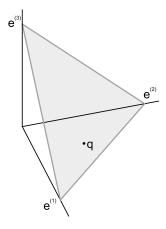
Geometrie – Ausarbeitung der Vorlesung vom 07.12.2009

von Carina Balster und Jonas Sluiter

§3 Beispiel 18



 $q \in \mathcal{C}(e^{(1)},e^{(2)},e^{(3)})$ ist kein innerer Punkt des ganzen Simplex $\mathcal{C}(0,e^{(1)},e^{(2)},e^{(3)})$, aber relativ innerer Punkt nach vorangegangener Definition.

Satz 19: Grundlegende Eigenschaften innerer Punkte

Sei $C \subseteq \mathbb{R}^n$ konvex mit $\overset{\circ}{C} \neq \varnothing$.

- (a) $(p \in C, q \in \overset{\circ}{C}, p \neq q) \Rightarrow]p,q] \subseteq \overset{\circ}{C}.$
- (b) $\overset{\circ}{C}$ ist konvex.
- (c) $\overset{\circ}{C} \subseteq C \subseteq \overline{\overset{\circ}{C}}$

Beweis:

(a) Sei $C \subseteq \mathbb{R}^n$ konvex mit $\overset{\circ}{C} \neq \emptyset$. Weiterhin seien $p \in C, q \in \overset{\circ}{C}, p \neq q \text{ und } \epsilon > 0$ derart, dass $\mathcal{K}_{q,\epsilon} \subset C$. Ohne Einschränkungen ist $p \notin \mathcal{K}_{q,\epsilon}$ und $A := \mathcal{C}(\{p\} \cup \mathcal{K}_{q,\epsilon})$. Auf Grund der Wahl von ϵ ist $A \subseteq C$ wie in Abbildung 1 dargestellt.

Sei nun $y \in]p,q[$, d. h. $y=p+\lambda(q-p)$ mit $0<\lambda<1$, gewählt. Wir zeigen nun $\mathcal{K}_{y,\lambda\epsilon}\subseteq A$.

Für Punkte $z \in \mathcal{K}_{y,\lambda\epsilon}$ wird festgestellt: $||z-y|| \le \lambda\epsilon \Rightarrow \frac{1}{\lambda}||z-y|| \stackrel{\lambda \ge 0}{=} ||\frac{1}{\lambda}(z-y)|| \le \epsilon \Rightarrow q + \frac{1}{\lambda}(z-y) \subseteq \mathcal{K}_{q,\epsilon}$.

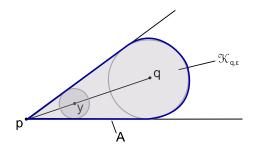


Abbildung 1: Skizze zu Beweis 19(a)

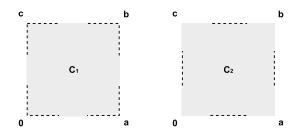
Es ist
$$z = y + (z - y) = p + \lambda(q - p) + (z - y) = (1 - \lambda)p + \lambda(\underbrace{q + \frac{1}{\lambda}(z - y)}_{\in \mathcal{K}_{q,\epsilon}}),$$

also ist $z \in A$, denn dies ist eine Konvexkombination von p und einem weiteren Punkt aus der konvexen Menge A. Damit ist $y \in \mathring{A}$ und insbesondere $y \in \mathring{C}$, woraus direkt $]p,q] \subseteq \mathring{C}$ folgt.

- (b) Wenn $p \in \overset{\circ}{C}$, folgt in (a) für alle $q \in \overset{\circ}{C} : [p,q] \subseteq \overset{\circ}{C}$. $\overset{\circ}{C}$ ist demnach konvex.
- (c) $\overset{\circ}{C} \subseteq C$ ist klar nach Definition von $\overset{\circ}{C}$. Beweis von " $C \subseteq \overset{\overline{\circ}}{C}$ ": Sei $q \in \overset{\circ}{C}$. Für alle $p \in C$ ist nach a) $]p,q] \subseteq \overset{\circ}{C}$ und dann $[p,q] = \overline{]p,q]} \subseteq \overset{\circ}{C}$ und somit $p \in \overset{\circ}{C}$.

Grafisches Beispiel zur möglichen Lage von Randpunkten

Es sind zwei Mengen $\overset{\circ}{C} = \mathcal{C}(0, a, b, c)$ dargestellt, von denen C_1 konvex ist, C_2 jedoch nicht, da die die Verbindungsstrecken der Randpunkte von C_2 nicht in C_2 enthalten sind.

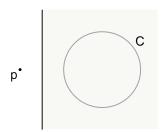


Heuristische Vorüberlegung zur Beschreibung konvexer Mengen mit Halbräumen, bzw. als Lösungsmenge linearer Ungleichungssysteme (Satz 14(c)).

Seien $\emptyset \neq C \neq \mathbb{R}^2$, $p \in \mathbb{R}^2 \setminus C$, C konvex, $C = \overline{C}$ (p liegt nicht auf dem Rand).



Vermutlich gibt es stets eine Gerade, die den Punkt p von der konvexen Menge C trennt.



Satz 20

Konvexe Mengen $\neq \mathbb{R}^n$ müssen in Halbräumen liegen, oder äquivalent ausgedrückt: Die einzige konvexe Menge, die nicht in einem Halbraum liegt, ist \mathbb{R}^n . Stichwort "Trennungssatz", siehe [L] Kap. 3.4.

