
SUPPORTING INFORMATION

S1. Calculation of the logarithmic resource gradients

In this section we provide analytic estimates for the light and nutrient gradients resulting from a single species

population in the phytoplankton model, eqns 3–6. We calculate resource distributions in the production layer, defined

by the critical depths z∗N and z∗I where either the nutrient or the light intensity reaches a critical value, N(z∗N) = N∗

and I(z∗I ) = I∗ (see dashed lines in Figs. 2b and c). We further assume small mortality m ≪ µmax, so that the

biomass can diffuse from the favorable layer without essential losses and the phytoplankton density has only small

variation within the favorable layer, i.e. P (z) ≈ P0 for z∗N ≤ z ≤ z∗I .

From eqn 6 within the favorable range the logarithmic gradient of the light intensity equals

cI = −
d ln I(z)

dz
= Kbg + kP0, (S1)

and the light distribution can be written

I(z) = I∗ecI(z∗

I
−z) . (S2)

Regarding the nutrient profile we assume that for small mortality the critical nutrient concentrations are small,

N∗ ≪ HN , so that the growth rate close to the critical point N ≈ N∗ can be linearized µN (N) ≈ µmax
N

HN

.

Substituting this expression into eqn 5 we obtain at equilibrium

−αµmax

N

HN

P0 +D
dN

dz2
= 0 .

A solution to this equation, that is monotonically increasing with depth, is given by

N(z) = N∗ecN (z−z∗

N
) , (S3)

with the logarithmic gradient

cN =
d lnN(z)

dz
=

√

αµmaxP0

DHN

. (S4)

To complete our calculation the phytoplankton density in the production layer is estimated as P0 ∼ B
w

where B is

the total biomass and the width of the production layer w = |z∗N − z∗I | only weakly depends on the model parameters

(Beckmann and Hense 2007). If the biomass maximum is located far from the surface, the value of B can be estimated

in two limiting cases (Klausmeier and Litchman 2001)

B =











ln(Iin/I
∗)

k
if P0k ≫ Kbg

D(NB−N∗)
αmZM

if P0k ≪ Kbg

(S5)

where ZM = ZB − ln(Iin/I
∗)/Kbg.
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These equations can be further simplified because typically NB ≫ N∗. Substituting eqns S5 into eqns S1 and S4,

we obtain the ratio of resource gradients γ = cI/cN (see also Fig. S2)

γ =



























































Kbg +
ln(Iin/I

∗)

w
√

α

k

µmax

DHN

ln(Iin/I∗)

w

if P0k ≫ Kbg

Kbg +
k

α

DNB

wmZM
√

µmax

HN

NB

wmZM

if P0k ≪ Kbg.

(S6)

S2. Bifurcation lines in Fig. 5

In this section we derive analytic estimates for combinations of critical resource values that allow mutual invasibility

of a fixed “reference” species 1 with a variable “test” species 2 (bifurcation lines in Fig. 5a main text). Both species

differ in the values of consumption rates, ki and αi, have identical maximal growth rate µmax and mortality m, but

while the critical resource values N∗

1 and I∗1 of the reference species are fixed, N∗

2 and I∗2 are taken from a wide range.

The critical resource values of all test species that can invade in the presence of the reference species are determined

by the invasibility criterion, eqn 12

1

cN,1
ln
N∗

2

N∗

1

+
1

cI,1
ln
I∗2
I∗1

< 0 . (S7)

The border of this region is shown as a green dashed line in Fig. 5a. Similar, we obtain the critical resource values of

the test species, which allow the invasion of the reference species when the test species has reached equilibrium

1

cN,2
ln
N∗

1

N∗

2

+
1

cI,2
ln
I∗1
I∗2

< 0 . (S8)

In this case however, to plot the bifurcation line, we need to consider the dependence of cN,2 and cI,2 on the critical

resource values, N∗

2 and I∗2 , of the test species (see. eqns S1, S4 and S5). For these aims we pick first one special

“hybrid” test species, that has the same critical resource values N∗

1 , I∗1 as the reference species, but consumption

rates, α2 and k2. We denote the logarithmic resources gradients of this species as c′N,2 and c′I,2.

