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Resource competition is a fundamental interaction in natural communities. However little is
known about competition in spatial environments where organisms are able to regulate resource
distributions. Here, we analyze the competition of two consumers for two resources in a one-
dimensional habitat in which the resources are supplied from opposite sides. We show that the
success of an invading species crucially depends on the slope of the resource gradients shaped
by the resident. Our analysis reveals that parameter combinations which lead to coexistence in
a uniform environment may favor alternative stable states in a spatial system, and vice versa.
Furthermore, differences in growth rate, mortality or dispersal abilities allow a consumer to coexist
stationarily with - or even outcompete - a competitor with lower resource requirements. Applying
our theory to a phytoplankton model, we explain shifts in the community structure that are induced
by environmental changes.
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INTRODUCTION

Competition for limiting resources is one of the most
important species interactions in ecology and has long
been considered as a major driver for shaping the spa-
tial structure of communities and limiting species rich-
ness. A graphical theory of resource competition was ad-
vanced by MacArthur (1972), León & Tumpson (1975)
and Tilman (1980, 1982) and revolves around the as-
sumption that consumers that reduce limiting resources
to the lowest level will exclude all other competitors (the
R∗-rule). Being confirmed experimentally (Miller et al.
2005, but see also Wilson et al. 2007), this theory pro-
vides a fundamental framework for interpreting the re-
lationship between organisms and their shared resources
in a uniform environment (Grover 1997; Chase & Lei-
bold 2003). Extensions of competition theory to spatial
settings (Chesson 2000a, 2000b; Klausmeier & Tilman
2002; Amarasekare 2003) can be grouped into different
classes. In spatially homogeneous environments, coexis-
tence can be mediated by trade-offs in life history pa-
rameters (Levins & Culver 1971; Levin 1974; Kneitel &
Chase 2004). In heterogeneous environments regional co-
existence can be mediated by spatial segregation (Tilman
1982; Gross and Cardinale 2007), whereas local coex-
istence may be promoted via source-sink effects (Mou-
quet & Loreau 2003; Leibold et al. 2004) or positive
correlations between dispersal and competitive abilities
(Abrams & Wilson 2004). However, previous theory has
not thoroughly explored resource competition in contin-
uous spatially variable habitats.

In a system with resource flows, spatial heterogene-

ity can be created by biotic interactions, as local re-
source consumption can modify resource levels over larger
ranges (Huston & DeAngelis 1994), possibly establish-
ing resource gradients over the full extent of the habitat.
The analysis of competition in such systems is mathe-
matically challenging (Grover 1997), as not only the re-
source availability, but also the size of favorable areas
(Skellam 1951), dispersal rates (Abrams & Wilson 2004)
and many other factors become crucial for the survival
of a population (Ryabov & Blasius 2008). Despite exten-
sive theoretical studies on unstirred chemostats (Hsu &
Waltman 1993; Smith & Waltman 1995; Wu et al. 2004),
persistence and competition in streams (Speirs & Gurney
2001; Lutscher et al. 2007), vegetation patterns in water-
limited habitats (Klausmeier 1999; von Hardenberg et al.
2001), well-mixed systems with a light gradient (Huisman
& Weissing 1994; Diehl 2002), and non-uniform phyto-
plankton systems (Dutkiewicz et al. 2009; Yoshiyama et
al. 2009; Ryabov et al. 2010), translating competition
theory to extended systems, where species are able to
shape resource distributions, still remains a great chal-
lenge.

In this study we develop a general framework for ana-
lyzing the competition between two consumers for two
limiting resources in a spatially continuous habitat in
which resource distributions are regulated by biotic in-
teractions. In extension of the R∗-rule for uniform sys-
tems, we introduce the notion of an invasion threshold
in a spatial system as the maximal resource requirement
for a consumer to invade in the presence of a resident
species. In this way, the outcome of competition can be
interpreted graphically in the resource plane, by compar-
ing the location of the invader’s critical resources with
respect to the invasion threshold lines. We derive ana-
lytic expressions for the invasibility conditions and show
that they can be related to how resources are spatially
reduced as a result of resource-use by the resident.

Using this approach we find that environmental hetero-
geneity increases the likelihood of coexistence. Thereby
we identify two forms of stationary coexistence in spa-
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tially variable habitats. First, coexistence can be me-
diated by a trade-off in resource requirements. This is
characterized by spatial segregation of the two species
and we find that parameter combinations which allow
coexistence in a uniform system favor alternative sta-
ble states in a spatially extended system and vice versa.
Second, coexistence can arise from positive correlations
of growth rates and resource requirements (gleaner-
opportunist trade-off), characterized by a lack of spatial
segregation.

To illustrate these ideas, we investigate two phyto-
plankton species competing for light and a nutrient in
a water column. We identify two distinct regimes of
bistability in the competition outcome and show that our
approach provides a powerful basis for projecting the in-
fluence of environmental changes on the community com-
position.

