Analysing Spatio-temporal Regression Data: A Case Study in Forest Health

Thomas Kneib

Institut für Mathematik
Carl von Ossietzky Universität Oldenburg

Ludwig Fahrmeir

Institut für Statistik
Ludwig-Maximilians-Universität München

Göttingen, 4.6.2009
Spatio-Temporal Regression Data

- Regression in a general sense:
 - Linear models and generalised linear models,
 - Multivariate (categorical) generalised linear models,
 - Regression models for duration times (Cox-type models, AFT models).
- Common structure: Model a quantity of interest in terms of categorical and continuous covariates, e.g.
 \[
 \mathbb{E}(y|x) = h(x'\beta) \quad \text{(GLM)}
 \]
 or
 \[
 \lambda(t|x) = \lambda_0(t) \exp(x'\beta) \quad \text{(Cox model)}
 \]
- Spatio-temporal data: Temporal and spatial information as additional covariates.
Spatio-temporal regression models should allow
- to account for spatial and temporal correlations,
- for time- and space-varying effects,
- for non-linear effects of continuous covariates,
- for flexible interactions,
- to account for unobserved heterogeneity.

⇒ Geoadditive regression models.
Case Study: Forest Health Data

- Aim of the study: Identify factors influencing the health status of trees.
- Database: Yearly visual forest health inventories carried out from 1983 to 2004 in a northern Bavarian forest district.
- 83 observation plots of beeches within a 15 km times 10 km area.
- Response: defoliation degree at plot i in year t, measured in three ordered categories:

 \[
 \begin{align*}
 y_{it} = 1 & \quad \text{no defoliation}, \\
 y_{it} = 2 & \quad \text{defoliation 25\% or less}, \\
 y_{it} = 3 & \quad \text{defoliation above 25\%}.
 \end{align*}
 \]
• **Covariates:**

 Continuous:
 - average age of trees at the observation plot
 - elevation above sea level in meters
 - inclination of slope in percent
 - depth of soil layer in centimeters
 - pH-value in 0-2cm depth
 - density of forest canopy in percent

 Categorical
 - thickness of humus layer in 5 ordered categories
 - level of soil moisture
 - base saturation in 4 ordered categories

 Binary
 - type of stand
 - application of fertilisation
plot no. 63
1 2 3
plot no. 64
1 2 3
plot no. 65
1 2 3
plot no. 66
1 2 3
plot no. 67
1 2 3
plot no. 68
1 2 3
plot no. 69
1 2 3
plot no. 70
1 2 3
plot no. 71
1 2 3
plot no. 72
1 2 3
plot no. 73
1 2 3
plot no. 74
1 2 3

Analysing Spatio-temporal Regression Data: A Case Study in Forest Health
Empirical time trends.

Trends for different ages.
Percentage of time points for which a tree was classified to be damaged.
• We need a regression model that can simultaneously deal with the following issues:

 – A spatially aligned set of time series.

 ⇒ Both spatial and temporal correlations have to be considered.

 – Decide whether unobserved heterogeneity is spatially structured or not.

 – Non-linear effects of continuous covariates (e.g. age).

 – A possibly time-varying effect of age (i.e. an interaction between age and calendar time).

 – A categorical response variable.
Regression models for ordinal responses

- Defoliation degree is measured in three ordered categories.
- Derive regression models for ordinal responses based on latent variables:
 \[D = x'\beta + \varepsilon. \]
- \(D \) can be considered an unobserved, continuous measure of forest damage.
- Link \(D \) to the categorical response \(Y \) based on ordered thresholds

 \[-\infty = \theta^{(0)} < \theta^{(1)} < \theta^{(2)} < \theta^{(3)} = \infty \]

 via

 \[Y = r \iff \theta^{(r-1)} < D \leq \theta^{(r)}. \]
• Defines cumulative probabilities in terms of the cdf F of the latent error term ε:

$$
P(Y \leq r) = P(D \leq \theta^{(r)}) = P(x' \beta + \varepsilon \leq \theta^{(r)}) = F(\theta^{(r)} - x' \beta).
$$

• Graphical interpretation:

• The thresholds slice the density $f = F'$.
Suitable model in our application:

\[D_{it} = f_1(\text{age}_{it}) \text{ nonlinear effects of age,} \]
\[+ f_2(\text{inc}_i) \text{ inclination of slope, and} \]
\[+ f_3(\text{can}_it) \text{ canopy density.} \]
\[+ f_{\text{time}}(t) \text{ nonlinear time trend.} \]
\[+ f_4(t, \text{age}_{it}) \text{ interaction between age and calendar time.} \]
\[+ f_{\text{spat}}(s_i) \text{ structured and} \]
\[+ b_i \text{ unstructured spatial random effects.} \]
\[+ x'_{it} \gamma \text{ usual parametric effects.} \]
\[+ \varepsilon_{it} \text{ error term.} \]
Penalised Splines

• Aim: Model nonparametric trend functions and nonparametric covariate effects.
• Idea: Approximate \(f(x) \) (or \(f(t) \)) by a weighted sum of B-spline basis functions:

\[
f(x) = \sum_j \gamma_j B_j(x)
\]
• The number of basis functions has significant impact on the function estimate.

