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Abstract Resource competition in heterogeneous en-
vironments is still an unresolved problem of theoretical
ecology. In this article, I analyze competition between
two phytoplankton species in a deep water column,
where the distributions of main resources (light and
a limiting nutrient) have opposing gradients and co-
limitation by both resources causes a deep biomass
maximum. Assuming that the species have a trade-
off in resource requirements and the water column is
weakly mixed, I apply the invasion threshold analysis
(Ryabov and Blasius, Ecol Lett 14:220–228, 2011) to
determine relations between environmental conditions
and phytoplankton composition. Although species de-
plete resources in the interior of the water column, the
resource levels at the bottom and surface remain high.
As a result, the slope of resources gradients becomes a
new crucial factor which, rather than the local resource
values, determines the outcome of competition. The
value of resource gradients nonlinearly depend on the
density of consumers. This leads to complex relation-
ships between environmental parameters and species
composition. In particular, it is shown that an increase
of both the incident light intensity or bottom nutrient
concentrations favors the best light competitors, while
an increase of the turbulent mixing or background
turbidity favors the best nutrient competitors. These
results might be important for prediction of species
composition in deep ocean.
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Introduction

Primary production forms the basis of metabolic ac-
tivity of the ocean. Distinct phytoplankton groups
contribute differently in the sequestration of CO2

(Frankignoulle et al. 1994; Smetacek 1999), production
of oxygen (Falkowski and Isozaki 2008), support of
marine food webs (Christoffersen 1996), etc. A shift in
the species composition may dramatically affect func-
tioning of the whole ecosystem (Walther et al. 2002;
Cermeño et al. 2008; Paerl and Huisman 2009). How-
ever, in spite of the principal role of resource com-
petition in the community structuring, the conditions
of coexistence and competitive exclusion in spatially
variable environments still remain largely unknown.

The classical theory, advanced by MacArthur (1972),
León and Tumpson (1975), and Tilman (1980, 1982),
analyzes resource competition in uniform environ-
ments and shows that stationary coexistence of two
species on two resources is possible only if growth
of each species is finally restricted by its most limit-
ing resource. The same results hold for competition
in a mixed water column where light exponentially
decreases with depth (Huisman and Weissing 1995;
Diehl 2002). However, in weakly mixed systems, these
conditions may not be met. Competitors can be simul-
taneously limited by two or more resources, if their fa-
vorable habitats are surrounded by areas lacking these
resources.

For instance, in deep oligotrophic aquatic sys-
tems, the light intensity reduces with depth, whereas
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concentrations of nutrients typically have opposing
gradients. As a consequence, species with distinct re-
source requirements can have maxima of production
at different depths, which potentially decreases niche
overlaps and increases biodiversity (Chesson 1990,
2000). However, a general extension of the competition
theory to continuous spatially variable habitats leads
to difficult mathematical problems (Grover 1997) and
was addressed mainly in the mathematical literature
(Hsu and Waltman 1993). The analysis of this problem
from the ecological point of view (Huisman et al. 1999;
Yoshiyama et al. 2009; Dutkiewicz et al. 2009; Ryabov
et al. 2010; Ryabov and Blasius 2011) is still far from
complete, and further research which would connect
results for uniform and spatially variable systems is
required.

In this article, I analyze competition between two
phytoplankton species in a deep weakly mixed wa-
ter column, assuming that limitation by light in deep
layers and limitation by nutrients at shallow depths
cause deep chlorophyll or biomass maxima (Holm-
Hansen and Hewes 2004; Kononen et al. 2003), which
are a wide spread phenomenon in oligotrophic basins
(Abbott et al. 1984; Karl and Letelier 2008). The loca-
tion of a favorable layer in such systems is not fixed;
rather, it depends on initial and boundary conditions,
the stage of the relaxation process, etc. (Klausmeier
and Litchman 2001; Yoshiyama and Nakajima 2002;
Ryabov et al. 2010). Furthermore, a species, establish-
ing at a certain depth, changes resource distributions
and may affect all other species throughout the water
column. Thereby, this species acts as an ecosystem
engineer, modifying its nutrient and light environment.

For the analysis of competition in such a system,
Ryabov and Blasius (2011) recently introduced the no-
tion of an invasion threshold, defined as a line (in case
of two limiting resources) or a hypersurface (in general)
in space of resource requirements, which separates the
species that can grow in the presence of a resident
species from those that cannot grow. The form and
location of invasion thresholds depend on the charac-
teristics of competitors as well as on the environmental
conditions. The investigation of these dependences in
the phytoplankton model reveals conditions that fa-
vor different competitors and can explain shifts in the
species composition caused by environmental changes.

