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1 Introduction

This manual describes functions for Splus/R that allow the estimation of generalized geoadditive
mixed models (GGAMM). More specific, semiparametric regression models including nonlinear
effects of continuous covariates (modelled as P-splines), structured effects of spatial covariates
(modelled as Markov random fields) and subject specific random effects (random intercepts and
random slopes) may be estimated. Inference is based on representing generalized geoadditive
mixed models as generalized linear mixed models. The main advantage of this representation
is, that it allows to estimate the smoothing parameters of the P-splines and the Markov random
fields simultaneously with the other model components via (restricted) maximum likelihood.
From a Bayesian perspective this yields empirical Bayes or posterior mode estimates.

Section 2 reviews the theoretical background, based on Fahrmeir, Kneib & Lang (2003). In
addition, some numerical issues are discussed in greater detail, based on Kneib (2003). Readers
who are more interested in using the software are referred to section 3 which describes the
Splus/R-implementation of ggamm.

2 Theoretical background

2.1 Observation model

Consider regression situations, where observations (yi, xi, ui), i = 1, . . . , n, on a response y, a
vector x = (x1, . . . , xp) of continuous covariates, time scales, spatial covariates or group indi-
cators and a vector u of further (mostly categorial) covariates are given. Generalized additive
and semiparametric models (Hastie and Tibshirani, 1990) assume that, given xi and ui, the
distribution of yi belongs to an exponential family, with mean µi = E(yi|xi, ui) linked to an
additive semiparametric predictor ηi by

µi = h(ηi), ηi = f1(xi1) + · · · + fp(xip) + u′

iγ. (1)

Here h is a known response function, and f1, . . . , fp are unknown smooth functions of the co-
variates.

At first sight, the model (1) looks like a usual (semiparametric) GAM where the influence of
some continuous covariates or time scales is assumed to be possibly nonlinear. The full generality
of our model will be clarified in section 2.2. For the moment note

• that the covariates xij must not necessarily be continuous. For instance, the vector xi

may also contain a spatial covariate which gives information about the location a partic-
ular observation pertains to. In our first application on rental guides for flats, the spatial
covariate contains information about the subquarter (in Munich) where the flat or apart-
ment is located. Another example are unordered cluster variables that indicate the cluster
index for every observation in the dataset.

• that a component of xi may not be scalar but also 2 dimensional to model interactions
between covariates.

The simple GAM-like notation in (1) is primarily used to provide a unified framework for our
model and to facilitate descriptions of estimation procedures in Section 2.4.
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2.2 Prior assumptions

For Bayesian inference, the unknown functions f1, . . . , fp in (1), more exactly corresponding
vectors of function evaluations, and the fixed effects parameters γ are considered as random
variables and must be supplemented by appropriate prior assumptions.

We will assume independent diffuse priors p(γj) ∝ const, for the fixed effects parameters γ.
Priors for the unknown functions f1, . . . , fp depend on the type of the covariate and on prior
beliefs about smoothness of fj. In the following we will always be able to express the vector
of function evaluations fj = (fj(x1j), . . . , fj(xnj))

′ of an unknown function fj as the matrix
product of a design matrix Xj and a vector of unknown parameters βj , i.e.

fj = Xjβj . (2)

Then, we obtain the predictor (1) in matrix notation as

η = X1β1 + · · · + Xpβp + Uγ, (3)

where U corresponds to the usual design matrix for fixed effects.

A prior for a function fj is now defined by specifying a suitable design matrix Xj and a prior
distribution for the vector βj of unknown parameters. The general form of the prior for βj is
given by

p(βj |τ
2
j ) ∝ exp(−

1

2τ2
j

β′

jKjβj), (4)

where Kj is a penalty matrix that penalizes to abrupt jumps between neighbouring parameters.
In most cases Kj will be rank deficient and therefore the prior for βj is partially improper.

The variance parameter τ2
j is equivalent to the inverse smoothing parameter in a frequentist

approach and controls the trade off between flexibility and smoothness.

In the following we will describe specific examples of priors for some nonlinear function fj .

2.2.1 Continuous covariates and time scales

Several alternatives have been recently proposed for specifying smoothness priors for continuous
covariates. These are random walk priors (see Fahrmeir & Lang (2001a) and Fahrmeir & Lang
(2001b)), Bayesian P-splines (Lang & Brezger (2003)) and Bayesian smoothing splines (Hastie
& Tibshirani (2000)). In the following we will focus on P-splines. The approach assumes that
an unknown smooth function fj of a covariate xj can be approximated by a polynomial spline
of degree lj defined on a set of equally spaced knots xmin

j = ζ0 < ζ1 < · · · < ζr−1 < ζr = xmax
j

within the domain of xj . Such a spline can be written in terms of a linear combination of
Mj = rj + lj B-spline basis functions Bm, i.e.

fj(x) =

Mj
∑

m=1

βjmBm(x).