To proceed we assume that the critical resource values are small: assuming N∗

i ≪ NB we approximate NB −N∗

2 ≈

NB, and assuming I∗i ≪ Iin we obtain

ln
Iin
I∗2

≈ ln
Iin
I∗1

−O

(

I∗2 − I∗1
Iin

)

.

Thus, in both limits, Kbg ≫ P0k and Kbg ≪ P0k, in eqn S5 the total biomass B, and from eqn S1 also the value of

cI,2, is independent of the critical resource values N∗

2 , I∗2 of the test species. This means that the logarithmic light

gradients are identical for all test species

cI,2 = c′I,2 .
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In a similar way we estimate the logarithmic nutrient gradients, but from eqn S4 the value of cN,2 depends on the

half-saturation constant of the test species, cN,2 ∼
√

1/HN,2. Then the logarithmic nutrient gradient of an arbitrary

test species can be expressed in terms of the logarithmic nutrient gradient of the “hybrid” species

cN,2 = c′N,2

√

HN,1

HN,2
,

and using the identity HN,1/HN,2 = N∗

1 /N
∗

2 we obtain

cN,2 = c′N,2

√

N∗

1

N∗

2

.

Therefore, inequality S8 takes the form

1

c′N,2

√

N∗

2

N∗

1

ln
N∗

2

N∗

1

+
1

c′I,2

ln
I∗2
I∗1

> 0 , (S9)

where the parameters c′N,2 and c′I,2 are calculated for the “hybrid” species having the critical resource values, N∗

1 and

I∗1 , and the consumption rates, k2 and α2. Note that this expression holds in both limits when Kbg ≫ P0k and when

Kbg ≪ P0k, implying that it might provide a good approximation in general. The border of this region is shown as

red dashed line in Fig. 5a.

S3. Invasion thresholds and principal eigenvalues

The dynamics of a spatially extended population P (z, t) is determined by a reaction-diffusion equation, eqn 4, with

certain boundary conditions. The solution to this equation can be presented in the form

P (z, t) =
∞
∑

n=1

eλntψn(z) , (S10)

where ψn and λn are the eigenfunctions and eigenvalues of the equation

(µ(z) −m− λn)ψn +D
dψ(z)

dz2
= 0 (S11)

with the same boundary conditions for the functions ψn(z). The eigenvalue λ∗ with the largest real part, the so-called

principal eigenvalue, is of special interest for determining the dynamics of P (z, t) because the term with this eigenvalue

dominates the sum S10 at large times (see e.g., Ryabov & Blasius 2008). The sign of the real part of the principal

eigenvalue determines if the population will grow, and so is able to persist λ∗ > 0, or if it declines exponentially on

the whole habitat, λ∗ < 0. Note, that λ∗ depends on the spatial resource profiles and therefore may change in time

with depletion of resources by a growing population. If a species has attained equilibrium, it has zero population net

growth and its principal eigenvalue equals zero, λ∗ = 0.

The principal eigenvalue can be used for invasion analysis in a spatially extended system. We can define a family

of invaders which for small initial density in the presence of the resident species have zero net growth, and thus a zero

principal eigenvalue λ∗inv = 0. In the space of the invader’s critical resource values, this family defines the invasion

threshold (in general, a hypersurface), separating successful and unsuccessful invaders. In our setting, and given that

resident and invader have identical maximal growth rate, µmax,2 = µmax,1, and mortality, m2 = m1, this corresponds

to the condition ∆ = c−1
N,1 lnHN,2/HN,1 + c−1

I,1 lnHI,2/HI,1 = 0 (see eqn 11).
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Now consider an invader which has the same half saturation constants as the resident species, but different maximal