Model

Competition between two phytoplankton species for
light and a limiting nutrient (e.g., nitrogen or phospho-
rus) in a water column can be modeled in terms of

a nonlocal system of coupled reaction–diffusion equa-
tions (Radach and Maier-Reimer 1975; Jamart et al.
1977; Klausmeier and Litchman 2001; Huisman et al.
2006)

∂ Pi

∂t
= μi(N, I)Pi − mi Pi + D

∂2 Pi

∂z2
, (1)

∂ N
∂t

= −
n∑

i=1

αiμi(N, I)Pi + D
∂2 N
∂z2

, (2)

where Pi(z, t) is the population density of the phyto-
plankton species i at depth z and time t, μi(I, N) is
the growth rate, which depends on the local values of
the light intensity, I(z, t), and nutrient concentration,
N(z, t), mi is the mortality rate, D is the turbulent
diffusivity, and αi is the nutrient content of a phyto-
plankton cell.

The light intensity decreases with depth owing to
the absorption of light by water and phytoplankton
biomass (Kirk 1994)

I(z) = Iin exp

[
−Kbgz −

∫ z

0

n∑

i=1

ki Pi(ξ, t)dξ

]
, (3)

where Iin is the intensity of incident light, Kbg is the
water turbidity, and ki is the attenuation coefficient of
phytoplankton cells.

Assume that both resources are essential (von
Liebig’s law of minimum) and the resource limitation
of growth can be parametrized by the Monod kinetics
(Turpin 1988), then the growth rate of species i follows

μi(N, I) = μmax,i min

{
N

HN,i + N
,

I
HI,i + I

}
, (4)

where μmax,i is the maximal growth rate and HN,i and
HI,i are the half-saturation constants, which define the
species resource requirements.

The phytoplankton cells cannot diffuse across the
surface and bottom of the water column

∂ P(z, t)
∂z

∣∣∣∣
z=0

= 0 ,
∂ P(z, t)

∂z

∣∣∣∣
z=ZB

= 0 .

The surface is also impenetrable for the nutrient, and
the nutrient concentration at the bottom is constant

∂ N(z, t)
∂z

∣∣∣∣
z=0

= 0 , N(ZB) = NB .

Figure 1 shows typical equilibrium resource and bio-
mass distributions in this model. The yellow-shaded
area indicates the production layer where both re-
sources are available and the growth rate excesses mor-
tality, μ(N, I) > m. In a non-uniform system, the total
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Fig. 1 a Distributions of the nutrient concentration (black), light
intensity (gray), and phytoplankton biomass (green) in the model
Eqs. 1–4. b Distributions of the nutrient and light (solid lines)
and exponential fitting (dashed lines) according to Eqs. 7 and 8
plotted in the logarithmic scale. The yellow-shaded area is the
production layer, where the growth rate excesses mortality since
N > N∗ and I > I∗. c Zero net growth isoclines of species 1

and species 2 (green and red dashed lines, respectively); invasion
threshold (blue lines) in the presence of species 1 as the resident
under the conditions listed in Table 1. The blue solid line was
calculated numerically, by test of more than 5,000 invaders with
different half-saturation constants; the blue dashed line is a first-
order approximation with slope γ1 = cI,1/cN,1 in the log–log scale
(Eq. 15)

Table 1 Parameters values
and their meaning

Symbol Interpretation Units Value

Independent variables
t Time h −
z Depth m −

Dependent variables
P(z, t) Population density cells m−3

I(z, t) Light intensity μmol photons m−2 s−1

N(z, t) Nutrient concentration mmol nutrient m−3

Parameters
Iin Incident light intensity μmol photons m−2 s−1 600 (100–1,000)
Kbg Background turbidity m−1 0.1
ZB Depth of the water column m 100
NB Nutrient concentration at ZB mmol nutrient m−3 2 (0.1–10)
D Vertical turbulent diffusivity cm2 s−1 0.3 (0.02–5)
μmax Maximum specific growth rate h−1 0.04
m Specific loss rate h−1 0.01

Species 1—best nutrient competitor
HI,1 Half-saturation constant, light μmol photons m−2 s−1 20

limitation
HN,1 Half-saturation constant, nutrient mmol nutrient m−3 0.04

limitation
α1 Nutrient content of phytoplankton mmol nutrient cell−1 8 ×10−10

k1 Absorption coefficient of a m2 cell−1 6 × 10−10

phytoplankton cell
Species 2—best light competitor

HI,2 Half-saturation, light limitation μmol photons m−2 s−1 15
HN,2 Half-saturation constant nutrient mmol nutrient m−3 0.065

limitation
α2 Nutrient content of phytoplankton mmol nutrient cell−1 5 ×10−10

k2 Absorption coefficient of a m2 cell−1 6 × 10−10

phytoplankton cell
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net growth on a favorable area should be large enough
to compensate for losses into adjacent unfavorable
areas (Ryabov and Blasius 2008). Denote the depths,
which confine this area, as zN if N limits species growth
and zI if light limits species growth. The resource avail-
ability reaches at these depths the critical values

N∗
i = mi

μmax,i − mi
HN,i , I∗

i = mi

μmax,i − mi
HI,i , (5)

at which growth equals mortality. The location of the
production layer depends on the critical resource values
and environmental parameters. In the present article,
to focus on the influence of resource gradients, the
parameters are chosen to reproduce deep biomass max-
ima: The production layer is located in deep layers and
the biomass density vanishes at the bottom and surface
(see Table 1 for parameters).