Here βj = (βj1, . . . , βjMj
)′ corresponds to the vector of unknown regression coefficients. The

n × Mj design matrix Xj consists of the basis functions evaluated at the observations xij , i.e.
Xj(i, m) = Bm(xij). The crucial point is the choice of the number of knots. For a small number
of knots, the resulting spline may be not flexible enough to capture the variability of the data.
For a large number of knots, estimated curves tend to overfit the data and, as a result, to rough

2



functions are obtained. As a remedy Eilers & Marx (1996) suggest a moderately large number
of equally spaced knots (usually between 20 and 40) to ensure enough flexibility, and to define a
roughness penalty based on first or second order differences of adjacent B-Spline coefficients to
guarantee sufficient smoothness of the fitted curves. This leads to penalized likelihood estimation
with penalty terms

P (λj) = λj

Mj
∑

m=kj+1

(∆kjβjm)2, kj = 1, 2, (5)

where ∆kj is the difference operator. First order differences penalize abrupt jumps βjm−βj,m−1

between successive parameters and second order differences penalize deviations from the linear
trend 2βj,m−1 − βj,m−2. In a Bayesian approach we use the stochastic analogue of difference
penalties, i.e. first or second order random walks, as a prior for the regression coefficients. First
and second order random walks are defined by

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm (6)

with Gaussian errors ujm ∼ N(0, τ2
j ) and diffuse priors p(βj1) ∝ const, or p(βj1) and p(βj2) ∝

const, for initial values, respectively. The joint distribution of the regression parameters βj is
easily computed as a product of conditional densities defined by (6) and can be brought into the
general form (4). The penalty matrix is of the form Kj = D′

jDj where Dj is a first or second
order difference matrix. More details about Bayesian P-splines can be found in Lang & Brezger
(2003).

2.2.2 Spatial covariates

Suppose now that a covariate xj represents the location or site in connected geographical regions.
For simplicity we assume xj ∈ {1, . . . , Mj}, i.e. the regions are labelled consecutively by the
numbers 1, . . . , Mj . A common way to deal with spatial covariates is to assume that neighbouring
sites are more alike than two arbitrary sites. Thus for a valid prior definition a set of neighbours
for each site m must be defined. For geographical data one usually assumes that two sites m
and m′ are neighbours if they share a common boundary.

The simplest (but most often used) spatial smoothness prior for the function evaluations fj(m) =
βjm is

βjm|βjm′ , m 6= m′, τ2
j ∼ N





1

Nm

∑

m′∈∂m

βjm′ ,
τ2
j

Nm



 , (7)

where Nm is the number of adjacent sites and m′ ∈ ∂m denotes that site m′ is a neighbour of
site m. Thus the (conditional) mean of βjm is an unweighted average of function evaluations
of neighbouring sites. The prior is a direct generalization of a first order random walk to two
dimensions and is called a Markov random field. More general priors based on weighted averages
can be found e.g. in Besag, York & Mollié (1991). The n × Mj design matrix Xj is now a 0/1
incidence matrix. Its value in the i-th row and the m-th column is 1 if the i-th observation is
located in site or region m, and zero otherwise. The Mj × Mj penalty matrix Kj has the form
of an adjacency matrix.

2.2.3 Unordered group indicators and unstructured spatial effects

In many situations we observe the problem of heterogeneity among clusters of observations
caused by unobserved covariates. Neglecting unobserved heterogeneity may lead to considerably
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biased estimates for the remaining effects. Suppose xj ∈ {1, . . . , Mj} is now a cluster variable
indicating the cluster a particular observation i belongs to. A common approach to overcome
the difficulties of unobserved heterogeneity is to introduce additional Gaussian i.i.d. effects

fj(m) = βjm (8)

with
βjm ∼ N(0, τ2

j ), m = 1, . . . , Mj . (9)

The design matrix Xj is again a n × Mj 0/1 incidence matrix and the penalty matrix is the
identity matrix, i.e. Kj = I. From a classical perspective, (9) defines i.i.d. random effects.
However, from a Bayesian point of view all unknown parameters are assumed to be random and
hence the notation ”random effects” in this context is misleading. We think of (9) more as an
approach for modelling an unsmooth function.

I.i.d. Gaussian effects (9) may also be used for a more sophisticated modelling of spatial effects.
If xj is a spatial covariate it may be useful to split up the effect fj into a spatially correlated
(smooth) effect fj,str and a spatially uncorrelated (unsmooth) effect fj,unstr, i.e.

fj = fj,str + fj,unstr.

A rationale is that a spatial effect is usually a surrogate of many unobserved influential factors,
some of them may obey a strong spatial structure and others may be present only locally. By
estimating a structured and an unstructured effect we aim at distinguishing between the two
kinds of influential factors. For the smooth spatial effect we may again assume a Markov random
field prior and for the uncorrelated effect we may assume the prior (9).

Often random effects (9) are not only used to model so-called random intercepts but also for
random slopes. Random slopes are also included in the presented setting, if we assume, that xj

is composed of two covariates x
(1)
j and x

(2)
j , i.e. xj = (x

(1)
j , x

(2)
j )′, where x

(2)
j is an unordered

group indicator and x
(1)
j is a continuous variable. Now we define fj(xj) through

fj(xj) = f∗

j (x
(2)
j )x

(1)
j , (10)

where f∗

j (x
(2)
j ) is defined as in (8). So we obtain for x

(2)
j = m:

fj(xj) = f∗

j (m)x
(1)
j = x

(1)
j βjm.