• Employ a large number of basis functions to enable flexibility.

• **Penalise differences** between parameters of adjacent basis functions to ensure smoothness:

\[
\text{pen}(\gamma | \tau^2) = \frac{1}{2\tau^2} \sum_{j=2}^{p} (\gamma_j - \gamma_{j-1})^2 \quad \text{first order differences}
\]

\[
\text{pen}(\gamma | \tau^2) = \frac{1}{2\tau^2} \sum_{j=3}^{p} (\gamma_j - 2\gamma_{j-1} + \gamma_{j-2})^2 \quad \text{second order differences}
\]

• A penalty term based on \(k\)-th order differences is an approximation to the integrated squared \(k\)-th derivative.

• Penalties can be rewritten as quadratic forms

\[
\text{pen}(\gamma | \tau^2) = \frac{1}{2\tau^2} \gamma' K \gamma
\]

where \(K = D' D\) and \(D\) is a difference matrix of appropriate order.
• **Penalised maximum likelihood estimation** with smoothing parameter τ^2:

$$l_{\text{pen}}(\gamma) = l(\gamma) - \frac{1}{2\tau^2} \gamma' K \gamma \to \max_{\gamma}$$

• Solution (for given smoothing parameter) can be obtained via penalised Fisher scoring.

• Key question: **Automatic selection** of the smoothing parameter τ^2.
• Extension to bivariate penalised splines:
 – Bivariate basis functions based on tensor product B-splines.
 – Extend penalisation to neighbours on a grid.

⇒ Modelling of interaction surfaces (and spatial effects).
Spatial Modelling

- **Markov random fields**: Structured spatial effect.
- Bivariate extension of a first order random walk on the real line.
- Define two observation plots as *neighbours* if their distance is less than 1.2km.
- Assume that the expected value of $\gamma_s = f_{spat}(s)$ is the average of the function evaluations of adjacent sites:

$$\gamma_s | \gamma_r, r \neq s \sim N \left(\frac{1}{N_s} \sum_{r \in \delta_s} \gamma_r, \frac{\tau^2}{N_s} \right)$$

where

- δ_s set of neighbors of plot s
- N_s no. of such neighbors.
• Equivalent formulation in terms of a **difference penalty**:

\[
\text{pen}(\gamma | \tau^2) = \frac{1}{2\tau^2} \sum_s \sum_{r \in \delta_s} (\gamma_s - \gamma_r)^2.
\]

• Again yields a quadratic penalty

\[
\text{pen}(\gamma | \tau^2) = \frac{1}{2\tau^2} \gamma' K \gamma.
\]
• **Kriging**: Structured spatial effect.

• Assume a zero mean stationary Gaussian process for the spatial effect \(\gamma_s = f_{spat}(s) \).

• Correlation of two sites is defined by an **intrinsic correlation function**.

• Can be interpreted as a basis function approach with **radial basis functions**.
• **I.i.d. random effects**: Unstructured spatial effect

\[\gamma_s \text{ i.i.d. } N(0, \tau^2). \]

• Also accounts for longitudinal structure of the data.

• Requires multiple measurements per observation plot.
Bayesian Inference

- All vectors of function evaluations f_j in the geoadditive predictor can be expressed as

$$f_j = Z_j \gamma_j$$

with design matrix Z_j, constructed from the corresponding covariates, and regression coefficients γ_j.

- Each vector of regression coefficients follows a **partially improper multivariate Gaussian prior**:

$$p(\gamma_j | \tau_j^2) \propto \exp \left(-\frac{1}{2\tau_j^2} \gamma_j' K_j \gamma_j \right).$$

- The log-prior can be interpreted as a penalty term.
• The precision matrix K_j acts as a **penalty matrix** that ensures smoothness of the corresponding estimates.

• The variance τ_j^2 can be interpreted as a **smoothing parameter** and controls the trade-off between smoothness and fidelity to the data:

 - τ_j^2 small \Rightarrow smooth estimates.
 - τ_j^2 large \Rightarrow wiggly estimates.
• **Fully Bayesian inference:**

 – All parameters (including the variance parameters τ_j^2) are assigned suitable prior distributions.

 – Estimation is based on MCMC simulation techniques.

 – Usual estimates: Posterior expectation, posterior median (easily obtained from the samples).

• **Empirical Bayes inference:**

 – Differentiate between parameters of primary interest (regression coefficients) and hyperparameters (variances).

 – Assign priors only to the former.

 – Estimate the hyperparameters by maximising their marginal posterior.

 – Plugging these estimates into the joint posterior and maximising with respect to the parameters of primary interest yields posterior mode estimates.
Fully Bayesian inference based on MCMC

• Assign inverse gamma prior to τ_j^2:

$$p(\tau_j^2) \propto \frac{1}{(\tau_j^2)^{a_j+1}} \exp \left(-\frac{b_j}{\tau_j^2} \right).$$

Proper for $a_j > 0$, $b_j > 0$ Common choice: $a_j = b_j = \varepsilon$ small.