The invasion analysis is applied to determine out-
comes of competition. Initially one species (the resi-
dent) grows alone during a sufficiently long time and
then another species (the invader) can grow from a
small biomass density. Two species coexist if each of
them can invade in the presence of its competitor.
For the given model parameters, the distributions of
biomass and nutrients approach to equilibrium after ap-
proximately 500 simulation days. To make sure that the
resident is at equilibrium, this time interval is increased
up to 2,000 days, after which an invader can grow and
the system is simulated for further 18,000 days to obtain
the final competition outcome.

The initial distribution of nutrients changes linearly
from 0 at the surface to NB at the bottom. The phy-
toplankton species have initially uniform distribution
of small density, P = 100 cells/m3. For the numerical
solution, the partial differential equations were dis-
cretized on a grid of 0.25 m. The resulting system
of ordinary differential equations was solved by the
CVODE package (http://www.netlib.org/ode) using the
backward differentiation method.

Competition in a spatially variable environment

Assume that the competitors trade off in resource re-
quirements: Species 1 is a better nutrient competitor
and species 2 is a better competitor for light (Fig. 1c),
and consider the invasion of species 2, assuming that
species 1 has reached an equilibrium distribution.

Invasion threshold

Although the resident species depletes resources in the
middle of the water column, the light intensity at the

surface and nutrient concentrations at the bottom are
still high (Fig. 1a, b). Due to a difference in resource
requirements, the maximum of production of species 2
can be shifted toward, for instance, the nutrient supply,
and even a strong requirement for high nutrient con-
centrations can be compensated by adaptation to a low
light intensity and vice versa. As a result, the invasion
threshold takes the shape of a curve (the blue solid line
in Fig. 1c is calculated by invasion of approximately
5,000 species with different half-saturation constants).

The shape of invasion thresholds depends on the
resource distribution. However, to find this depen-
dence, we should find the principal eigenvalues corre-
sponding to the boundary problem of Eqs. 1–2 (Hsu
and Waltman 1993; Grover 1997; Ryabov and Blasius
2011), which can be solved in general only numerically
(Troost et al. 2005). However, a simple analysis can
be performed for competitors with close resource re-
quirements. Then the maximum production of invaders
occurs in the vicinity of the resident production layer
(Fig. 1c), and it is possible to express the growth rate of
invaders in terms of the growth rate of the resident.

Resource distribution

Due to the diffusion of cells, an essential part of the res-
ident biomass is located outside the production layer.
Consequently, the resources below and above this layer
are depleted to values which are even smaller than
the critical values of the resident N∗

1 and I∗
1 . For in-

stance, the nutrient concentration above the biomass
maximum can be few orders of magnitude smaller than
N∗

1 (Fig.1b). Therefore, the resident species shapes re-
source gradients both within and outside of its produc-
tion layer.

The shape of resource distributions in this area will
play a key role for the further analysis. It is commonly
assumed that the light intensity is exponentially dis-
tributed, while nutrient concentrations can be fitted
by a line (see the gray and black line, respectively, in
Fig. 1a). However, the linear part of the nutrient profile
is typically observed in the deep layers below the bio-
mass maximum, where the light rather than the nutrient
limitation determines species growth. Similarly, above
the production layer, the growth is nutrient limited
and the net growth rate is negative independently of
the shape of the nutrient distribution. The shape of
resource distributions is crucial within the production
layer, where the local net growth rate strongly cor-
relates with local resource availability. As shown in
Fig.1b, in this area, both the light and nutrient distribu-
tions closely follow exponential dependences (straight
dashed lines on the logarithmic scale).

http://www.netlib.org/ode
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The exponential shape of resource distributions is a
crucial point of the following theory. For this reason,
it is important to note that this shape is not just an
artifact of a specific model but it was also found in field
observations. For instance, Karl and Letelier (2008)
clearly demonstrate exponential dependence of nutri-
ent concentrations in the area of nutrient consumption.
The emergence of such distributions can have different
nature. In particular, it is easy to show that it emerges,
when the biomass variation within the production layer
is small.

Suppose that the phytoplankton density can be ap-
proximated by a rectangular distribution with the con-
stant density,

P0 = 1

zI − zN

∫ zI

zN

P(z)dz

within and in the vicinity of the production layer. This
implies a small mortality level outside the production
layer, m � μmax, so that the biomass can diffuse with-
out essential losses. Then, according to Eq. 3, the ab-
solute value of the logarithmic gradient of light inten-
sity is constant and equals

cI = −d ln I(z)

dz
= Kbg + kP0. (6)

Thus, the light distribution can be approximated as

Ĩ(z) = I∗e−cI (z−zI) . (7)

To find the nutrient distribution, note that according
to Eq. 5 in the limit of small mortality, the critical nutri-
ent concentrations are also small, N∗ � HN ; therefore,
the growth rate close to the depth zN can be linearized
as μN(N) ≈ μmax N/HN . Substituting this expression
into Eq. 2, we obtain in equilibrium

−αμmax
N

HN
P0 + D

d2 N
dz2

= 0 .