The design matrix Xj is now given by

diag(x
(1)
1j , . . . , x

(1)
nj )X∗

j

where X∗

j is the incidence matrix for the unordered group indicator x
(2)
j .

Note, that in fact (10) is a varying coefficient model (VCM) (compare Hastie & Tibshirani
(1993)) with an unordered group indicator as effect modifier. More general VCMs might also be
incorporated into our model but since the current implementation only supports random slopes
we do not emphasize this here.

2.3 Mixed Model representation

In this section, we highlight the close relationship between penalized regression and generalized
linear mixed models (GLMM), see also Lin & Zhang (1999) and Green (1987) in the context of
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smoothing splines. In fact, model (1) with the structured additive predictor (3) can always be
expressed as a GLMM. This provides a nice and elegant way for simultaneous estimation of the
functions fj , j = 1, . . . , p and the variance (or inverse smoothing) parameters τ2

j in an empirical
Bayes approach (see the next section). To rewrite the model as a GLMM we proceed as follows:

The vectors of regression coefficients βj , j = 1, . . . , p, are decomposed into an unpenalized
and a penalized part. Suppose that the j-th coefficient vector has dimension Mj × 1 and the
corresponding penalty matrix Kj has rank rkj . Then we define the decomposition

βj = Xunp
j βunp

j + Xpen
j βpen

j , (11)

where the columns of the Mj × (Mj − rkj) matrix Xunp
j contain a basis of the nullspace of Kj .

The Mj × rkj matrix Xpen
j is given by Xpen

j = Lj(L
′

jLj)
−1 where the Mj × rkj matrix Lj is

determined by the decomposition of the penalty matrix Kj into Kj = LjL
′

j . A requirement
for the decomposition is that L′

jX
unp
j = Xunp

j L′

j = 0 holds. Hence the parameter vector βunp
j

represents the part of βj which is not penalized by Kj whereas the vector βpen
j represents the

deviations of the parameters βj from the nullspace of Kj .

In general, the decomposition Kj = LjL
′

j of Kj can be obtained from the spectral decomposition
Kj = ΓjΩjΓ

′

j . The (rkj × rkj) diagonal matrix Ωj contains the positive eigenvalues ωjm,
m = 1, . . . , Tj , of Kj in descending order, i.e. Ωj = diag(ωj1, . . . , ωj,rkj

). Γj is a (Mj × rkj)
orthogonal matrix of the corresponding eigenvectors. From the spectral decomposition we can

choose Lj = ΓjΩ
1

2

j .

In some cases a more favorable decomposition can be found. For instance, for P-splines defined
in Section 2.2.1 a more favorable choice for Lj is given by Lj = D′

j where Dj is the first or
second order difference matrix. Of course, for (the ”random effects”) prior (9) of section 2.2.3 a
decomposition of Kj = I is not necessary. Also, the unpenalized part vanishes completely.

The matrix Xunp
j is the identity vector for P-splines with first order random walk penalty

and Markov random fields. For P-splines with second order random walk penalty Xunp
j is a

two column matrix whose first column is again the identity vector and the second column is
composed of the (equidistant) knots of the spline.

From the decomposition (11) we get

1

τ2
j

β′

jKjβj =
1

τ2
j

(βpen
j )′βpen

j .

From the general prior (4) for βj it follows that

p(βunp
jm ) ∝ const, m = 1, . . . , Mj − rkj

and
βpen

j |τ2
j ∼ N(0, τ2

j I). (12)

Finally, by defining the matrices Ũj = XjX
unp
j and X̃j = XjX

pen
j , we can rewrite the predictor

(3) as

η =

p
∑

j=1

Xjβj + Uγ

=

p
∑

j=1

(XjX
unp
j βunp

j + XjX
pen
j βpen

j ) + Uγ

=

p
∑

j=1

(Ũjβ
unp
j + X̃jβ

pen
j ) + Uγ

= Ũβunp + X̃βpen.
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The design matrix X̃ and the vector βpen are composed of the matrices X̃j and the vectors βpen
j ,

respectively. More specifically, we obtain

X̃ = (X̃1 X̃2 · · · X̃p)

and the stacked vector
βpen = ((βpen

1 )′, . . . , (βpen
p )′)′.

Similarly the matrix Ũ and the vector βunp are given by

Ũ = (Ũ1 Ũ2 · · · Ũp U)

and
βunp = ((βunp

1 )′, . . . , (βunp
p )′, γ′)′.

After all, we obtain a GLMM with fixed effects βunp and random effects βpen with

βpen ∼ N(0, Λ)

where Λ = diag(τ2
1 , . . . , τ2

1 , . . . , τ2
p , . . . , τ2

p ). Hence, we can utilize GLMM methodology for si-
multaneous estimation of smooth functions and the variance parameters τ2

j , see the next section.

