Modul Geometrie Wintersemester 2010/11 Schmale

8. November 2010

Aufgaben

(5) (a) Bestimmen Sie mit den Methoden aus $\S 4$ eine lineare Gleichung und die eindeutig bestimmte Normalenform nach Satz 4.12 für die folgende Hyperebene H in \mathbb{R}^4 :

$$H = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} + \langle \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \rangle_{\mathbb{R}} .$$

(b) Bestimmen Sie mit den Methoden aus §4 Gleichungen zweier Hyperebenen H_1, H_2 in \mathbb{R}^4 derart, dass

$$H_1 \cap H_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} + \langle \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \rangle_{\mathbb{R}}.$$

(6) Seien Γ und Δ affine Unterräume in \mathbb{R}^n (oder in einem K-Vektorraum) und

$$M_{\Gamma,\Delta} := \left\{ \lambda a + \mu b : \ a \in \Gamma, b \in \Delta, \lambda, \mu \in K, \lambda + \mu = 1 \right\} \,.$$

Was bedeutet die Konstruktion der Menge $M_{\Gamma,\Delta}$ anschaulich? Es stellt sich die Frage, ob $M_{\Gamma,\Delta}$ ein affiner Unterraum, bzw. unter welchen Bedingungen $M_{\Gamma,\Delta}$ ein affiner Unterraum ist. Untersuchen Sie dies⁽⁴⁾ im Sonderfall von zwei Geraden Γ und Δ , zuerst in \mathbb{R}^3 und dann in in \mathbb{R}^4 .

^{.....}

⁽⁴⁾ Damit ist gemeint, dass Sie entweder zeigen, dass sich stets ein affiner Unterraum ergibt oder dass Sie ggf. diejenigen Fälle genau benennen, in denen sich kein affiner Unterraum ergibt.