A solution to this equation that monotonically in-
creases with depth gives the equilibrium nutrient dis-
tribution in the vicinity of the depth zN ,

Ñ(z) = N∗ecN,1 (z−zN) (8)

with the logarithmic gradient

cN = d ln N(z)

dz
=

√
αμmax P0

DHN
. (9)

Thus, in the vicinity of the production layer, both the
light and nutrient distribution have exponential shape,
which implies that the logarithmic resource gradients
have small variations with depth.

Approximate calculation of the invasion thresholds

To gain an insight into the dependence of invasion
thresholds on resource distributions, assume that the
resident (species 1) and invader (species 2) differ only
in their half-saturation constants, HN,i and HI,i, but are
otherwise identical, i.e. μmax,1 = μmax,2, m1 = m2, and
D1 = D2 (see Ryabov and Blasius (2011) for a general
approach).

An invader of small initial density has a vanishing
influence on the resources; therefore, the possibility of
invasion depends only on its growth rate in the resource
distribution shaped by the resident, μ2(Ñ1(z), Ĩ1(z)).
Consider the difference between the nutrient limita-
tions of the resident and invader. The Monod kinetics
can be presented in the form

Ñ1(z)

Ñ1(z) + HN,2
= Ñ1(z)/HN,2

(Ñ1(z)/HN,2) + 1
= μN

(
Ñ1(z)

HN,2

)
,

(10)

which shows that the nutrient limitation of growth, μN ,
depends only on the ratio Ñ1/HN,2.

However, the mathematical identity

ecz

H2
= ec(z−�z)

H1
, where �z = 1

c
ln

H2

H1
, (11)

shows that division of an exponential function by
different constants H1 and H2 is equivalent to a shift �z
in position along the z-axis. Thus, using the exponential
approximation for the nutrient distribution, Eq. 8, we
obtain

Ñ1(z)

HN,2
= Ñ1(z − �zN)

HN,1
, (12)

and the nutrient limitation of invader growth can be
expressed through that of the resident

μN

(
Ñ1(z)

HN,2

)
= μN

(
Ñ1(z − �zN)

HN,1

)
,

where �zN = 1

cN,1
ln

HN,2

HN,1
. (13)

Therefore, the profiles of nutrient limitation of resi-
dent and invader growth have the same shape, but are
shifted by �zN with respect to each other. If HN,2 >

HN,1, i.e., the invader needs higher nutrient concen-
trations, then �zN is positive and the invader nutrient
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limitation profile is shifted downward. Performing the
same calculations for the light limitation, we obtain

μI

(
Ĩ1(z)

HI,2

)
= μI

(
Ĩ1(z − �zI)

HI,1

)
,

where �zI = − 1

cI,1
ln

HI,2

HI,1
. (14)

�zI has the opposite sign because the light intensity
has an inverse gradient. Assuming that the invader is
a better light competitor (HI,2 < HN,1), we obtain that
�zI is positive and the profile of light limitation is
shifted downward (see Fig. 2a).

The values �zI and �zN show changes in the net
growth arising from better adaptation to one or another
resource, and the value � = �zN − �zI defines the
difference in the size of the resident and invader’s
favorable habitats. If boundary effects on biomass dis-
tributions are negligible, then the fate of the invader
species depends solely on the sign of �. Indeed, if
� = 0, then the distinct resource requirements of these
species result in a parallel translation of the growth
rate profile along the z-axis (Fig. 2b). Since the resi-
dent species has zero total growth in equilibrium, the
same holds for the invader and its population cannot

establish. If � > 0, then the invader habitat is even
smaller; consequently, the invader total net growth will
be negative (Fig. 2c). By contrast, if � < 0, the invader
habitat is larger, and it can invade the system because
its total production is positive (Fig. 2d).

According to Eq. 5, when the growth and mortal-
ity rates are equal, the ratio of half-saturation con-
stants equals the ratio of critical resource values (e.g.,
HI,2/HI,1 = I∗

2/I∗
1 ), and the invasibility threshold can

be presented in the form

� = 1

cN,1
ln

N∗
2

N∗
1

+ 1

cI,1
ln

I∗
2

I∗
1

< 0 . (15)

This inequality defines a first-order approximation of
the invasion threshold and has a straightforward geo-
metrical interpretation: Species 2 can invade in the
presence of species 1 if its critical resource values
(N∗

2 , I∗
2 ) lie below a line with slope γ1 = cI,1/cN,1 pass-

ing through the point (N∗
1 , I∗

1 ) in the double logarithmic
resource plane (blue dashed line in Fig. 1c) and the
range of possible invaders is determined by the ratio of
logarithmic resource gradients shaped by the resident.