The mixed model representation also enables us to examine the identification problem inherent
to nonparametric regression from a different angle. Except for i.i.d. Gaussian effects (9), the
design matrices Ũj for the unpenalized parts contain the identity vector. Provided that there
are at least one nonlinear effect and that γ contains an intercept, the matrix Ũ has not full
column rank. Hence, all identity vectors in Ũ (except for the intercept) must be eliminated to
guarantee identifiability.

2.4 Inference

Bayesian inference is based on the posterior of the model. In terms of the GLMM representation
of the model we obtain

p(βunp, βpen|y) ∝ L(y, βunp, βpen)

p
∏

j=1

(

p(βpen
j |τ2

j )
)

(13)

where p(βpen|τ2
j ) is defined in (12) and L(·) denotes the likelihood which is the product of

individual likelihood contributions.

Based on the GLMM representation outlined in Section 2.3, regression and variance parameters
can be estimated using iteratively weighted least squares (IWLS) and (approximate) restricted
maximum likelihood (REML) developed for GLMM’s. Estimation is carried out iteratively in
largely two steps. Suppose β̃unp, β̃pen and τ̃2

j , j = 1, . . . , p are the current estimates for the

unknown parameters. Then, we obtain updated estimates β̂unp and β̂pen given the current
variance parameters as the solutions of the linear equation system

(

Ũ ′WŨ Ũ ′WX̃

X̃ ′WŨ X̃ ′WX̃ + Λ−1

) (

βunp

βpen

)

=

(

Ũ ′Wỹ

X̃ ′Wỹ

)

. (14)

The (n×1) vector ỹ and the n×n diagonal matrix W = diag(w1, . . . , wn) are the usual working
observations and weights in generalized linear models, see Fahrmeir & Tutz (2001), Chapter
2.2.1. In the second step, the (approximate) restricted log likelihood

l∗(τ2
1 , . . . , τ2

p ) = 1
2 log(|Σ|) − 1

2 log(|Ũ ′Σ−1Ũ |)

−1
2(ỹ − Ũ β̂unp)′Σ−1(ỹ − Ũ β̂unp)

(15)
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is maximized with respect to the variance parameters τ2 = (τ2
1 , . . . , τ2

p ). Here, Σ is an approxi-
mation to the marginal covariance matrix of ỹ which is given by

Σ = W−1 + X̃ΛX̃ ′.

The restricted likelihood is maximized by Fisher scoring as described in full detail in Harville
(1977) or Verbeke & Molenberghs (2000). Updated estimates τ̂2 are obtained by

τ̂2 = τ̃2 + F ∗(τ̃2)−1s∗(τ̃2), (16)

where F ∗ is the expected Fisher information and s∗ is the score vector, see e.g. Lin & Zhang
(1999) for formulas. The two steps are iterated until convergence.

Note, that convergence problems may occur, if one of the parameters τ2
j is small. Then the

maximum of the restricted likelihood may be on the boundary of the parameter space so that
Fisher scoring is no appropriate way to find the REML-estimates τ̂2. Therefore in the current
implementation the estimation of small variances τ2

j is stopped, if the criterion

c(τ2
j ) =

||X̃j β̂
pen
j ||

||η̂||
(17)

is smaller than a user-specified value. This usually corresponds to small values τ2
j but defines

”small” in a data driven way. Modifying Fisher scoring in this way guaranteed convergence in
most of the analyzed models.

From a Bayesian perspective, the (approximate) covariance matrix of the regression coefficients
β̂unp and β̂pen may be derived from (14) as

Cov

(

β̂unp

β̂pen

)

= H−1 (18)

with

H =

(

Ũ ′WŨ Ũ ′WX̃

X̃ ′WŨ X̃ ′WX̃ + Λ−1

)

.

In a frequentist setting, this covariance matrix is given by

Cov

(

β̂unp

β̂pen

)

= H−1H1H
−1 (19)

with

H1 =

(

Ũ ′WŨ Ũ ′WX̃

X̃ ′WŨ X̃ ′WX̃

)

.

Both expressions allow us to compute confidence intervals for the estimates f̂j , since f̂j =

Ũj β̂
unp
j + X̃j β̂

pen
j and therefore

Cov(f̂j) = (Ũj , X̃j)Cov

(

β̂unp
j

β̂pen
j

)

(Ũj , X̃j)
′. (20)

The covariance matrix Cov

(

β̂unp
j

β̂pen
j

)

can be obtained from the corresponding blocks in (18) and

(19) respectively. Pointwise confidence intervals for fj may now be computed using the square
roots of the diagonal elements from (20) as estimates of the corresponding standard deviations.
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3 Splus/R-functions

3.1 Installation

The current implementation of ggamm consists of the files

• ggamm.s

• helpfunctions.s

for Splus and the files

• ggamm.r

• helpfunctions.r

for R, respectively. While the files ggamm.s and ggamm.r contain the two versions of the function
ggamm for the different software packages, the files helpfunctions.s and helpfunctions.r

provide several additional functions that are needed during the estimation and that allow the
user to visualize the estimation results. To define ggamm in Splus or R, one first has to install
these additional functions through executing the commands

> source("c:\\ggamm\\functions\\helpfunctions.s")

or

> source("c:\\ggamm\\functions\\helpfunctions.r")

respectively. Of course the path c:\\ggamm\\functions has to be changed according to the
storage location of the corresponding files.