Beweisidee für \mathbb{R}^2

Der allgemeine Beweis ist knifflig, daher nur hier nur eine Beweisidee für \mathbb{R}^2 mit C=

Sei $p \in \mathbb{R}^2 \setminus C$ und $\mu = \min_{c \in C} \|c - p\|$ der Abstand von p und C. Dieses $\mu \in \mathbb{R}_{\geq 0}$ existiert, da die Funktion $\|c - p\|$ wegen der vorausgesetzten Abgeschlossenheit von C ein Minimum annimmt. Sei ferner $c^* \in C$ mit $\|c^* - p\| = \mu$ und Y die Tangente an $\mathcal{K}_{p,\mu}$ in c^* . Dann ist zu zeigen: $C \subseteq \mathcal{H}_{Y,c^*-p}$.

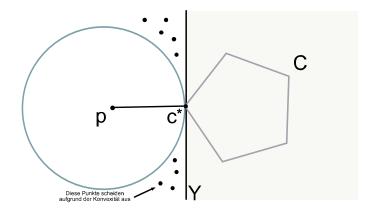


Abbildung 2: Skizze zum Beweis von Satz 20

Mit Satz 20 kommen wir zu dem Hauptergebnis, dem

Hauptsatz 21

Jede konvexe Menge C in \mathbb{R}^n mit $\emptyset \neq C \neq \mathbb{R}^n$ und mit $C = \overline{C}$ ist Durchschnitt von Halbräumen. Es genügen diejenigen, die "berühren". Anschaulich klar ist, dass bei Polytopen endlich viele Halbräume zur Darstellung genügen.

Literatur: [L] (Ziel: Geometrie) und [F] Ziel: Lineare Optimierung

Kapitel 2: Analytische Geometrie in euklidischen Vektorräumen

§4 Wiederholungen und Beispiele

Zunächst eine Klärung ausgewählter Grundbegriffe der Linearen Algebra:

Euklidischer Vektorraum:

Ein euklidischer Vektorraum ist ein \mathbb{R} -Vektorraum mit einem Skalarprodukt.

Standardskalarprodukt:

Das Standardskalarprodukt ist definiert als: $((\cdot, \cdot))$: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ mit ((x, y)) := $\sum_{i=1}^n x_i y_i$ für $x, y \in \mathbb{R}^n$. $((\cdot, \cdot))$ ist bilinear, symmetrisch und positiv definit. Damit

 $^{^1}$ Unter Umständen sind sehr viele nötig, z. B. bei einer Kugel, bei der für jeden Punkt auf dem Rand ein Halbraum nötig ist.

kann für $x, y \in \mathbb{R}^n$ die Länge (bzw. Norm) von x als $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$ und entsprechend der Abstand von x und y als ||x - y|| angegeben werden.

Winkelmessung:

Für $x \neq 0 \neq y$ ist: $\cos(\angle(x,y)) = \frac{((x,y))}{\|x\| \cdot \|y\|}$. Diese Definition des Kosinus wird aus der Cauchy-Schwarz-Ungleichung hergeleitet. Sie lautet: $|((x,y))| \leq \|x\| \cdot \|y\|$, wobei $x,y \in \mathbb{R}^n$

Für $x, y \in \mathbb{R}^n$ ist $x \perp y$ (d. h. x und y liegen senkrecht zueinander), wenn ((x, y)) = 0.

Rechenregel:

Orthogonale und orthonormale Basis:

Eine Basis $v_1, \ldots, v_n \in \mathbb{R}^n$ mit $((v_i, v_j)) = 0$ für $i \neq j$ heißt Orthogonalbasis, d.h. die Basisvektoren sind paarweise orthogonal. Gilt darüber hinaus noch $((v_i, v_i)) = 1$ für $i = 1, \ldots, n$, so nennt man sie eine Orthonormalbasis, d.h. die Basisvektoren sind paarweise orthogonal und normiert. Verfahren zur Berechnung sind aus der Linearen Algebra bekannt.

Orthogonale Komplemente:

Für $M \subseteq \mathbb{R}^n$ Teilmenge ist $M^{\perp} := \{x \in \mathbb{R}^n : \forall y \in M : x \perp y\}$ stets ein Untervektorraum auf Grund der Bilinearität des Skalarproduktes. Dabei gilt: $\langle M \rangle_{\mathbb{R}} \oplus M^{\perp} = \mathbb{R}^n$. Es ist zu beachten, dass bei dem Operator \oplus der Durchschnitt der Argumente $\{0\}$ ergibt.

Schreibweise: $\langle M \rangle \perp M^{\perp}$

Wichtige Regel: $(M^{\perp})^{\perp} = \langle M \rangle_{\mathbb{R}}$, da M nicht unbedingt ein UVR ist. Dabei ist zu beachten: $M^{\perp} = \langle M \rangle^{\perp}$.

Beobachtung 1: Normalenform von affinen Unterräumen

Sei Γ ein aUR von \mathbb{R}^n , etwa $\Gamma = a + U$, mit dim U = r. Sei $c^{(1)}, \ldots, c^{(n-r)}$ Basis von U^{\perp} . Dann ist: $\Gamma = \{x \in \mathbb{R}^n : ((x, c^{(i)})) = ((a, c^{(i)})), 1 \le i \le n - r\}$

Beweis:

Für
$$x \in \mathbb{R}^n$$
 gilt: (für $1 \le i \le n - r : ((x, c^{(i)})) = ((a, c^{(i)}))$) \Leftrightarrow (für $1 \le i \le n - r : (x - a) \perp c^{(i)}$) \Leftrightarrow $(x - a) \perp U^{\perp} \Leftrightarrow (x - a) \in U^{\perp \perp} \overset{U = U^{\perp \perp}}{\Leftrightarrow} (x - a) \in U \Leftrightarrow x \in \Gamma$