The value of γ depends on the characteristics of
the resident, and species 2 growing alone will shape

(a) (b) (c) (d)

Fig. 2 Schematic profiles of resource limitation of species
growth, assuming that resource distributions are exponentially
shaped. a If I(z) ∝ e−cI z (gray straight line on a logarithmic
scale), then a difference in half-saturation constants of the species
results in a parallel translation of the Monod function by �zI =
−c−1

I ln
(
HI,2/HI,1

)
along z-axis. In b–d, solid lines show growth

rates of each species, μ(N, I). The limitations of growth by
particular resources, μN(N) and μI(I), are shown as dashed and

dot-dashed lines, respectively, in the regions where they do not
coincide with μ(N, I). The black dashed line shows the mortality
rate, m. b �zI = �zN , parallel translation of the growth rate
profiles, leads to the same total net growth of the species. In
c and d, either �zI < �zN or �zI > �zN and the net total
growth rate of species 2 is either smaller or larger, respectively,
than the total net growth of species 1



Theor Ecol (2012) 5:373–385 379

a distinct resource distribution with different ratio
γ2 = cI,2/cN,2. Without loss of generality, assume that
N∗

2 > N∗
1 and I∗

2 < I∗
1 , and denote by γcr the slope

(taken with opposite sign) of a straight line passing
through the two critical resource points (gray dashed
lines in Fig. 3a–d),

γcr = − ln I∗
2/I∗

1

ln N∗
2/N∗

1

. (16)

Then, combining Eq. 15 and its counterpart for species
2, we obtain the outcomes of spatial resource compe-
tition. If γ1 < γcr < γ2, then both species can invade
the monoculture of each other and can thus coexist
(Fig. 3c). In the opposite case, γ1 > γcr > γ2, none of
the two species can invade, which leads to alternative
stable states (Fig. 3b). Finally, one species dominates if
γ1,2 > γcr or γ1,2 < γcr (Fig. 3a, d).

Consider in detail the conditions of coexistence.
Figure 3c shows that the best nutrient competitor
(species 1, green) should have a relatively shallow
slope (γ1 < γcr) of its invasion threshold; therefore, this
species should shape a resource distribution with a
relatively small gradient of light intensity, cI,1. This will
provide more solar radiation for species 2 (red), which,
owing to its stronger nutrient limitation, has a niche in
deeper layers. At the same time, the invasion threshold
of species 2 should have a steeper slope (γ2 > γcr),
and therefore, cN,2 should be relatively small. In other
words, this species should not diminish the upward
nutrient flux too much. Thus, we obtain a general rule
that for coexistence each species should shape resource
distributions with a relatively smaller gradient of its
most limiting resource.

It is convenient to represent all possible outcomes
of competition in dependence of γ1 and 1/γ2 (Fig. 3e),
which reflect the ability of a resident to shape a stronger

gradient of its less limiting resource and quantify the
dominance of the species over its competitor. Then
coexistence is possible if the mutual dominance of both
species is small, whereas large values of γ1 and 1/γ2 lead
to bistability.

To get another perspective on the role of resource
gradients, consider invasion in the presence of a resi-
dent, which has shaped a large gradient of the nutri-
ent distribution and a small gradient of light intensity,
cN,1 � cI,1. According to Eq. 14, the change in the
area of light limitation, �zI , approaches infinity when
cI,1 → 0; thus, even a small difference in light require-
ment, ln(I∗

2/I∗
1 ) < 0, can lead to a large increase of the

favorable area. Therefore, a better adaptation to this
resource is very efficient. By contrast, a large nutrient
gradient cN,1 makes competition much harder because
the areas of the resident and invader nutrient limitation
will almost coincide (�zN ∝ 1/cN,1 → 0, unless N∗

2 �
N∗

1 or N∗
2 � N∗

1 , see Eq. 13). In the limit case cN,1 →
∞, competition for the nutrient becomes impossible
because the habitat is virtually divided into two parts:
with very low nutrient concentrations (all species are
nutrient limited) and very high concentrations (the nu-
trient limitation plays no role).

The influence of environmental parameters
on the competition outcome

In this section, the invasion threshold analysis is applied
to explain shifts in the species composition predicted by
model Eqs. 1–4. First two examples demonstrate how
changes in the competition outcome can be visualized
as rotation of invasion thresholds and then changes in
the species composition are considered in the (NB, Iin)

and (D, Kbg) planes.