To define ggamm itself, execute the commands

> source("c:\\ggamm\\functions\\ggamm.s")

in Splus and

> source("c:\\ggamm\\functions\\ggamm.r")

in R. Both implementations differ neither by their call (that is: their arguments) nor their return
value.

A typical call to ggamm has the form

> test<-ggamm(dep=...,fix=...,smooth=...,reg=...,regions=...,random=...,

id=...,...)

Now the estimation results are stored in the object test and may for example be used to visualize
the function estimates (compare section 3.4). The different arguments of ggamm are described
in more detail in the following section, more information on the return value is given in section
3.3.

Note, that the R implementation of ggamm is usually much faster then the Splus implementation
and should therefore be preferred.
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3.2 Arguments

The only required argument is the dependent variable dep. If no other arguments are supplied,
a constant fixed effect is estimated. Note that if only fixed effects are specified, ggamm simply
calls the Splus/R-function glm and converts the results to the typical form of a ggamm-object.

dep Vector containing the dependent variable y.
family Exponential family to which the distribution of the response belongs.

"normal" Normally distributed response.
"binomial" Binomial distributed response. If one assumes yi ∼ B(ni, pi),

yi/ni must be specified as dependent variable. The numbers of
trials ni are supplied in the variable weight.

"poisson" Poisson distributed response.
"gamma" Gamma distributed response. Note, that the behavior of ggamm

for gamma distributed response has not yet been tested prop-
erly.

Default: "normal"

link Link function. For normally or Poisson distributed responses the natural link
function is chosen, for gamma distributed response the logarithm is used as link
function. So this option is only meaningful for binomial distributed response.
"logit" Cdf of the logistic distribution as response function.
"probit" Cdf of the standard normal distribution as response function.
Default: "logit"

dispers Whether to estimate the dispersion parameter or not. For normally or gamma
distributed response this option must be T, for binomial and poisson dis-
tributed response dispers=T allows the estimation of quasi-likelihood models.
Note however, that the estimation of such models has not yet been properly
tested.
Default: F

fix Matrix containing the realizations of the covariates that are assumed to have
linear influence.

smooth Matrix containing the realizations of the covariates that are to be modelled as
P-splines.

nknot Vector, containing the number of inner knots rj for every variable in smooth.
Default: 20

ord Vector, containing the order kj of the difference penalty for every variable in
smooth. Possible values are kj = 1 and kj = 2.
Default: 2

deg Vector, containing the degree lj of the B-spline basis for every variable in
smooth.
Default: 3

plotf Whether to plot the estimated functions automatically or not.
Default: F

include.lin Whether to include the linear part of the function estimate in the plot or not.
Only meaningful for covariates with ord=2.
Default: F

reg Vector containing the realizations of the spatial covariate.
pmatrix Adjacency matrix Kj of the spatial effect. Please contact the author, if you if

you have problems creating such a matrix.
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regions Vector containing the possible (distinct) values of the spatial covariate in the
order corresponding to the adjacency matrix.

map Map object which allows to visualize the estimated spatial effect. Compare
section 3.4 on how to define such an object.

plotmap Whether to plot the estimated spatial effect automatically or not.
Default: F

random Matrix containing the realizations of the covariates that should be modelled
as random effects. For example a random intercept is specified through an
n-dimensional vector of ones.

id Vector containing the identification variable of the clusters.
weight Vector containing a weighting variable.
offset Vector containing an offset.

sig Level of the confidence intervals that are to be computed.
Default: 0.95

eps Termination condition.
Default: 0.00001

noprint Whether to print information on the estimation process or not.
Default: F

nowarnings Whether to print warnings or not.
Default: F

startValue1 Starting value for the inverse smoothing parameters of the P-splines and the
Markov random field.
Default: 0.1

startValue2 Starting value for the variances of the random effects.
Default: 0.5

maxit Maximum number of iterations.
Default: 400

ranktest Whether to test for rank-deficiency of the fisher-information-matrix for βpen

and βunp in each iteration or not. ranktest=T decreases the execution time.
Default: F

outfile If outfile is specified, the estimation results are written to the given direc-
tory. For example the estimation results for the fixed effects are written to
c:\\temp\\results fixedEffects.raw if outfile="c:\\temp\\results" is
specified.

log.like Whether to compute the (restricted) log-likelihood or not. Only implemented
for normally distributed response.
Default: F

lowerlim Termination criterion that specifies in which case the estimation of a small
variance shall be stopped. Compare section 2.
Default: 0.001

method How to estimate the variance components.
"ML" Maximum Likelihood
"REML" Restricted Maximum Likelihood
Default: "REML"

3.3 Return value

The return value of ggamm consists of a list of Splus/R-objects that contain the estimation results
for the different model components. These objects will now be briefly summarized. Note, that
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some of the objects like log.like or spatialEffects are only available if they are part of the
analyzed model or if they are explicitly requested in the call of ggamm.

