (SOA adjusted) auditory RT and the slowest visual RT 
as the first pair, the next to the fastest auditory and the next to the slowest visual 
RT as the second pair, and so on. As a direct consequence of Lemma 3.1(b) and 
(c), this procedure does establish maximum negative correlation between the two 
channels (the rho values are the negative correlations so obtained for each subject). 
The parentheses in column 6 are again the percentage of observed facilitation that 
can be accounted for by a negatively dependent probability summation model. 

Table 1 reveals a number of interesting regularities. The amount of RT facilita- 
tion observed strongly depends on the SOA value, achieving a maximum at about 
a value of d corresponding to the difference E(RT,,) - E(RT,). This is compatible 
with probability summation models since increasing the SOA results in shifting the 
auditory distribution towards the visual distribution. This in turn implies that, by 
virtue of the minimum rule, a larger proportion of the ‘long’ auditory processing 
times can be replaced by ‘shorter’ visual processing times. If d is increased further, 
the RT is mostly determined by the visual processing times alone. The exact SOA 

480/34/3-2 
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TABLE 1 

Observed Mean RT and Standard Deviation, 
Observed and Simulated Facilitation in msec (Independence and Negative Dependence) 

SOA Obs. mean 

RTv, 

Obs. stand. 
dev. Obs. 

Facilitation 

Indep. Neg. Dep. 

0 127 8.3 -1 1 
10 135 8.8 1 0 
20 141 7.6 5 2 (40) 
30 149 7.9 7 5 (71) 
40 151 10.6 9 4 (44) 
50 154 14.2 6 2 (33) 
60 155 11.1 5 1 (20) 
70 160 14.0 0 1 
80 160 15.0 0 0 

Subject 2 (mean RT, = 124; mean RT, = 162; N = 200; rho = -.880) 

0 120 7.5 4 2 (50) 
10 131 6.9 3 1 (33) 
20 139 6.9 5 2 (40) 
30 145 8.1 9 4 (44) 
40 150 8.7 12 7 (58) 
50 152 11.6 10 4 (40) 
60 155 11.9 7 2 (29) 
70 161 13.5 1 0 
80 163 15.0 -1 1 

Subject 3 (mean RT, = 124; mean RT, = 153; N = 200; rho = -.642) 

0 122 10.8 2 2 (100) 
10 131 11.7 3 3 (100) 
20 135 11.5 9 5 (56) 
30 142 10.1 11 9 (82) 
40 143 9.6 10 5 (50) 
50 147 12.8 6 4 (67) 
60 151 11.7 2 2 (100) 
70 154 16.5 -1 1 
80 153 17.1 0 2 

Subject 1 (mean RT, = 126; mean RT,,= 160; N= 200; rho = -.865) 

2 

2 (2~) 
3 (60) 
7 (l@)) 
6 (67) 
3 (50) 
2 (40) 
1 
1 

2 (50) 
2 (67) 
3 (60) 
6 (67) 
9 (75) 
5 (50) 
3 (43) 
2 
1 

4 (200) 
6 (200) 
9 (100) 

12 (109) 

8 (80) 
6 (l@J) 
4 (200) 
3 1 
2 

Note. The parentheses in columns 5 and 6 denote the percentage of observed facilitation reached by 
the simulation. The rho values refer to the maximum possible negative correlation achieved by the 
method of antithetic variates. 
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value of maximum statistical facilitation, however, will depend on the specifics of 
the respective shapes of the auditory and visual distributions. On the other hand, 
it is obvious from the percentage values in column 5 that only part of the amount 
of observed facilitation can be accounted for by an independent probability summa- 
tion model. Invoking a negatively dependent probability summation mechanism 
improves the prediction considerably, as can be seen from the parentheses in 
column 6. For Subjects 1 and 2, however, these values indicate that the proportion 
of observed facilitation that can be accounted for by a negatively dependent 
probability summation process reaches 100% only in two of the cases. For 
Subject 3, the facilitation predicted by maximum negative dependence exceeds the 
facilitation observed for live out of nine SOA values. Thus, a bivariate dependent 
distribution with a more moderate degree of dependence is called for in this 
case. One such distribution, the FarlieeGumbel-Morgenstern distribution (cf. 
Example 3.3), was proposed earlier (Colonius, 1986) but, obviously, there are other 
viable candidates. We have not yet made an attempt to find the best fitting distribu- 
tion for this subject (for Subjects 1 and 2, another source of RT facilitation has to 
be identified, anyhow). 