growth rate, µmax,2, mortality, m2, or dispersal ability, D2. It can be shown (Stakgold, 2000) that the eigenvalue

spectrum, and in particular the principal eigenvalue, of this species shifts in the positive direction with an increase

of the growth rate difference µmax,2 − µmax,1, and in the negative direction with an increase in the difference of

destructive factors, such as dispersal rates D2 −D1 or mortalities m2 −m1. Thus, in general, the invader’s principal

eigenvalue will be positive or negative, even though the constant remains ∆ = 0 (since the half saturation constants

remain unchanged). Assume without loss of generality that the invader has a positive total growth rate, λ∗inv > 0.

This means that it should be possible to invade the system with even higher resource requirements. Thus, there

should be a ‘border-line’ invader with the same values of µmax,2, m2, and D2, but larger half saturation constants so

that its principal eigenvalue equals zero, λ∗inv = 0. As the resource requirements of this second invader are higher, its

∆ value is positive. This value, which we denote by ∆∗

12, defines the difference in the favorable ranges (according to

eqn 11) between this species and the resident. Thus all species with maximal growth rate µmax,2, dispersal rate D2

and mortality m2, and whose half-saturation constants satisfy the inequality

1

cN,1
ln
HN,2

HN,1
+

1

cI,1
ln
HI,2

HI,1
< ∆∗

12 (S12)

can invade the system. As the boundary problem can not be solved in general, we cannot calculate the value of

∆∗

12 but we can make some predictions about its sign. Similar to λ∗inv , this value increases with (µmax,2 − µmax,1),

decreases with m2 −m1 and D2 −D1, equals zero when all these differences vanish, and changes sign together with

λ∗inv.

Assuming Monod limitation of growth by two essential resources (eqn 3) we can rewrite eqn S12 in terms of the

critical resources values

1

cN,1
ln
N∗

2

N∗

1

+
1

cI,1
ln
I∗2
I∗1

< ∆12 , (S13)

where

∆12 = ∆∗

12 +

(

1

cN,1
+

1

cI,1

)

ln
(µmax,1 −m1)m2

(µmax,2 −m2)m1
. (S14)

Eqns. S13 and S14 define the invasion threshold for the invader, species 2, as a straight line with slope γ1 = cN,1/cI,1

in double logarithmic resource space. The location of the invasion threshold depends in a complex way on the resource

gradients and on the differences in maximal growth rate, µmax,i, mortality, mi, or dispersal rates, Di. In the resource

plane, the invasion threshold can be located above (∆12 > 0) or below (∆12 < 0) the critical resource values of the

resident, (N∗

1 , I
∗

1 ), see Fig 4a.

Consider a special case when the growth and mortality rates of species 2 are rescaled, µmax,2 = βµmax,1 and

m2 = βm1. Then the second term in eqn S14 vanishes, however ∆∗

12 can be nonzero because both µmax,2 − µmax,1

and m2 −m1 are positive. Substituting µmax,2 and m2 into eqn 4 and dividing it by β, we obtain that in equilibrium

the distribution of species 2 should satisfy the equation

µ1(z)P2 −m1P2 +
D1

β

∂2P2

∂z2
= 0 .

Therefore these changes can be interpreted as a reduction of the diffusivity D2 = D1/β. Since ∆∗

12 decreases with

(D2 −D1) the shift of the invasibility threshold is positive (∆∗

12 > 0) if β > 1 and negative (∆∗

12 < 0) if β < 1.
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S4. Extension to systems with sinking or advection

The dynamics of a population living in a unidirectional flow (e.g. sinking, floating, etc.) can be described by the

reaction-diffusion-advection equation (Murray 2002, Ryabov & Blasius 2008)

∂P

∂t
= (µ(z) −m)P − v

∂P

∂z
+D

∂2P

∂z2
, (S15)

where v is the flow or sinking velocity, which is positive when the flow is directed towards larger z values. Substituting