fixedEffects Matrix containing the estimation results of the fixed effects. Confidence
intervals, standard deviations and p-values are given in addition. If the
P-splines have been modelled using differences of order kj = 2, coefficients
representing the linear parts of the P-splines are given too.

iterations Number of iterations.
log.like Log-likelihood or restricted log-likelihood of the estimated model.
predict Matrix containing the estimation results of the linear predictor and the

expectation of the different observations.
randomEffects Matrix containing the estimation results of the random effects. If more

than one covariate is modelled as a random effect, such a matrix is gen-
erated for each of these covariates. The matrix also contains confidence
intervals, standard deviations and p-values.

smoothedEffects Matrix containing the estimation results of the nonparametric effects.
Confidence intervals, standard deviations and p-values are given in ad-
dition. If more than one covariate is modelled nonparametrically, such a
matrix is generated for each of these covariates.

spatialEffects Matrix containing the estimation results of the spatial effect. The matrix
also contains confidence intervals, standard deviations and p-values.

variances Matrix containing the estimation results of the variance parameters τ2

and the dispersion parameter φ.

3.4 Visualizing estimated effects

Two functions allow the user to visualize the estimation results of the nonparametric and the
spatial effects. If the estimation results are stored in the object test, the nonparametric effects
may be visualized as follows:

> plotf(test)

In addition to the estimation results pointwise frequentist and Bayesian confidence intervals
are drawn automatically. If the argument include.lin=T is supplied, the linear parts of the
function estimates are included in the plot, too.

Estimates of spatial effects may be visualized through typing

> plotmap(test,m)

if object m contains the corresponding map.

To define a map-object, we first need information about its boundaries, which we assume to be
stored in a so-called boundary file. Such a file has the following structure (The next paragraphs
are taken from section 5 in Brezger, Kneib & Lang (2002). Compare this section for a more
detailled description of map-objects and boundary-files):

For each region of the map the boundary file must contain the identifying name of the region, the
polygons that form the boundary of the region, and the number of lines the polygon consists of.
The first line always contains the region code surrounded by quotation marks and the number of
lines the polygon of the region consists of. The code and the number of lines must be separated
by a comma. The subsequent lines contain the coordinates of the straight lines that form the
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boundary of the region. The straight lines are represented by the coordinates of their end points.
Coordinates must be separated by a comma.

To give an example we print a (small) part of the boundary file of (former) West Germany:

.

.

.

”6634”,31

2319.26831,4344.48828

2375.45435,4399.50391

2390.67139,4446.32520

2470.26807,4405.35645

2576.78735,4379.60449

2607.22144,4337.46533

2627.12061,4356.19385

2662.23682,4355.02344

2691.50024,4311.71338

2726.61646,4310.54248

2716.08154,4256.69775

2710.22900,4227.43408

2680.96533,4234.45752

2583.81055,4165.39551

2568.59351,4096.33398

2520.60132,4042.48901

2535.81836,3941.82251

2490.16724,3920.75269

2451.53955,3903.19458

2437.49292,3924.26440

2369.60156,3933.62866

2359.06665,3951.18677

2285.32275,3969.91553

2258.40015,4061.21753

2197.53223,4049.51221

2162.41602,4086.96948

2204.55542,4091.65161

2192.85010,4125.59717

2284.15210,4220.41113

2339.16748,4292.98438

2319.26831,4344.48828

.

.

.

The map corresponding to the section of the boundary file above can be found in Figure 1. Note
that the first and the last point must be identical (see the example above) to obtain a closed
polygon.

In some cases it might happen that a region is separated into subregions that are not connected.
As an illustrative example compare Figure 2 showing a region of Germany that is separated into
8 subregions. In this case the boundary file must contain the polygons of all subregions. The
first row for each of these subregions must contain the region code and the number of lines the
polygon of the respective subregion consists of. Note that it is not necessary that the polygons
of the subregions are stored in subsequent order in the boundary file.

Another special case that might occur is illustrated in Figure 3. Here a region is completely
surrounded by another region. In this case an additional line must be added to the boundary
description of the surrounded region. The additional line must be placed after the first line and
must contain the region code of the surrounding region. The syntax is:
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Figure 1: Corresponding graph of the section of the boundary file

is.in,”region code”

The following lines show a section of the boundary file of West Germany, where region ”9361”
is totally surrounded by region ”9371”:

.

.

.

”9361”,7

is.in,”9371”

4155.84668,2409.58496

4161.69922,2449.38330

4201.49756,2461.08862

4224.90820,2478.64673

4250.66016,2418.94922

4193.30371,2387.34448

4155.84668,2409.58496

.

.

.

breite
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e

Figure 2: Example for a region that is divided into subregions

The information provided in a boundary-file is read into a map-object using the function
readbndfile. The function has two required arguments: the filename of the boundary file
to read in and the name of the map-object in Splus/R. Both arguments have to be supplied as
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Figure 3: Example for a region that is totally surrounded by another region

string-variables. A typical call to readbndfile would be

> readbndfile("c:\\ggamm\\boundary.bnd","mymap")

As a result, the boundary information contained in the file boundary.bnd will be read into a
map-object called mymap. Compare also section 3.5 which gives an example on the usage of
ggamm and the visualization-functions.