Moreover, the pattern of rho values is somewhat puzzling. Remember that, for 
each subject, rho is the maximum negative correlation between the channel proces- 
sing times the marginal distributions allow to occur. For Subjects 1 and 2, the rho 
values are -.865 and -.880, respectively, while for Subject 3, rho is only -.642. 
This is at odds with the fact that negative channel dependence suffices to generate 
the amount of facilitation observed for Subject 3 but not for Subjects 1 and 2. It is 
conceivable, however, that the possibly achievable degree of negative dependence 
varies for different SOA values due to a violation of the assumption of context 
independence.4 To summarize these data indicate that a probability summation 
mechanism-independent or negatively dependent-may be only part of a model 
accounting for the observed facilitation in this bimodal detection task. Nonetheless, 
as this exemplary study illustrates, just how big that part is depends very much on 
whether independent or dependent probability summation is taken into considera- 
tion. Whether, and under what conditions, the marginal distribution functions 
remain invariant under different SOA values and/or under different redundancy 
conditions is an open issue. Since the marginal distributions are not directly observ- 
able empirically (only their minima are, according to probability summation), there 
is no direct way of testing context independence. Any evidence relating to it would 
have to follow from particular features of the experimental situation or from the 
postulated processing mechanisms. Intuitively, a violation of context independence 

4The point is subtle. Given context independence, a variation of negative dependence over SOA 
values should show up in the correlation parameter of a bivariate distribution titted to the data. 

However, this would not explain the failure of dependent probability summation to account for the 
entire amount of observed facilitation. On the other hand, if context independence is violated, the degree 
of negative correlation achievable might so vary from one SOA value to the next as to prevent statistical 
facilitation from occurring sufficiently often. 
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may appear more plausible in a system with stochastically dependent processing 
than in an independent one. It should be emphasized, however, that there is no 
cogent statistical argument for this to be the case. For example, assume in the 
visual/auditory interaction paradigm that the visual channel processing times 
correlate differently with the auditory channel processing times depending on the 
given SOA value. Nonetheless, the marginal visual processing time distribution may 
well remain the same under all SOA values. 

Analyzing the RT difference distributions (left hand RT minus right hand RT) 
Diederich and Colonius (1987) found some evidence for an additional facilitatory 
effect in the base time (motor) components of the RTs. However, the size of this 
effect most likely is too small to account for all of the facilitation left. Moreover, 
the subsequent analysis in this section of the influence of the base time suggests that 
the amount of facilitation obtained in our simulations is not a conservative estimate 
of the actual facilitation occuring under a probability summation mechanism. To 
allow for an effect of the base time component let us assume an additive decomposi- 
tion of RT as introduced in Section 4. Specifically, let us write 

RT,= I’+B,, RT,=A+B,, RT,=min(T/,A)+B,,, 

where V, A denote the channel processing times and B,, B,, B, refer to the 
random base time components, resp. The following proposition implies that the 
amount of facilitation obtainable from a (possibly dependent) probability summa- 
tion model with nonconstant base time may be smaller than what our simulations 
indicated.’ 

PROPOSITION 5.1. Let V, A, Bv, B, and B, be nonnegative random variables on 
some probability space such that B, and B, are stochastically independent and B,, 
B,, B, have the same marginal cdf; then for all t E R + 

P[min( V+ B,, A + BA) < t] > P[min( V, A)+ B,, < t]. (24) 

Proof: For convenience, we assume the existence of a bivariate density g,,(v, a) 
for (V, A); it is easy to generalize the argument. Take some fixed (v, a) and consider 

P[min(V+B.,A+B,)<tI(V,A)=(v,a)] 

= P[min(v + B,, a + BA) d t] 

= 1- [l -F(t-v)][l -F(t-a)] 

=F(t-u)+F(t-a)-F(t-o)F(t-a), (25) 

5 I am grateful to Wolfgang Schwarz (Marburg) for suggesting this inequality. 



PROBABILITY SUMMATION 271 

where F is the common marginal cdf of B,, B,, B,, . Similarly, 

P[min(V,A)+B,<t I (V,A=(u,a)] 

= P[min(u, a) + B,, < t] 

= F(t -min(v, a)) 

if oQa 
if a < u. (26) 

Obviously, (25) is greater or equal to (26). Multiplying both sides by g,(u, a) and 
integrating over R+ x R+ yields the result. Q.E.D. 