P = P̃ exp (vz/2D) into eqn S15, we obtain

∂P̃

∂t
= µP̃ −

(

m+
v2

4D

)

P̃ +D
∂2P̃

∂z2
. (S16)

Note that ∂tP̃ has the same sign as ∂tP , so that both functions grow and decline simultaneously. Furthermore, they

have the same boundary conditions P̃ (0) = P̃ (ZB) = 0. Eqn. S16 describes a population P̃ (z, t) in a system without

flow but with an effective mortality

m′ = m+
v2

4D
. (S17)

Therefore, the presence of an advective flow which washes out a population from a favorable range can be interpreted

as an effective increase of the mortality by the value v2/4D.

This higher mortality entails an increase of resource requirements. Assuming eqn 3 for the growth rate, we obtain

new critical resource values

I ′∗i = HI,i

m′

i

µmax,i −m′

i

, N ′∗

i = HN,i

m′

i

µmax,i −m′

i

. (S18)

Since m′ > m, the new critical resources values I ′∗ and N ′∗ in the presence of a positive flow are larger than in a

system without flow. This, in turn shifts the zero net growth isoclines and invasion thresholds towards higher resource

values in the resource plane.
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S5. Model details and parameters used for figures

Numerical scheme The model was integrated using a backward difference method, based on the finite volume

scheme (Pham Thi et al. 2005). For the numerical solution we have discretized all variables on a grid which consisted

of 400 points. Diffusion terms were approximated by a second order central discretization scheme and integration

was made via the trapezoidal rule. The resulting system of ordinary differential equations was solved by the CVODE

package (http://www.netlib.org/ode). Further we verified that the results remain unchanged if we double the number

of points in the grid. See Ryabov et al. (2010) for further details on numerical procedures.

Boundary conditions As boundary conditions we assumed impenetrable borders at the surface and at the bottom

for the phytoplankton biomass and an impenetrable surface and a constant concentration NB at the bottom for the

nutrient.

Initial conditions We used a linear initial nutrient distribution changing from 0 at the surface to NB at the bottom.

For both phytoplankton species we assigned a uniform distribution of small initial density. We also investigated the

influence of different initial conditions, however we did not find any new solutions beside the ones described.

To perform the invasion analysis, in the numerics the growth of the invader species was suppressed during the first

10000 simulation days, to make sure that an equilibrium distribution of the resident species was established. Then

we simulated the system for a duration of further 40000 days to obtain the final competition outcome. To test

for bistability, this simulation was repeated by a second simulation in which the roles of invader and resident were

exchanged.

Parameter values Default species and model parameters are listed in Table S1.

Figure 1d. Calculation of the invasion threshold is based on 7000 simulations of invasion by species with different

half saturation constants HN and HI . However residents and invaders have the same µmax, m, and D, so that the

invasion threshold is not shifted with respect to the resident (N∗, I∗) values.

Figure 2. Half-saturation constants of the invader, H inv
I = 8 µmol photons m−2 and H inv

N =0.09 mmol nutrient m−3.

Figure 3b. The figure shows the results of more than 1000 simulations where parameter values of environmental

conditions (Iin, Kbg, D, NB) and values of consumption rates, ki and αi, were randomly chosen from a uniform

distribution in a wide range (see Table S1). Specific parameters, which do not vary, correspond to species 1 and 2

in Table S1. In particular, the half-saturation constants, maximal growth and mortality rates were fixed, so that the

critical values, (N∗

i , I
∗

i ), and γcr remain constant. To determine γ1 and γ2 numerically we performed simulations

for each species in monoculture. Typically a change in environmental parameters leads to a simultaneous increase or

decrease of γ1 and γ2. As a result all data points group along one diagonal.

In the case of competitive dominance (where one species wins and the other is excluded) the ratio ρ = lnB1/B2

practically approaches positive or negative infinity after our standardized simulation period of 40000 days (see above).