Note, that the function plotmap mainly consists of a call to the function drawmap, which has
been written by Andreas Brezger for the visualization of geographical information. For this
function there exist many additional options which allow the user to customize the plot and
which are described in section 7.4.2.3 in Brezger et al. (2002). So plotmap is only a possibility
to get a first impression of the estimation results with less typing effort.

All the functions plotf, plotmap, drawmap and readbndfile are included in the files helpfunctions.s
or helpfunctions.r and are defined through executing the commands

> source("c:\\ggamm\\functions\\helpfunctions.s")

or

> source("c:\\ggamm\\functions\\helpfunctions.r")

respectively.

3.5 Examples

Now the usage of ggamm shall be demonstrated through the analysis of two datasets. These
datasets as well as all further files that are needed for the analysis are part of the file examples.zip,
which is available from http://www.stat.uni-muenchen.de/~kneib/ggamm.html.

Example 1: Credit Scoring.

In example 1 we analyze a dataset containing information on 1000 consumers’ credits from a
South German bank with a generalized additive model. The aim is to predict the probability
that a client with certain covariates or risk factors will not pay back his credit. Therefore the
response variable is the binary variable creditability (named y in the dataset) with y = 0 for
creditworthy clients and y = 1 for not creditworthy clients. As covariates we have two continuous
variables and 5 categorial variables (in effect coding) which are described in Table 1.
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Variable Description

duration duration of the credit in months
amount amount of credit in 1000DM
account1 running account of the client with categories ”no running account” (account1=1),
account2 ”good running account” (account2 = 1) and ”medium running account”

(account1 = account2 = −1)
payment payment of previous credits with categories ”good” (= 1) and ”bad” (= −1)
intuse intended use with categories ”private” (= 1) and ”professional” (= −1)
marstat marital status with categories ”married” (= 1) and ”living alone” (= −1)

Table 1: Covariates in the credit scoring dataset.

To analyze the data, we first define ggamm in the current session and store the data in a dataframe-
object.

> source("c:\\ggamm\\functions\\helpfunctions.r")

> source("c:\\ggamm\\functions\\ggamm.r")

> creditdata<-read.table("c:\\ggamm\\examples\\credit.raw",header=T)

To make the names of the variables available directly, we attach the dataframe:

> attach(creditdata)

Now we combine the covariates that are to be modelled as P-splines and the categorial covariates
in two different matrices:

> smoothcovs<-cbind(duration,amount)

> catcovs<-cbind(account1,account2,payment,intuse,marstat)

Finally we call ggamm and store the estimation results in the object credit:

> credit<-ggamm(dep=y,fix=catcovs,smooth=smoothcovs,family="binomial")

As a result of this call, the following information is given on the screen:

iteration: 1

relative changes in the regression coefficients: Inf

relative changes in the variance parameters: 0.7858781
...

iteration: 11

relative changes in the regression coefficients: 2e-006

relative changes in the variance parameters: 5.8e-006

variance of smooth1: 0.0045697637

variance of smooth2: 0.0156629498

beta0: -0.25677

beta1: -1.09241

beta2: 0.86104

beta3: -0.49619

beta4: -0.21911

beta5: -0.25864
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In each iteration of the estimation process the relative changes in the parameters are computed
and compared with the (possibly user-specified) value of eps. When the estimation process has
converged some estimation results are given. Namely, these are the estimators of the variance
components and of the fixed effects. More information on these estimators is given in the two
objects credit$variances and credit$fixedEffects:

> credit$variances

coefficient stopcrit stopped

smooth1 0.004569764 0.1488299 0

smooth2 0.015662950 0.2605143 0

> credit$fixedEffects

coefficient ci0p025 ci0p975 std pvalue

beta0 -0.25677 -0.56373 0.05020 0.15662 0.05056

beta1 -1.09241 -1.33428 -0.85055 0.12340 0.00000

beta2 0.86104 0.64730 1.07477 0.10905 0.00000

beta3 -0.49619 -0.74639 -0.24599 0.12765 0.00005

beta4 -0.21911 -0.37729 -0.06092 0.08071 0.00332

beta5 -0.25864 -0.41562 -0.10166 0.08009 0.00062

fbeta1 0.03389 NA NA NA NA

fbeta2 0.07633 NA NA NA NA

In addition to the estimators, credit$variances also contains the values of criterion (17) and
a dummy-variable that indicates, whether the estimation process has been stopped for this
variance (=1) or not (=0). In this case the estimation of both variances could be performed
without modification.

The matrix credit$fixedEffects contains the coefficients of the fixed effects, confidence in-
tervals for these coefficients, their standard deviations and their p-values. Note, that we omitted
their Bayesian counterparts in this presentation, which are also included in credit$fixedEffects.
The last to lines of credit$fixedEffects contain the parameters of the linear parts of the
smooth effects that were estimated for duration and amount.