MODELLING FRAMEWORK AND ANALYSIS

Resource competition in uniform systems

As a background for the following discussion, we briefly
review the theory of resource competition in a uniform
environment (MacArthur 1972; León and Tumpson 1975;
Tilman 1980, 1982; Grover 1997; Chase & Leibold 2003).
Consider two consumer species i = 1, 2 growing on two
essential resources N and I. The dynamics of the pop-
ulation density Pi of each species is determined by the
difference between growth µi(N, I) and mortality mi

Ṗi = (µi(N, I) − mi)Pi , (1)

where the growth rate in general can be written as

µi(N, I) = µmax,i µ

(
N

HN,i

,
I

HI,i

)
. (2)

Here µmax,i is the maximal growth rate of species i, µ
is a monotonically increasing function of both arguments
with upper bound limN,I→∞ µ(N, I) = 1, and the half-
saturation constants HN,i and HI,i define the species’
resource adaptation. In particular, this functional form
includes von Liebig’s law of minimum, where the limita-
tion of growth follows the Monod kinetics

µi(N, I) = µmax,i min

{
N

N + HN,i

,
I

I + HI,i

}
. (3)

In a uniform environment, levels of system resources
can be represented as a point in a two-dimensional re-
source plane (Fig. 1a). In this plane, states of balance
between growth and mortality, µi(N, I) = mi, determine
the zero net growth isoclines (ZNGIs), which for each
species divide the resource plane into areas of positive
and negative population net growth. Assuming eqn 3 for
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Figure 1: Invasion analysis in a uniform system (top) and
a spatially extended system with opposing resource gradi-
ents (bottom). (a) Equilibrium configuration of the resident
(species 1, green). The system state point at equilibrium E
is determined by the intersection of the consumption vector
CV , starting at the resource supply point S, with the zero
net growth isocline ZNGI (dashed line, see text). (b) Critical
resource values of a successful invader (species 2, red) should
be located below the invasion threshold T (blue line). The
intersection of the invader’s ZNGI with T is shown as cross-
hatching. (c) In a spatially extended system, combinations of
resources at different spatial coordinates give rise to a system
state curve SSC (solid line, favorable range is marked in bold).
(d) Invasion threshold T (blue solid line) and first order ap-
proximation (blue dashed line) with slope γ1 = cI,1/cN,1 in
the log-log plot (eqn 12). (c) and (d) show results of numer-
ical simulations in the phytoplankton model, eqns 3–6 (see
Appendix S5 for model parameters).

the growth rate, we can calculate the critical values, I∗i =
HI,i mi/(µmax,i−mi) and N∗

i = HN,i mi/(µmax,i−mi),
and the ZNGI takes the form of two orthogonal lines
(dashed lines in Fig. 1).

The resource concentrations in the absence of con-
sumers define the coordinates of a resource supply point
S. A growing population will deplete resources, shift-
ing the system state in the direction of the consumption
vector CV , until the system state point hits the popula-
tion’s ZNGI at the equilibrium point E = (Ñi, Ĩi). This
point defines the resource levels at equilibrium, which are
shaped by the population, and sets the conditions for the
invasion of other species.

Assume that resident species 1 has attained equilib-
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rium. Then invasion of a second species 2 is possible
if the equilibrium resource concentrations shaped by the
resident are sufficient to allow positive growth of the in-
vader. Thus, in resource space a part of the invader’s
ZNGI must be located below the equilibrium point E
(Fig. 1b). For the specific form of eqn 3, this condition is
fulfilled for all critical resource values of the invader that
are located in the rectangular area defined by I∗2 < Ĩ1

and N∗

2 < Ñ1. This line defines the invasion threshold T
for species 2 (blue line in Fig. 1b).

Combining the invasion analysis for each of the two
species yields the well-known outcomes of resource com-
petition in a uniform environment (Tilman 1982). With-
out a trade-off in the use of the two resources (i.e. the two
ZNGIs do not intersect), the species with the lowest re-
source requirements wins. In the presence of a trade-off,
competition can lead to stable coexistence, competitive
exclusion or bistability (i.e. alternative stable states with
outcomes depending on initial conditions), depending on
whether or not each species has a greater impact on the
resource that most limits its own growth (see Fig. S1).

Resource distributions in a spatial system

The classical approach implicitly assumes the presence
of boundaries which confine the system, between which
organisms and resources are uniformly distributed. In
the following we aim to translate these ideas to an open
system where the favorable area of a species is confined
by resource availability, and where organisms and re-
sources are not distributed uniformly. Consider a one-
dimensional environment, where the population densities
Pi(z, t) depend on a spatial coordinate z. A spatial ana-
log to eqn 1 can be written in the form

∂Pi

∂t
= (µi(N, I) − mi)Pi + Di

∂2Pi

∂z2
, (4)

where Di characterizes the diffusive dispersal ability of
population i. Again the growth rate µi(N, I) follows the
general form of eqn 2, but the resource concentrations
N(z, t) and I(z, t) are functions of z, so that the two
populations are indirectly coupled through the spatial
profile of their shared resources.

