Aufgabenblatt 11

(33/34) Die Gleichung vom Grad 3.

Sei K ein Körper, dessen Charakteristik nicht 2 oder 3 ist. Zeigen Sie:

(a) Eine geeignete lineare Substitution führt ein gegebenes Polynom vom Grad 3 in eine reduzierte Form $f = x^3 + px + q \in K[x]$ über.

Seien ab jetzt $f = x^3 + px + q \in K[x]$, L ein Zerfällungskörper von f über K und $G = \mathsf{Aut}_K(L)$.

- (b) Ist f unzerlegbar, so hat f paarweise verschiedene Nullstellen in L.
- (c) $[L:K] \in \{1,2,3,6\}$ und alle Werte kommen vor, wenn man K und f geeignet wählt.
- (d) Wenn [L:K] = 6, dann ist $G \cong S_3$.
- (e) Ist f unzerlegbar und sind $\alpha_1, \alpha_2, \alpha_3$ die Nullstellen von f, ist außerdem

$$\delta := (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)(\alpha_1 - \alpha_3)$$

und $\Delta := \delta^2$, die sogenannte **Diskriminante** von f über K, dann gilt: $\Delta = -4p^3 - 27q^2$. Insbesondere ist $\Delta \in K$.

[Bemerkung: Dies ist z. B. mit "Maple" leicht nachzurechnen oder man studiert etwa bei Jacobson: Basic Algebra I p. 249 ff. Beachte: $\alpha_1 + \alpha_2 + \alpha_3 = 0$.]

- (f) Ist $\delta \in K$, so sind ungerade Permutationen von $\{\alpha_1, \alpha_2, \alpha_3\}$ durch die Automorphismen von G nicht zu bewerkstelligen.
- (g) Ist f unzerlegbar, dann gilt: $[L:K] = 3 \Leftrightarrow \delta \in K$ bzw: $[L:K] = 6 \Leftrightarrow \delta \notin K$.
- (h) Bestimme [L:K] und G für das Polynom $g=x^3-3x^2+2x+1$ und $K=\mathbb{Q},\ K=\mathbb{Z}_5$ und K= Körper mit 25 Elementen.

(35) Eine Korrespondenz zweier Verbände aus der linearen Algebra.

Sei K ein Körper, $\mathsf{Char}(K) \neq 2$, $n \in \mathbb{N}_+, \mathcal{V} := \{V : V \text{ Untervektorraum von } K^n\}$, G = GL(n;K) und $\mathcal{U} = \{U : U \text{ Untergruppe von } G\}$. Zu $V \in \mathcal{V}$ sei $V' := \mathsf{Aut}_V(K^n) := \{P \in G : Pv = v \text{ für alle } v \in V\}$ und zu $U \in \mathcal{U}$ sei $U' := \mathsf{Fix}_U(K^n) := \{v \in K^n : Pv = v \text{ für alle } P \in U\}$. Zeigen Sie:

- (a) $V' \in \mathcal{U}$ und $U' \in \mathcal{V}$.
- **(b)** V' = V''', U' = U'''
- (c) V = V'', aber i.A. nicht U = U''
- (d) $U' = \{0\}$, wenn U ein Normalteiler $\neq < 1 >$ in G ist.

Anders als in der Galois-Theorie, passen hier die Verbände $\mathcal U$ und $\mathcal V$ nicht so gut zusammen. Bessere Informationen über die Struktur von G können z.B. im Kapitel 6 der Basic Algebra von Nathan Jacobson gefunden werden.