Bayesian Semiparametric Multi-State Models

Thomas Kneib & Andrea Hennerfeind
Department of Statistics
Ludwig-Maximilians-University Munich

14.10.2006
Multi-State Models

- Multi-state models form a general class for the description of the evolution of discrete phenomena in continuous time.

- We observe paths of a process

\[X = \{X(t), t \geq 0\} \quad \text{with} \quad X(t) \in \{1, \ldots, q\}. \]

- Yields a similar data structure as for Markov processes.

- Examples:
 - Recurrent events:
– Disease progression:

\[\begin{align*}
1 & \quad \leftrightarrow \quad 2 \\
\quad \downarrow & \quad \rightarrow & \quad \rightarrow \\
\quad & \quad \rightarrow & \quad \rightarrow \quad \cdots & \quad \rightarrow \\
\quad & \quad \rightarrow & \quad \rightarrow \quad \cdots & \quad \rightarrow \\
\quad & \quad \rightarrow & \quad \rightarrow \\
& \quad \rightarrow \quad \quad \rightarrow \\
\end{align*} \]

– Competing risks:

\[\begin{align*}
1 & \quad \rightarrow \\
\quad & \quad \rightarrow & \quad \rightarrow & \quad \rightarrow \\
\quad & \downarrow & \downarrow & \quad \rightarrow \\
\quad & \quad & \rightarrow & \quad \rightarrow \\
\quad & \quad & \rightarrow & \quad \rightarrow \\
& \quad \rightarrow & \quad \rightarrow \quad \cdots & \quad \rightarrow \\
& \quad \rightarrow & \quad \rightarrow \quad \cdots & \quad \rightarrow \\
& \quad \rightarrow & \quad \rightarrow \\
\end{align*} \]

• (Homogenous) Markov processes can be compactly described in terms of the transition intensities

\[\lambda_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j \mid X(t) = i)}{\Delta t} \]
• Often not flexible enough in practice since
 – The transition intensities might vary over time.
 – The transition intensities might be related to covariates.
 – The Markov model implies independent and exponentially distributed waiting times.
Human Sleep Data

- Human sleep can be considered an example of a recurrent event type multi-state model.

- State Space:

 - Awake Phases of wakefulness
 - REM Rapid eye movement phase (dream phase)
 - Non-REM Non-REM phases (may be further differentiated)

- Aims of sleep research:
 - Describe the dynamics underlying the human sleep process.
 - Analyse associations between the sleep process and nocturnal hormonal secretion.
 - (Compare the sleep process of healthy and diseased persons.)
Bayesian Semiparametric Multi-State Models
• **Data generation:**
 – Sleep recording based on electroencephalographic (EEG) measures every 30 seconds (afterwards classified into the three sleep stages).
 – Measurement of hormonal secretion based on blood samples taken every 10 minutes.
 – A training night familiarises the participants of the study with the experimental environment.

⇒ Sleep processes of 70 participants.

• Simple parametric approaches are not appropriate in this application due to
 – Changing dynamics of human sleep over night.
 – The time-varying influence of the hormonal concentration on the transition intensities.
 – Unobserved heterogeneity.

⇒ Model transition intensities nonparametrically.
To reduce complexity, we consider a simplified transition space:

- \(\lambda_{AS}(t) \) from Awake to Non-REM
- \(\lambda_{SA}(t) \) from Non-REM to Awake
- \(\lambda_{NR}(t) \) from Non-REM to REM
- \(\lambda_{RN}(t) \) from REM to Non-REM

Here, 'Awake' and 'Sleep' are the overall states, with 'Non-REM' and 'REM' representing sub-states within the sleep cycle.
• Model specification:

\[
\begin{align*}
\lambda_{AS,i}(t) & = \exp\left[\gamma_0^{(AS)}(t) + b_i^{(AS)}\right] \\
\lambda_{SA,i}(t) & = \exp\left[\gamma_0^{(SA)}(t) + b_i^{(SA)}\right] \\
\lambda_{NR,i}(t) & = \exp\left[\gamma_0^{(NR)}(t) + c_i(t)\gamma_1^{(NR)}(t) + b_i^{(NR)}\right] \\
\lambda_{RN,i}(t) & = \exp\left[\gamma_0^{(RN)}(t) + c_i(t)\gamma_1^{(RN)}(t) + b_i^{(RN)}\right]
\end{align*}
\]

where

\[
c_i(t) = \begin{cases}
1 & \text{cortisol} \geq 60 \text{ n mol/l at time } t \\
0 & \text{cortisol} \leq 60 \text{ n mol/l at time } t,
\end{cases}
\]