To visualize intermediate values of ρ close to the coexistence region, the color scale was truncated at absolute values

of |ρ | ≥ 7, i.e. log-ratios above 7 where set to ρ = 7 and log-ratios below -7 where set to ρ = −7.

To judge bistability, simulations were repeated two times, with either species 1 taken as resident and species 2 as

invader (upward-pointing triangles) or species 2 as resident and species 1 as invader (downward-pointing triangles).

Figure 5. Invasion thresholds are plotted on the basis of invasion analysis for 7000 combinations of species 1 and
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test species 2. Parameter values taken as in Table S1. However, for species 2 half saturation constants were varied

to achieve the chosen values of critical resources, and maximal growth rate and mortality taken as (a) µmax,2 = 0.04

h−1 and m2 = 0.01 h−1 and (b) µmax,2 = 0.08 h−1 and m2 = 0.02 h−1.
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Figure S1: Two-species resource competition in a uniform system (compare to Fig. 3). The four typical cases for the

competition outcome are shown, depending on the mutual slopes of consumption vectors Γi (values of critical resources and

supply points remain fixed). For each case the zero-net-growth isoclines (ZNGI’s, dashed lines) of species 1 (green) and

species 2 (red) are plotted in the (N, I)-resource plane, together with the supply point (black circle) and the consumption

vectors (green and red arrows). Each species in monoculture reduces resources to an equilibrium point, corresponding to the

intersection of its consumption vector with its ZNGI. Invasion of the other species is possible if its critical resource values are

located below this point (see Fig. 1b). Define the critical slope Γcr by the slope of a straight line from the supply point to

the intersection of the two ZNGIs (indicated as black dashed line). Species 1 can invade if the consumption vector of species

2 has a slope less than the critical slope (1/Γ2 > 1/Γcr , top panel), i.e. species 2 has relatively stronger influence on its most

limiting resource N than on resource I . In contrast, species 2 can invade if the slope of the consumption vector of species 1 is

larger than the critical slope (Γ1 > Γcr, right-hand panel), i.e. species 1 has a relatively stronger influence on its most limiting

resource I .
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Figure S2: Ratio of the logarithmic resource gradients γ1 = cI,1/cN,1 in the phytoplankton model as a function of several species

specific and environmental parameters. Colorcode indicates the value of arctan γ1 calculated numerically for a monoculture of

species 1 in the phytoplankton model (see Table S1 for parameters which do not vary). Since γi equals the slope of the invasion

line in the resource plane, this allows to project shifts in the species composition and to gain insight of how a change of one

parameter can compensate for the influence of other parameters. For example, an increase of γ corresponds to a clockwise

rotation of the invasion threshold lines, thereby favoring the best nutrient competitor.

(a) Dependence of γ on species traits. Slope of the invasion threshold γ grows with the ratio k/α. This dependence is also

evident from both limits in eqn S6. Together with Fig. 3, this result confirms our suggestion that two-species coexistence is

more probable if each species relatively less consumes its most limiting resource (see main text).

(b) Dependence of γ on environmental conditions. Slope of the invasion threshold γ grows with turbulent diffusivity D and

background turbidity Kbg . This indicates that a turbid but weakly-mixed environment should result in the same species

composition as stronger mixed but clean waters (while the total biomass will, of course, in general be different).

(c) Dependence of γ on resource supply. Increase of incident light intensity Iin or of bottom nutrient concentration NB decreases

γ (thus leading to a counter-clockwise rotation of the invasion thresholds) and creates more favorable conditions for the best

light competitor (compare to Fig. S3).
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Figure S3: Geometrical method to project the outcome of spatial resource competition in dependence of the ambient nutrient

concentration, NB . Top panel: shift in the competition outcome between species 1 (green) and species 2 (red) in the phyto-

plankton model caused by an increase of the bottom nutrient concentration, NB . Bottom panel illustrates this shift as the

result of a counter-clockwise rotation of the invasion thresholds. The slopes, γ1 and γ2, of the invasion thresholds in the bottom

panel were calculated numerically for a monoculture of species 1 and 2. To obtain a relatively small difference between γ1 and