Fig. 3 Left panel
Competition outcome in
dependence of the slope of
invasion thresholds of species
1 (green) and species 2 (red).
The gray dashed line shows
the critical slope, γcr.
a γ1,2 < γcr—species 2 wins,
b γ2 < γcr < γ1—bistability,
c γ1 < γcr < γ2—coexistence,
d γ1,2 > γcr—species 1 wins.
Right panel, e All outcomes
can be represented in
dependence on γ1 and 1/γ2
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Shifts in the species composition with D and NB

Compare changes in the composition of phytoplankton
species, caused by an increase of turbulent mixing, D,
and bottom nutrient concentration, NB. Both these pa-
rameters increase the nutrient availability throughout
the water column. In a homogeneous environment,
higher nutrient concentrations would provide better
conditions for the better light competitor (species 2).
However, surprisingly, in the phytoplankton model,
these changes have opposite effect. While an increase
of NB favors the better light competitor (Fig. 4), an
increase of D favors to the better nutrient competi-
tor (Fig. 5). To explain these differences, consider the
influence of these parameters on the resource gradients
and the slope of invasion thresholds.

More nutrients at the bottom give rise to a larger and
sharper biomass distribution of the resident species,
which in turn yields a steeper gradient of the nutrient
concentration. As a result, with an increase of NB,
the low light adapted species 2 “shades” the nutrient
flux more strongly and hinders invasion of a better
nutrient competitor species 1, which, in consequence

of its light limitation, occupies higher layers. Because a
larger nutrient gradient cN,i leads to smaller values of γi,
this transition can be represented as a counterclockwise
rotation of the invasion thresholds in the resource plane
(the bottom panel in Fig. 4).

By contrast, with an increase of mixing, D, the
biomass distribution becomes wider and the nutrient
gradient decreases (Fig. 5). As a result, more nutrients
become available for species 1, which finally wins the
competition. In the resource plane, this change can
be represented as a clockwise rotation of the invasion
thresholds.

Numerical simulations

The value γ quantifies the likelihood of invasion and
can be used to derive the competition outcome from
the results obtained for each competitor alone. Con-
sider species 1 (the better nutrient competitor) as the
resident. Figure 6a shows the values of arctan γ1 in the
(Iin, NB) plane, which were numerically calculated from
equilibrium resource distributions in the presence of
this species. The intensity of red color decreases with γ1

Fig. 4 Geometrical method
to project the outcome of
spatial resource competition
in dependence of the nutrient
concentration at the bottom,
NB. Top panel: shift in the
competition outcome
between species 1 (green)
and species 2 (red) in the
phytoplankton model caused
by an increase of NB.
Bottom panel illustrates this
shift as the result of a
counterclockwise rotation of
the invasion thresholds. The
slopes, γ1 and γ2, of the
invasion thresholds in the
bottom panel were calculated
numerically for a
monoculture of species
1 and 2
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Fig. 5 The same as in Fig. 4
but in relation to diffusivity.
NB = 2 mmol nutrient m−3
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and characterizes the ability of a better light competi-
tor (species 2) to invade. Contrary, the dominance of
species 1 over species 2 increases with γ . The black line
shows the level γ1 = γcr. In the region to the right of
this line, γ1 < γcr, and therefore, species 2 can invade.
In a similar manner, Fig. 6b shows the slope of the
invasion threshold, arctan γ2, in the presence of species
2 alone. Here, however, the color intensity increases
with γ2 and characterizes more favorable conditions
for a better nutrient competitor. The black line is the
boundary of the range γ2 > γcr, where species 1 can
invade. An intersection of these ranges shows the range
of coexistence, in which γ1 < γcr < γ2 and each species
can invade in the presence of its competitor. Figure 6c
compares this range, based on the one-species modeling
(between black lines), with the range of coexistence
obtained by two-species modeling (the blue area).

This approach can be extended to include other
model parameters. For instance, Fig. 6d, f shows that
an increase of both the turbulent diffusivity, D, and
background turbidity, Kbg increases the slopes of the
invasion thresholds and the competition outcome shifts
from the dominance of species 2 through the range of
coexistence to the dominance of species 1. In this figure
again, the range of species coexistence predicted from

simulation of one-species model (the area between two
black lines in Fig. 6f) is in a good agreement with the
results obtained in two-species model (the blue area).

Discussion

Invasion thresholds

In a uniform system, a species can increase its biomass
if its resource requirements are lower than the present
level of ambient resources (R∗-rule). This rule, how-
ever, has to be generalized for spatially variable envi-
ronments, where, on the one hand, the size of favorable
area becomes a crucial factor and, on the other hand,
the resource heterogeneity provides an opportunity
to compensate a lack of one resource by superfluous
concentrations of another. To extend the competition
theory to nonuniform systems, Ryabov and Blasius
(2011) recently suggested to replace the R∗-rule by
the notion of an invasion threshold, which is defined
as the maximal requirements of successful invaders in
the presences of a resident species in equilibrium. If
the critical values (N∗, I∗) of a species lie below the
threshold, then the species can invade. In a nonuniform
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Fig. 6 Invasion analysis in the phytoplankton model. Top panel
The slope of the invasion thresholds as a function of NB and
Iin numerically calculated for a monoculture of a species 1 and
b species 2. The color intensity changes with arctan γi and char-
acterizes the likelihood of invasion of a better light competitors
(decreases with γ ) and b better nutrient competitors (increases
with γ ). Black lines shows the boundary of the parameter range

where the competitor can invade. c Compares the boundary of
the coexistence range obtained from results for monocultures
(a and b) and from two-species modeling. The color shows the
logarithm of the biomass ratio (log B1/B2) after 20,000 simula-
tion days. Bottom panel The same analysis in dependence on D
and Kbg

environment, the shape of invasion thresholds can be
complex and nonlinear. However, an approximated
technique can be developed for competition between
species with close resource requirements. For these
species, the invasion threshold can be approximated
by a strait line on a double logarithmic scale, and the
slope of this line (determined by the ratio of logarithmic
resource gradients) becomes a critical determinant of
the competition outcome.

