Aufgaben

(7) Eine leicht abgeänderte Aufgabe aus Salzburg:

Für $v \in \mathbb{R}^3$ bezeichne $\langle v \rangle$ den von v aufgespannten Untervektorraum. Seien $M = \{\langle v \rangle: \ v = (v_1, v_2, v_3) \in \mathbb{R}^3, v_3 \neq 0\}$ und

$$\varphi: M \times M \to \mathbb{R}^2, \quad (\langle v \rangle, \langle w \rangle) \mapsto \left(\frac{w_1}{w_3} - \frac{v_1}{v_3}, \frac{w_2}{w_3} - \frac{v_2}{v_3}\right)$$

Zeigen Sie:

- (a) φ ist wohldefiniert.
- (b) $(M, \mathbb{R}^2, \varphi)$ ist ein affiner Raum.
- (8) In \mathbb{Q}^4 seien die affinen Unterräume $\Gamma = a + U, \Delta = b + V$ gegeben mit

$$a = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, U = \langle \begin{bmatrix} 2 \\ 3 \\ 2 \\ 3 \end{bmatrix} \rangle, b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, V = \langle \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \rangle .$$

Bestimmen Sie ein lineares Gleichungssystem, das $\Gamma \vee \Delta$ als Lösungsraum hat und eine affine Basis von $\Gamma \vee \Delta$.