γ2 we used α1 = 8× 10−10 mmol nutrient cell−1 and k2 = 6×10−10 m2 cell−1.
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Figure S4: Exponential resource distributions in a vertical water column. Shown are the profiles of photosynthetically active

radiation (gray), nitrate (blue) and chlorophyll (green) measured during the HOT program (http://hahana.soest.hawaii.edu,

station ALOHA, cruise 114; see also Karl 2010). Resource distributions plotted (a) on linear and (b) on logarithmic scales. As

it is commonly supposed, the light intensity can be approximated by an exponential distribution (black dotted lines and R2

values in (a) and (b)). In contrast, the nutrient profile exhibits two distinct regimes: In the area below the production layer

the nutrient concentration can be well fit by a linear dependence (R2 = 0.91, black dashed line in (a)); however, within the

production layer an exponential distribution gives a better description (R2 = 0.99, black dashed line in (b)). We argue that

the regime of exponential decay within the production layer is more crucial for competition, because in this area growth can

be nutrient limited, whereas in the linear part of the nutrient profile growth is nutrient saturated. Interestingly, the interval of

exponential decay ranges over three orders of nitrate concentrations, making this area crucial for the competition among a wide

range of phytoplankton species which can be limited by this nutrient (Litchman et al. 2007). Note, that similar exponential

distributions in this interval of depths have been observed in mean nitrate concentrations between 1989-2006 (Karl & Letelier

2008). (c) System state curve (SSC), showing the distributions in the resource plane with logarithmic axes. The solid blue

line shows actual cruise data for the light intensity and the nutrient. Since light intensities are not reported below a depth of

140 m, the system state curve was extrapolated, assuming that the light intensity follows the same exponential decay up to

300 m (blue dotted line). Dashed line shows a straight line fit (with R2 value) within the production layer.
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Figure S5: Exponential distribution of resource concentrations in deep marine sediments. Inverse concentration profiles (note

the logarithmic scale) result from biologically catalyzed reactions, which consume and release metabolites in a complex biogeo-

chemical reaction network deep in the sediment column.

(a) Concentration profiles of sulfate (red) and methane (green) from ODP leg 207, site 1258, Demerara Rise, Equatorial Atlantic

(Shipboard Scientific party, 2004; Arndt et al. 2006) show a sulfate-methane transition zone in a sediment depth of 150-300

m. Substrates are supplied by a downward flux of sulfate from the sediment-water interface and by the biogenic production

of methane from deeply buried organic matter in black shale sequences at a depth below 400 m. Upward diffusing methane

and downward diffusing sulfate are depleted by deep sedimentary microbial communities in the process of anaerobic methane

oxidation (AMO). Note that the exponential distribution of methane ranges over several orders of magnitude.

(b) Depth profiles of sulfate (red) and barium (blue) along the sediment column of ODP leg 201, site 1228, eastern Pacific

ocean (Shipboard Scientific party, 2004; D’Hondt et al, 2004), exhibiting two reversed zonation patterns. The characteristic

sulfate-barium transition zone that extends from the water-sediment interface to greater depth (0 to 40 m) is mirrored by a

second reversed succession that extends upward from the basement-sediment interface in depth from 40 to 80 m. Here, sulfate

enters the sediment from two directions: from the overlying ocean and from an underlying basaltic aquifer. In each transition

zone the depletion of sulfate by microbial activity promotes the remobilization of biogenic barium (Torres et al. 1996), giving

rise to high concentrations of dissolved barium in the pore fluids beyond the zone of sulfate depletion.