The dependence of invasion thresholds on resource
gradients, rather than on the local resource values,
leads to new rules for invasion and coexistence. In
particular, a large value of γ means that the invasion
threshold approaches to a vertical line, which favors to
good nutrient competitors (see Fig. 3). By contrast, if
γ is small, then the invasion thresholds is close to a
horizontal line; therefore, good light competitors are in
more favorable conditions.

This effect alters the mechanism of coexistence. In a
uniform system, two species can coexist if each of them

mostly consumes its most limiting resource and finally
becomes self-limited by this resource. If, however, the
favorable area is bounded by resource availabilities, a
somewhat opposite rule can be formulated: The mono-
culture of each species should shape resource distri-
butions with a relatively smaller gradient of its most
limiting resource. Then each competitor may benefit
from its adaptation to a specific resource. As shown in
(Ryabov and Blasius 2011), for phytoplankton compe-
tition, this difference is even more striking because γ

grows with light attenuation coefficient, k, and decrease
with nutrient content of cells, α. Thus, for coexistence in
deep layers of a water column, a low-light/high-nutrient
adapted species should have a smaller value of α, so
that the nutrient is available also for species in the up-
per layers. Conversely, the species with high-light/low-
nutrient adaptation should have a smaller coefficient k,
thereby minimizing the light shading. Note that similar
correlations between consumption rates and resource
adaptation were recently found in the experimental
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analysis of competition for light and phosphorus (Pas-
sarge et al. 2006).

The dependence of competition outcome on en-
vironmental parameters in the phytoplankton model
also reveals a number of intriguing results and shows
that the intuition based on homogeneous models may
fail in analysis of heterogeneous systems. For instance,
Fig. 6a–c shows that an increase of both the incident
light intensity, Iin, and nutrient concentrations at the
bottom, NB, decreases γ and favors to the best light
competitor (species 2). This is because both factors lead
to a sharper biomass maximum and hence to a steeper
nutrient gradient. Recall that in a uniform system, an
increase of I would always favor to a good nutrient
competitor, while an increase of N would favor to a
good light competitor.

Further, Fig. 6d–f shows that an increase of the water
turbidity, Kbg, or turbulent diffusivity, D, increases γ

and favors to the best nutrient competitor (species 1).
Although leading to the same results, these changes
involve different mechanisms: An increase of Kbg in-
creases the ratio γ = cI/cN via an increase of the light
gradient, cI , whereas an increase of D leads to the
same result because the nutrient gradient cN becomes
smaller.

These results might have important outcomes for
field research. For instance, a decrease of NB or D
decreases the nutrient availability in the water col-
umn, however leads to opposite effects on the com-
petition outcome. Thus, a shift in the species com-
position caused by higher stratification of the ocean
waters can be opposite to that caused by a reduction
of nutrient levels in deep layers. This effect can pos-
sibly explain both positive and negative correlations
between nutrient concentrations and the abundance
of high-light adapted species observed along environ-
mental gradients in the Atlantic Ocean (Johnson et al.
2006).

Model assumptions

To derive the invasibility criterion (Eq. 15), an “ideal”
system was considered. It was assumed that the re-
sources are exponentially distributed, the biomass max-
imum is located in the deep layer, and μmax,1 = μmax,2.
Under these assumptions, the analysis of competition
becomes fairly simple because the invasion threshold
follows a straight line with slope γ in double logarith-
mic space. Now consider a more general situation in
which these assumptions do not hold.

First, if the resource distributions are not exponen-
tially shaped, then the invasion threshold takes the
shape of a curve (blue solid line in Fig. 1c). However,

a tangent line to this curve at the point (N∗
1 , I∗

1 ) is
exactly the linearly approximated invasion threshold
(blue dashed line). Thus, if resources deviate from
exponential distributions, Eq. 15 provides a first-order
approximation which is valid for species with close
resource requirements. The larger the interval where
resources change exponentially, the larger the segment
of the invasion threshold which follows the linear de-
pendence in log–log scale. Often the resource level
changes exponentially for few and more orders of mag-
nitude (Ryabov and Blasius 2011). In this case, the
invasibility criterion Eq. 15 is applicable, if differences
in species half-saturation constants have the same or
smaller order.