These effects may be visualized by typing

> plotf(credit)

which results in the graphs that are shown in Figure 4.
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Figure 4: Estimation results for the smooth effects of duration and amount.
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Example 2: Childhood undernutrition in Zambia.

In our second example we analyze the influence of certain covariates on undernutrition of children
in Zambia. Here undernutrition is measured by a standardized score that represents insufficient
height for age of the children. Besides some categorial covariates (in effect coding) we have two
continuous covariates and information on the district in which the child lives (compare Table 2
for a description of the covariates). Therefore we can estimate a generalized geoadditive mixed
model to assess the influence of the covariates on undernutrition. Note that we will split up the
spatial effect into a structured and an unstructured component as described in section 2.2.2.

Variable Description

hazstd Standardized measure of stunting (height for age)
bmi body mass index of the mother
agc age of the child
district district where the child lives
rcw mother‘s employment status with categories ”working” (= 1) and ”not working”

(= −1)
edu1 mother‘s educational status with categories ”complete primary but incomplete
edu2 secondary” (edu1 = 1), ”complete secondary or higher” (edu2 = 1) and

”no education or incomplete primary” (edu1 = edu2 = −1)
tpr locality of the domicile with categories ”urban” (= 1) and ”rural” (= −1)
sex gender of the child with categories ”male” (= 1) and ”female” (= −1)

Table 2: Covariates in the undernutrition dataset.

Again we first define ggamm in the current session and then read the data into a dataframe:

> source("c:\\ggamm\\functions\\helpfunctions.r")

> source("c:\\ggamm\\functions\\ggamm.r")

> zambiadata<-read.table("c:\\ggamm\\examples\\zambia.raw",header=T)

> attach(zambiadata)

Then we combine continuous and categorial covariates in distinct matrices and define a vector
of ones which serves as a covariate for the unstructured spatial effect.

> smoothcovs<-cbind(bmi,agc)

> catcovs<-cbind(rcw,edu1,edu2,tpr,sex)

> rancov<-rep(1,4847)

For the estimation of the structured spatial effect we need the adjacency matrix of the districts
and a vector containing the identification numbers of the distinct districts (in the order corre-
sponding to the adjacency matrix). Both are provided in the file examples.zip and must be
read into the current session:

> adjmat<-read.table("c:\\ggamm\\examples\\Kzambia.raw")

> distinctregions<-scan("c:\\ggamm\\examples\\zambiaregions.raw")

Note that, since the dataset of this example contains 4847 observations and the model is rather
complex, the computation may take some time (depending on the computer) and needs about
300Mb (in Splus) or 250Mb (in R) RAM. It might also be necessary (in Splus) to change
object.size to an appropriate value:

> options(object.size=8000000)

Now we can estimate the model:

17



> zambia<-ggamm(dep=hazstd,fix=catcovs,smooth=smoothcovs,reg=district,

regions=distinctregions,pmatrix=adjmat,random=rancov,id=district,dispers=T)

We obtain the following estimation results:

WARNING: estimation of the variance of smooth1 was stopped after iteration 10

because its penalized part was small relative to the linear predictor.

phi: 0.80215

variance of smooth1: 8.66e-008

variance of smooth2: 0.0032290746

variance of the spatial effect: 0.0334812023

variance of random1: 0.0064807152

beta0: 0.05839

beta1: 0.00732

beta2: -0.05988

beta3: 0.23459

beta4: 0.08872

beta5: -0.05855

The warning is produced because the estimation of one of the variances is stopped due to the
problem described in section 2.4. As it was noted in this section, this usually corresponds to
small variances, which is indeed the case in our analysis for the variance of the effect of bmi.
This is also reflected in Figure 5 which shows the estimation results of the nonparametric effects
and which was produced through executing

> plotf(zambia)
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Figure 5: Estimation results for the smooth effects of bmi and agc.

Note, that the shape of the confidence intervals for the effect of bmi is also caused by the
extremely small value for the corresponding variance.

To visualize the spatial effects, we have to create a map-object containing the geographical
information about the districts in zambia. This information is provided in the boundary-file
mapzambia.bnd and is loaded into the object m by a call to readbndfile. Then the estimation
results of the structured spatial effect can be visualized using the function plotmap.

> readbndfile("c:\\ggamm\\examples\\mapzambia.bnd","m")

> plotmap(zambia,m)

Since the unstructered spatial effect is simply an uncorrelated random effect for each district,
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this effect can not be visualized using plotmap. Instead we have to use the original function
drawmap. Therefore we first attach the estimation results and call drawmap with the following
arguments:

> attach(zambia)

> drawmap(plotvar=randomEffects1[,2],regionvar=randomEffects1[,1],map=m,color=T)

Both spatial effects are shown in Figure 6.

-0.32233 0.26240 -0.0901 0.080680

Figure 6: Structured and unstructered spatial effect.

In addition to the datasets and the files used in example 2 examples.zip contains adjacency
matrices, boundary files and indicators of the distinct districts for some other regions. These
are the districts of Germany, the districts of the western part of Germany and districts within
munich. The file readme.txt which is also included in examples.zip gives more information
on the different files in examples.zip.
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