Data are obtained during the ocean drilling program (ODP, http://iodp.tamu.edu/). Dashed and dotted lines show straight

line fits to the data on the logarithmic axes. R2 values of the fit are indicated.
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Figure S6: Illustration of different competition outcomes in the phytoplankton model. The outcome of two species competition

is shown (indicated by color coding), depending on the critical resource values of species 2 (critical resources (N∗

1 , I∗

1 ) of species

1 fixed, green circle), when the maximal growth rates and mortalities are identical (top panel), or differ by the factor β = 2

(bottom panel), similar to Fig. 5 from the main text. Insets (a) - (d) show typical spatial profiles corresponding to the different

competition regimes (critical resource values of species 2 indicated as red circle). Plotted are the phytoplankton concentration

of species 1 (green) and species 2 (red), and the distribution of light (black dashed line) and nutrient (black solid line) as a

function of depth z.

(a) and (d): Two fundamentally different coexistence mechanisms in a spatial system. (a) Coexistence due to a resource

limitation trade-off, mediated by niche segregation in resource requirements which becomes apparent as a spatial separation

of density profiles. (d) Coexistence due to a gleaner-opportunist trade-off. The two species are not spatially separated, but

species 1 with smaller resource requirements (gleaner) can utilize a larger favorable range, whereas the high growth rate of the

stronger resource limited species 2 (opportunist) allows it to survive on a smaller spatial range.

(b) and (c): Two kinds of bistability in the competition outcome. (b) Alternative stable state when each species cannot grow

in the presence of its competitor. (c) Alternative stable states of either coexistence (species 1 can invade the monoculture of

species 2, but does not reach a high abundance) or a monoculture of species 1 (species 2 cannot establish in the presence of

species 1).

Parameter values of species 1 see in Table S1. Simulation parameters for species 2: (a) HI,2 = 24.7 µmol photons m−2 s−1,

HN,2 = 0.012 mmol nutrient m−3, (b) HI,2 = 12.2 µmol photons m−2 s−1, HN,2 = 0.123 mmol nutrient m−3, (c) HI,2 = 9 µmol

photons m−2 s−1, HN,2 = 0.22 mmol nutrient m−3, (d) HI,2 = 24.7 µmol photons m−2 s−1, HN,2 = 0.044 mmol nutrient m−3.
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Table S1: Default model parameters

Symbol Interpretation Units Value

Independent variables

t Time h

z Depth m

Dependent variables

P (z, t) Population density cells m−3

I(z, t) Light intensity µmol photons m−2 s−1

N(z, t) Nutrient concentration mmol nutrient m−3

Parameters

Iin Incident light intensity µmol photons m−2 s−1 600 (100 . . . 1000)∗

Kbg Background turbidity m−1 0.1 (0.01 . . . 1)∗

ZB Depth of the water column m 100

D Vertical turbulent diffusivity cm2 s−1 0.3 (0.01 . . . 0.7)∗

NB Nutrient concentration at ZB mmol nutrient m−3 10 (0.1 . . . 10)∗

Species 1

HI half-saturation constant for light µmol photons m−2 s−1 20

HN half-saturation constant for nutrient mmol nutrient m−3 0.04

k light attenuation coefficient m2 cell−1 6×10−10 (1×10−10 . . . 1×10−9)∗

α cell nutrient content mmol nutrient cell−1 2×10−10 (1×10−10 . . . 1×10−9)∗

µmax maximal growth rate h−1 0.04

m mortality rate h−1 0.01

Species 2

HI half-saturation constant for light µmol photons m−2 s−1 15

HN half-saturation constant for nutrient mmol nutrient m−3 0.065

k light attenuation coefficient m2 cell−1 1×10−10 (1×10−10 . . . 1×10−9)∗

α cell nutrient content mmol nutrient cell−1 5×10−10 (1×10−10 . . . 1×10−9)∗

µmax maximal growth rate h−1 0.04

m mortality rate h−1 0.01

∗ in Fig. 3b and Fig. S2.

Appendix S5 provides further details of simulation parameters specific to certain figures.