Second, it was assumed that the production layers
are confined by the resource availability and located
sufficiently far from the boundaries. The boundaries
affect species distributions and survival conditions. For
instance, an impenetrable boundary is a favorable fac-
tor for species survival because the cell diffusive flux
reflects from the boundary and more cells can re-
turn into the production layer (Cantrell and Cosner
1991). The boundaries also influence the species spatial
segregation. The species, which can occupy different
depths in the deep layers, have to compete locally if
the biomass maximum occurs in the benthic or surface
layer, which strengthens the interspecific interactions.
All these effects have a profound impact on species
composition and can even reverse the outcome of com-
petition, will be published elsewhere.

Third, to focus on the role of resource gradients,
it was assumed that competitors have the same max-
imal growth rates, mortalities, and dispersal. In this
settings, an invasion threshold always passes through
the resident’s (N∗, I∗) values. A more general ap-
proach (Ryabov and Blasius 2011) shows, however,
that if there is any difference in these parameters, then
the invasion threshold can be shifted toward higher or
lower resource requirements. As a result, an invader
with, for instance, higher μmax can invade even if it
has higher requirements of both resources, and two
species can stably coexist via a positive correlation in
the maximal growth rate and resource requirements
(so-called gleaner-opportunist trade-off).

Comparison with other models

There are few approaches suggested to describe phy-
toplankton competition in a water column. These
approached can be classified based on the assumed
intensity of water mixing. Namely, Huisman and Weiss-
ing (1994, 1995) consider competition in well-mixed
systems; by contrast, Yoshiyama et al. (2009) suggest
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an approach for poorly mixed environments; finally,
Ryabov and Blasius (2011) and the present paper com-
plement these studies for the case of moderate mixing.
Compare the main assumptions and outcomes of these
models.

Huisman and Weissing (1994, 1995) performed an
analysis, assuming that the light intensity decays ex-
ponentially, but phytoplankton biomass and nutrients
are uniformly distributed (Fig. 7a). The distributions of
the competitors in this system completely overlap. The
outcome of their competition changes with the ratio
and absolute values of resource supplies. If competitors
trade off in resource requirements, then (similar to
Tilman 1980) the outcome of competition depends on
the resource ratio. If, however, one competitor has a
higher μmax, then this species can benefit both from
light and nutrients. Moreover, even having higher re-
quirements for both resources, this species can win
competition if the resource supplies are high enough.

Yoshiyama et al. (2009) consider competition in a
stratified water column with a uniformly mixed upper
layer and poorly mixed deep layer. For the upper layer,
the approach of Huisman and Weissing is applied; for
the deep layer, it is assumed that the biomass maximum
is infinitely thin (Fig. 7b). According to the last assump-
tion, if species compete in the deep layer, their distri-
butions will never overlap. Thus, this model is more
suitable if traits of two species are sufficiently different.
For such species, the model predicts that in the deep
layer, the resource supplies do not change the outcome

of competition; they rather influence the depth of the
biomass maxima. The outcome of competition changes,
however, if the bulk biomass of at least one of the
competitors occurs in the upper or benthic layer.

The approach of Ryabov and Blasius (2011) consid-
ers competition in the deep layer of a moderately or
poorly mixed water column (Fig. 7c). This approach is
based on the comparison of the growth rate profiles in
the presence of each competitor alone (Fig. 2). Conse-
quently, the analysis does not depend on the biomass
distribution, and the biomass maxima can overlap. Fur-
thermore, this approach reveals a key role of resource
gradients in community structuring.

A single mathematical model cannot present exactly
the dynamics of a complex ecological system. All mod-
els contain some simplifications, and typically, a real
system and model match qualitatively, but not quantita-
tively. In this sense, the invasion thresholds can become
a useful tool of the qualitative analysis. In the model
considered here, the invasion thresholds have a simple
linear shape in a log–log scale. In another model, this
shape can be non-linear or linear, but in another scale.
If, however, this shape and its dependence on system
parameters can be deduced numerically or analytically,
than we can also project shifts in the species composi-
tion for this system. Thus, this analysis can be further
extended for a wide spectrum of spatially heteroge-
neous models, in which other biotic or abiotic factors,
such as gradients of temperature, predation, mortality,
etc., are taken into account.

(a) (b1) (b2) (c)

Fig. 7 Different modeling approaches for competition in a water
column. a Huisman and Weissing (1994, 1995) assume an expo-
nential decay of light and uniform distribution of nutrients and
phytoplankton. The light limitation bounds the production layer
(yellow area). Yoshiyama et al. (2009) assume that b1 within the
UML, the biomass and nutrient are uniformly distributed, and
b2 in the poorly mixed deep layer, the biomass distribution is

infinitely thin. The production layer is bounded by the availability
of light in the UML and by both resources in the deep layer.
c Ryabov and Blasius (2011) assume exponential resource dis-
tributions. The production layer is bounded by the availability of
nutrients (upper boundary) and light (lower boundary) and has
finite thickness. The biomass distribution can have an arbitrary
shape
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