Improper for $b_j = 0$, $a_j = -1$ Flat prior for variance τ_j^2,

$b_j = 0$, $a_j = -\frac{1}{2}$ Flat prior for standard deviation τ_j.

• Conditions for proper posteriors: Enough observations and either

– proper priors for the variances or

– $a_j < b_j = 0$ and rank deficiency in the prior for γ_j not too large.
• MCMC sampling scheme:

 – **Metropolis-Hastings** update for $\gamma_j|\cdot$:

 Propose new state from a multivariate Gaussian distribution with precision matrix and mean

 \[
 P_j = Z_j' W Z_j + \frac{1}{\tau_j^2} K_j \quad \text{and} \quad m_j = P_j^{-1} Z_j' W (\tilde{y} - \eta_j).
 \]

 IWLS-Proposal with appropriately defined working weights W and working observations \tilde{y}.

 – **Gibbs sampler** for $\tau_j^2|\cdot$:

 Sample from an inverse Gamma distribution with parameters

 \[
 a'_j = a_j + \frac{1}{2} \text{rank}(K_j) \quad \text{and} \quad b'_j = b_j + \frac{1}{2} \gamma_j' K_j \gamma_j.
 \]

 – Efficient algorithms make use of the sparse matrix structure of P_j and K_j.
Empirical Bayes inference based on mixed model methodology

- Consider the variances τ_j^2 as unknown constants to be estimated.

- Idea: Consider γ_j a correlated random effect with multivariate Gaussian distribution and use mixed model methodology.

- Problem: In most cases partially improper random effects distribution.

- Mixed model representation: Decompose

$$
\gamma_j = X_j \beta_j + U_j b_j,
$$

where

$$
p(\beta_j) \propto const \quad \text{and} \quad b_j \sim N(0, \tau_j^2 I_{k_j}).
$$

$\Rightarrow \beta_j$ is a fixed effect and b_j is an i.i.d. random effect.
• This yields the variance components model

\[\eta = x'\beta + u'b, \]

where in turn

\[p(\beta) \propto \text{const} \quad \text{and} \quad b \sim N(0, Q). \]

• Obtain empirical Bayes estimates / penalized likelihood estimates via iterating

 – Penalized maximum likelihood for the regression coefficients \(\beta \) and \(b \).
 – Restricted maximum / marginal likelihood for the variance parameters in \(Q \):

\[L(Q) = \int L(\beta, b, Q)p(b)d\beta db \rightarrow \max_{Q}. \]

• Involves Laplace approximation to the marginal likelihood.

• Corresponds to REML estimation of variances in Gaussian mixed models.
Results

Markov random field

I.i.d. random effect
P-spline

Analysing Spatio-temporal Regression Data: A Case Study in Forest Health
Analysing Spatio-temporal Regression Data: A Case Study in Forest Health
• Summary:
 – Inclusion of any kind of spatial effect leads to a dramatically improved model fit.
 – The unstructured part dominates the structured spatial effect.
 – Temporal effects are present in the data.
 – Nonparametric effects allow for more realistic models and additional insight.
 – Inclusion of the spatial effect also improved interpretability of other effects.
• BayesX is a software tool for estimating geoadditive regression models.
• Stand-alone software with Stata-like syntax.

• Developed by Christiane Belitz, Andreas Brezger, Thomas Kneib and Stefan Lang with contributions of seven colleagues.

• Computationally demanding parts are implemented in C++.

• For Windows, a graphical user interface has been implemented in Java.

• The command line version of BayesX is platform independent.

• There is a supplementary R-package for easy visualisation of estimation results and for manipulating geographical information.

• More information:

 http://www.stat.uni-muenchen.de/~bayesx
• **Inferential procedures:**
 – Fully Bayesian inference based on MCMC.
 – Empirical Bayes inference based on mixed model methodology.
 – Stepwise model selection procedures.

• **Univariate response types:**
 – Gaussian,
 – Bernoulli and Binomial,
 – Poisson and zero-inflated Poisson,
 – Gamma,
 – Negative Binomial.
• Categorical responses with **ordered categories**:
 – Ordinal as well as sequential models,
 – Logit and probit models,
 – Effects can be category-specific or constant over the categories.

• Categorical responses with **unordered categories**:
 – Multinomial logit and multinomial probit models,
 – Category-specific and globally-defined covariates,
 – Non-availability indicators can be defined to account for varying choice sets.
• **Continuous survival times:**
 – Cox-type hazard regression models,
 – Joint estimation of baseline hazard rate and covariate effects,
 – Time-varying effects and time-varying covariates,
 – Arbitrary combinations of right, left and interval censoring as well as left truncation.

• **Multi-state models:**
 – Describe the evolution of discrete phenomena in continuous time,
 – Model in terms of transition intensities, similar as in the Cox model.
Conclusions

• **Take home messages:** Spatio-temporal models
 – allow for sufficient flexibility in complex applications.
 – can be estimated for various types of responses.
 – can be estimated with automatic determination of smoothing parameters without the need for subjective judgements.

• Not in this talk: Model choice and variable selection in spatio-temporal regression models can be accomplished with boosting techniques.
• More on the application:

• A place called home:

http://www.staff.uni-oldenburg.de/thomas.kneib