\[
b_i^{(j)} \sim N(0, \tau_j^2) = \text{transition- and individual-specific frailty terms.}
\]
• Penalised splines for the baselines and time-varying effects:
 – Approximate $\gamma(t)$ by a weighted sum of B-spline basis functions
 \[
 \gamma(t) = \sum_j \xi_j B_j(t).
 \]
 – Employ a large number of basis functions to enable flexibility.
 – Penalise k-th order differences between parameters of adjacent basis functions to ensure smoothness:
 \[
 Pen(\xi|\tau^2) = \frac{1}{2\tau^2} \sum_j (\Delta_k \xi_j)^2.
 \]
 – Bayesian interpretation: Assume a k-th order random walk prior for ξ_j, e.g.
 \[
 \xi_j = 2\xi_{j-1} - \xi_{j-2} + u_j, \quad u_j \sim N(0, \tau^2) \quad \text{(RW2)}.
 \]
 – This yields the prior distribution:
 \[
 p(\xi|\tau^2) \propto \exp \left(-\frac{1}{2\tau^2} \xi' K \xi \right).
 \]
A multi-state model with k different types of transitions can be equivalently expressed in terms of k counting processes $N_h(t)$, $h = 1, \ldots, k$ counting these transitions.
• From the counting process representation we can derive the likelihood contributions for individual i:

$$l_i = \sum_{h=1}^{k} \left[\int_0^{T_i} \log(\lambda_{hi}(t)) dN_{hi}(t) - \int_0^{T_i} \lambda_{hi}(t) Y_{hi}(t) dt \right]$$

$$= \sum_{j=1}^{n_i} \sum_{h=1}^{k} \left[\delta_{hi}(t_{ij}) \log(\lambda_{hi}(t_{ij})) - Y_{hi}(t_{ij}) \int_{t_{i,j-1}}^{t_{ij}} \lambda_{hi}(t) dt \right].$$

k number of possible transitions.

$N_{hi}(t)$ counting process for type h event and individual i.

$Y_{hi}(t)$ at risk indicator for type h event and individual i.

t_{ij} event times of individual i.

n_i number of events for individual i.

$\delta_{hi}(t_{ij})$ transition indicator for type h transition.
The counting process representation also provides a possibility for model validation based on martingale residuals.

Every counting process is a submartingale and can therefore (Doob-Meyer-) decomposed as

\[N_{hi}(t) = A_{hi}(t) + M_{hi}(t) \]
\[= \int_0^t \lambda_{hi}(t)Y_{hi}(t)du + M_{hi}(t), \]

where \(M_{hi}(t) \) is a martingale and \(A_{hi}(t) \) is the (predictable) compensator process of \(N_{hi}(t) \).

The martingales \(M_{hi}(t) \) can be interpreted as continuous-time residuals.

Plots of \(M_{hi}(t) \) against \(t \) can be used to compare models, evaluate the model fit, etc.
Bayesian Inference

• In principle, a multi-state model consists of several duration time models

 ⇒ Adopt methodology developed for nonparametric hazard regression.

• Fully Bayesian inference based on Markov Chain Monte Carlo simulation techniques (Hennerfeind, Brezger & Fahrmeir, 2006):
 - Assign inverse gamma priors to the variance and smoothing parameters.
 - Metropolis-Hastings update for the regression coefficients (based on IWLS-proposals).
 - Gibbs sampler for the variances (inverse gamma with updated parameters).
 - Efficient algorithms make use of the sparse matrix structure of the matrices involved.
• Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006):
 – Consider the variances and smoothing parameters as unknown constants to be estimated by mixed model methodology.
 – Problem: The P-spline priors are partially improper.
 – Mixed model representation: Decompose the vector of regression coefficients as

\[\xi = X\beta + Zb, \]

where

\[p(\beta) \propto \text{const} \quad \text{and} \quad b \sim N(0, \tau^2 I). \]

\[\Rightarrow \beta \text{ is a fixed effect and } b \text{ is an i.i.d. random effect.} \]

– Penalised likelihood estimation of the regression coefficients in the mixed model (posterior modes).

– Marginal likelihood estimation of the variance and smoothing parameters (Laplace approximation).
Software

• Implemented in BayesX.

• Public domain software package for Bayesian inference in geoadditive and related models.

• Available from

 http://www.stat.uni-muenchen.de/~bayesx
• Baseline effects I:

![Graphs showing awake -> sleep and sleep -> awake transitions for mixed model and MCMC methods.](image-url)
• Baseline effects II:

Non-REM → REM (mixed model)

Non-REM → REM (MCMC)

REM → Non-REM (mixed model)

REM → Non-REM (MCMC)
Time-varying effects for a high level of cortisol:
• The fully Bayesian approach detects individual-specific variation for all transitions.

• The empirical Bayes approach only detects individual-specific variation for the transition between REM and Non-REM.
Martingale residuals REM \Rightarrow Non-REM

Markov Model

Mixed Model

MCMC

Bayesian Semiparametric Multi-State Models
Things to remember.

• Computationally feasible semiparametric approach for the analysis of multi-state models.

• Fully Bayesian and empirical Bayes inference.

• Model validation based on martingale residuals.

• Directly extendable to more complicated models including
 – Nonparametric effects of continuous covariates.
 – Spatial effects.
 – Interaction surfaces and varying coefficients.

• Future work:
 – Application to larger data sets and different types of multi-state models.
 – Consider coarsened observations, i.e. interval censored multi-state data.
References

- A place called home:

 http://www.stat.uni-muenchen.de/~kneib