Aufgabenblatt 8

(22) Unterringe von \mathbb{Q} . Sei U ein von \mathbb{Z} verschiedener Unterring von \mathbb{Q} . Bestimmen Sie ein multiplikatives Untermonoid N von \mathbb{N}_+ derart, dass

$$U = \{z \cdot n^{-1} : z \in \mathbb{Z}, n \in N\}.$$

Anleitung: Betrachten Sie die Menge P der Primzahlen, die in U invertierbar sind und das davon erzeugte Untermonoid N in \mathbb{N}_+ . Zeigen Sie dann: $U \subseteq U'$ und $U' \subseteq U$. Dabei hilft eine geeignete Bézoutidentität, z.B.: zz' + mm' = 1 impliziert (warum ?) $p \in P$, falls $zm^{-1} \in U$ und p Primteiler von m.

Alternative: $N:=\{m\in\mathbb{N}_+:\ \exists z\in\mathbb{Z}:zm^{-1}\in U\ \mathrm{und}\ \mathrm{ggT}(z,m)=1\};\ \mathrm{ist}\ N\ \mathrm{ein}\ \mathrm{Untermonoid?}$

(23) Weitere "Absolutbeträge" auf Q. Sei p eine Primzahl und seien $a, b \in \mathbb{Z}, b \neq 0$. Wir setzen fest

$$|0|_p := 0$$
 und $\left|\frac{a}{b}\right|_p := \left(\frac{1}{p}\right)^{v_p(a) - v_p(b)}$

Zeigen Sie:

(a)
$$\left| \frac{a}{b} \right|_p = \left| \frac{a'}{b'} \right|_p$$
, wenn $a', b' \in \mathbb{Z}$ und $\frac{a}{b} = \frac{a'}{b'}$.

- (b) | |_p ist ein Absolutbetrag auf \mathbb{Q} , d.h. für $q,q_1,q_2\in\mathbb{Q}$ gelten die folgenden Regeln:
 - (i) $|q|_{p} \ge 0$
 - (ii) $|q_1 \cdot q_2|_p = |q_1|_p \cdot |q_2|_p$
 - (iii) $|q_1 + q_2|_p \le |q_1|_p + |q_2|_p$

Außerdem gilt folgende Verschärfung von (iii):

$$\mathrm{(iv)}\mid q_{1}+q_{2}\mid_{p}\leq \max\left(\mid q_{1}\mid_{p},\mid q_{2}\mid_{p}\right)$$

(c) Geben Sie ein Beispiel einer | p-Nullfolge rationaler Zahlen $(q_k)_{k\geq 0}$ an mit $q_k\neq q_{k+1}$ für $k\geq 0$.

Bemerkung: Analysis bezüglich | \mid_p heißt p-adische Analysis. So wie die reellen Zahlen aus den rationalen Zahlen als Körper der Grenzwerte von Cauchyfolgen bezüglich des üblichen Absolutbetrages hervorgehen, gehen auch die p-adischen Körper \mathbb{Q}_p aus \mathbb{Q} hervor, aber jeweils bezüglich | \mid_p . Die Elemente von \mathbb{Q}_p heißen p-adische Zahlen.

(24) Sei \mathcal{A} der Ring der reellen analytischen Funktionen¹ ($\mathbb{R} \to \mathbb{R}$) und \mathcal{H} die Menge der Hauptideale in \mathcal{A} . Zeigen Sie: \mathcal{H} ist nicht Noether'sch.

Anleitung: Zu $f,g\in\mathcal{A}$ seien N_f,N_g die Nullstellenmengen. Es gilt: $f|g\Rightarrow N_f\subseteq N_g$ und es gibt $f_k\in\mathcal{A}$ mit $N_{f_k}=2^k\mathbb{Z}$. Benutzen Sie außerdem für $f,g\in\mathcal{A}\setminus\{0\}$:

 $\left[\forall \alpha \in \mathbb{R} : \mu_{\alpha}(f) \leq \mu_{\alpha}(g)\right] \Rightarrow f \mid g \text{ in } \mathcal{A}.$ Dabei ist $\mu_{\alpha}(f)$ die Vielfachheit der Nullstelle α von f.

.....

 $^{^{1}}$ In der Funktionentheorie lässt sich nachweisen, dass \mathcal{A} nullteilerfrei ist. Auf Grund der Aufgabe ist \mathcal{A} nicht faktoriell. Lässt man allerdings konvergente unendliche Produkte zu, gibt es auf Grund des Weierstraß'schen Produktsatzes (http://mathworld.wolfram.com/WeierstrassProductTheorem.html) dennoch i.W. eindeutige Zerlegungen in unendliche Produkte von Primelementen.