The left hand side of inequality (24) corresponds to the probability summation 
mechanism underlying the simulations, while the right hand side represents the 
probability summation mechanism of the model to be tested. Since stochastic 
ordering of distributions implies an ordering of expected values, we have 

B[min( V+ Bv, A + B,,,)] < B[min( V, A) + B,,,]. 

This, in turn, implies that the amount of facilitation observed in the simulations 
may overestimate the facilitation actually occurring. 

6. CONCLUDING REMARKS 

It should be mentioned that our results generalize, at least to some degree, to the 
case of more than two channels. The main problem in dealing with this is to specify 
the multivariate dependence structure. The basic intuition that increasing negative 
dependence results in reducing the mean of the minimum time has to be reconciled 
with the elementary fact that three random variables cannot be negatively 
correlated in pairs to some arbitrary degree. There are various concepts of multi- 
variate positive and negative dependence in the literature (see, e.g., Joag-Dev & 
Proschan, 1983) that become relevant in this context. 

In the introductory section we discussed the effect of dropping stochastic inde- 
pendence in the context of a probability summation model in a detection task with 
n elementary detector mechanisms involved. As long as the number of false alarms 
is small enough to be ignored (a questionable assumption, of course) the definition 
of probability summation models in Section 4 formally encompasses the detection 
situation. To see this, define for each elementary detector i (i = 1, . . . . n) a binary 
random variable 

- f-1 if i is in the detection state 
l!li= 

10 if otherwise. 
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Then pi= P[Di= 11, while the probability P, of detecting the stimulus with only 
detectors i and j involved is 

P,= P[D,= 1 v D,= 11. 

In tight analogy to the RT situation facilitation is defined by the gain in detection 
probability that occurs from having two detectors ‘at work’ rather than one, 

FAC detection = P, - max(p,, pj). 

To model the ‘race’ we have to associate with each detector i a nonnegative random 
variable 

D;=l-Di. 

Facilitation as defined for RT then is (see Section 5) 

min[E(D:), E(D:)] - E[min(D:, Dj)] 

=min[E(l-Dj),E(l-D,)]-E[min(l-Di,l-Di)] 

=min(l --pi, 1 -pi)-P[D,=O A D,=O] 

= 1 - max(p,, p,) - (1 - Pg) 

= FACdetection . 

Thus both definitions coincide. 
The main finding of this paper, though, relates to the analysis of reaction time 

in the context of the redundant target paradigm. It has been shown that replacing 
the assumption of stochastic independence by negative dependence in the proba- 
bility summation hypothesis allows a larger part of the redundancy gain to be 
attributed to statistical facilitation rather than to some neural coactivation. Conse- 
quently, whenever a realistic assessment of the role of statistical facilitation for a 
redundant target effect is to be made, the lower bound for the expected processing 
time given in Proposition 4.5 should be taken into consideration. 

APPENDIX: OUTLINE OF PROOF OF LEMMA 3.1 

(a) For any (x, ~)ER’, 

H(x, y) = P(X< x, Y< y) < P(X< x) = F,(x). 

Thus, by symmetry, 

Wx, Y) d minCF,dx), F,Lv)l, 
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which settles the right hand side of (5). Since 

P(X>x, Y>y)= 1 -F,~(x)-F,(y)+H(x,y)bO, 

we have 

H(x, Y) 3 Fx(x) + F’y(.v) - 1 

in addition to H(x, y) 2 0, so 

fk .v) 2 max{F,(x) + F,(y) - 1, O}, 
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the left hand side of (5). 

(b) Mardia (1970, p. 31) verifies sufficient conditions for H+ and HP to 
belong to B(FX, Fy). The extreme correlation property is an immediate consequence 
of Hoeffding’s Lemma (see Lehmann, 1966, p. 1139): for any random vector (A’, Y) 
with cdf H and marginals F,y, F,, the covariance cov(X, Y) can be represented as 

(c) Since F[F-‘( U)] 2 U, we have 

P[F,‘(U)<.x, F,‘(U)Gyl 

= P[ Ub F,-(x), Ud F&)1 

= minCF.dx), F,(y)1 

= H+(x, y); 

moreover. 
P[F,‘(U)6x, F,‘(l- U)<v] 

=P[U< Fx(x), 1 - Ub F,(y)] 

= PC1 -F,(y) d U6 FAX)] 

=max[F,(x)+F,(y)- 1, 01. 
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