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What is BayesX?

• The software BayesX provides powerful regression tools for analysing

structured additive regression (STAR) and survival models. STAR

models cover a number of well known model classes as special cases,

e.g. generalised additive models, generalised additive mixed models,

geoadditive models, dynamic models, varying coefficient models, and

geographically weighted regression.

• BayesX supports both full Bayesian inference based on Markov chain

Monte Carlo simulation techniques and empirical Bayes inference based

on a mixed model representation of STAR models.

• In its current form, BayesX runs only under the various versions of the

Windows operating system. A Linux version and an interface to R are

work in progress.

• Contributions by Christiane Belitz, Eva–Maria Fronk, Andrea

Hennerfeind, Manuela Hummel, Alexander Jerak, Petra Kragler and

Leyre Osuna Echavarŕıa.

Bayesian structured additive regression

• Structured additive regression extends and unifies several additive and

geoadditive regression approaches.

• For exponential family models, a structured additive predictor is of the

form

ηi = f1(νi1) + . . . + fp(νip) + u′

iγ,

where the νj are generic covariates of different type and dimension, and

the fj are (not necessarily smooth) functions of the covariates.

• Supported model terms include:

– Penalised splines and random walk priors for nonparametric effects

f(x) of continuous covariates x or time trends f(t).

– Bivariate tensor product penalised splines for interaction surfaces

f(x, z).

– Varying coefficient terms with continuous and spatial effect modifiers.

– State space models for time-varying seasonal patterns f(t).

– Random intercepts and random slopes.

– (Intrinsic) Markov random field priors for spatial effects fspat(s) based

on regional data s ∈ {1, . . . , S}.

– Stationary Gaussian random field priors for spatial effects fspat(s)

based on point-referenced data s = (sx, sy).

• Supported univariate response distributions:

– Gaussian responses with identity link.

– Binary responses with logit, probit and complementary log-log link.

– Poisson responses with log-link.

– Gamma responses with log-link.

– Negative Binomial responses with log-link.

• Extensions for categorical regression models:

– Multinomial logit (and probit) models for unordered responses:

P (Y = r) =
exp(η(r))

1 +
∑k−1

s=1 exp(η(s))
.

η(r) = u′α(r) + w̄(r)′δ +
l
∑

j=1

f
(r)
j (νj) +

p
∑

j=l+1

f̄j(ν
(r)
j ).

– Global covariates with category-specific effects.

– Category-specific covariates with global effects.

– Cumulative and sequential logit and probit models for ordered

responses:

η(r) = θ(r) − u′α − w′δ(r) −
l
∑

j=1

fj(νj) −

p
∑

j=l+1

f
(r)
j (νj).

– Global effects and category-specific effects.

– In ordinal models, category-specific effects induce complicated

constraints.

• Extensions for the analysis of survival times:

– Joint estimation of covariate effects and baseline hazard rate.

– Time-varying effects g(t)x of covariates x.

– Inclusion of (piecewise constant) time-varying covariates.

– Left, right and interval censoring as well as left truncation.

Inference

• All effects can be subsumed in a unified framework.

• Each model term is associated with a vector of regression coefficients ξj

with a multivariate Gaussian, partially improper prior

p(ξj|τ
2
j ) ∝ exp

(

−
1

2τ2
j

ξ′jKjξj

)

.

• The precision matrix Kj acts as a penalty matrix and the variance τ 2
j

represents the smoothing parameter.

• Inference can be performed either fully Bayesian based on MCMC or

empirically Bayesian based on a mixed model representation.

• Key features of fully Bayesian inference:

– Additional inverse Gamma priors are assigned to the variance

parameters τ2
j .

– The precision matrix Kj is usually sparse. Sparse matrix computations

can be used for the construction of efficient updating schemes.

– Update parameters of one term in a block based on iteratively

weighted least squares proposals derived from generalised additive

model backfitting equations.

– Data augmentation in models with underlying latent Gaussian variables

allows for Gibbs sampling in binary and categorical probit models.

• Key features of empirical Bayes inference:

– Consider variance parameters as unknown constants and estimate them

based on their marginal posterior.

– Mixed model methodology can be used to do this: Split the partially

improper prior for ξj in two parts with proper and improper prior

density. The resulting model can be interpreted as a mixed model.

– Marginal likelihood / Restricted maximum likelihood estimates for the

variances can be derived from standard mixed model algorithms. This

usually involves a Laplace approximation to the marginal posterior.

Example: Leukemia survival data

• Survival time of adults after diagnosis of acute myeloid leukemia.

• 1,043 cases diagnosed between 1982 and 1998 in Northwest England.

• 16 % (right) censored.

• Continuous and categorical covariates:

age age at diagnosis,

wbc white blood cell count at diagnosis,

sex sex of the patient,

tpi Townsend deprivation index.

• Spatial information in different resolution.

• Suitable model for the hazard rate:

λ(t; ·) = exp[f0(t) + f1(age) + f2(wbc) + f3(tpi) + fspat(si) + γ1sex]

where

– f0(t) = log(λ0(t)) is the log-baseline-hazard,

– f1, f2, f3 are nonparametric functions of age, white blood cell count

and deprivation, and

– fspat is a spatial function.

• Results for the spatial effect:

-0.31 0 0.24

District-level analysis

−0.44 0.3

Individual-level analysis

• Results for the nonparametric effects:
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(c) effect of white blood cell count
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(d) effect of townsend deprivation index

Further information

• Download and further information:

http://www.stat.uni-muenchen.de/ bayesx

• Contact:

bayesx@stat.uni-muenchen.de
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