As a case study, we examine a two-species
phytoplankton-nutrient model in an incompletely mixed
water column (Radach & Maier-Reimer 1975, Jamart et
al. 1977, Klausmeier & Litchman 2001, Huisman et al.
2006, Ryabov et al. 2010). In the model, eqn 4 describes
the density Pi(z, t) of phytoplankton species i at depth z
and time t, and is complemented by an equation for the
nutrient N(z, t)

∂N

∂t
= −

n∑

i=1

αiµi(N, I)Pi + D
∂2N

∂z2
, (5)

and an equation for the light intensity I(z, t), which de-
scribes the absorption of light by water and phytoplank-
ton (Kirk 1994)

I(z) = Iin exp

[
−Kbgz −

∫ z

0

n∑

i=1

kiPi(ξ, t)dξ

]
. (6)

In these equations, parameter D obtains the role of the
turbulent diffusivity, αi is the nutrient content of a phy-
toplankton cell, Iin is the incident light intensity, Kbg is
the water turbidity and ki is the attenuation coefficient
of phytoplankton cells. As boundary conditions we as-
sumed impenetrable borders at the surface and at the
bottom for the phytoplankton biomass and an impene-
trable surface and a constant concentration NB at the
bottom for the nutrient (for model parameters see Table
S1).

The model describes a situation in which the two re-
sources, light and nutrient, are supplied from opposite
sides of a spatial habitat. This is typical in the ocean
where light is supplied from above and many macronu-
trients from below (Fig. 2a). As shown in Fig. 2b, this
gives rise to characteristic resource distributions with in-
verse gradients, where population growth is maximal at
an intermediate position at which both resources are suf-
ficiently available (see Fig. S6 for further typical model
solutions).

Within the favorable range of the population, the light
and nutrient distributions in Figs. 2a and 2b can be well
approximated as straight lines on a logarithmic scale.
This means that resource distributions at equilibrium de-
cay (or grow) exponentially in space

Ñi(z) ∼ ecN,i z, Ĩi(z) ∼ e−cI,i z . (7)

This exponential dependence can be derived analytically
in the limit of low mortality (see Appendix S1), and it
is typical for many other ecosystems (see e.g. Fig. S5).
Eqn 7 implies that a population i in monoculture is
“shading” resources by a constant percentage

cN,i =
1

Ni

dNi(z)

dz
, cI,i = −

1

Ii

dIi(z)

dz
. (8)

Here, the logarithmic resource gradients cN,i and cI,i

measure the influence of the population on the resource
distribution.

Translated into the resource plane, the resource dis-
tributions of the spatially extended system can be com-
pactly represented as a parametric curve, (N(z), I(z)),
(solid line in Fig. 1c). This ‘system state curve’ (SSC)
naturally extends the notion of a system state point E
of a homogeneous system to a spatially continuous envi-
ronment (Ryabov et al. 2010). As shown in Fig. 1c, due
to the spatial coupling and source-sink effects the system
state curve at equilibrium does not settle at the ZNGI.
Instead, it intersects the ZNGI at two points which mark
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Figure 2: Typical distributions of light (gray), nutrient (black) and chlorophyll/phytoplankton (green) concentrations in a
water column from (a) field measurements (HOT program, Station ALOHA, cruise 114; see also Karl 2010) and (b) numerical
simulation of eqns 3–6. Dashed lines in (a) and (b) indicate exponential fit of the resource distributions. (c) Net growth rates,
µi(N, I)−m, of a resident (species 1, green) and an invader (species 2, red), derived from the simulated distribution of resources
(solid lines) and from their exponential approximation (eqn 7, dashed lines). Horizontal dashed lines in (b) and (c) mark the
favorable range of species 1. Vertical shifts ∆zN and ∆zI , related to nutrient and light limitation (eqn 10), are also shown.
Model parameters as in Fig. 1.

the boundaries of positive net growth. This inner part of
the system state curve (marked in bold in Fig. 1c) cor-
responds to the resident’s favorable range (horizontally
dashed lines in Fig. 2b, c). Given the exponential depen-
dence (eqn 7), within the favorable range the system state
curve approaches a straight line with slope γi = cI,i/cN,i

in the resource plane with logarithmic axes (see Fig. 1c
in the model or Fig. S4c for field data).

Invasion analysis in a spatial system

In analogy to competition theory in a uniform system,
we may now ask whether it is possible to predict the out-
come of two-species competition from knowledge about
equilibrium resource distribution which has been shaped
by each species alone in the absence of the other species.
Assuming that we know the resident’s system state curve
at equilibrium (Ñ1(z), Ĩ1(z)), what can we say about the
success of an invader (red color in Fig. 2c)?

To address this problem we define the invasion thresh-
old T in the resource plane as the set of critical resources
of all invaders of small initial density, which have zero to-
tal growth in the presence of the resident (blue solid line
in Fig. 1d, obtained by invasion analysis in numerical sim-
ulations with 7000 parameter combinations). In this for-
mulation, the success of an invader depends on whether
or not its ZNGI intersects with the invasion threshold

(cross-hatching in Fig. 1). Thus, invasion analysis can
be performed graphically by comparing the location of
the invader’s critical resources with the invasion thresh-
old.

By comparison of Figs. 1b and 1d, the invasion thresh-
old has a different shape in a uniform or a spatially
continuous system. It is difficult to predict the inva-
sion threshold from general principles. Exact conditions
can be expressed in terms of eigenvalues of a correspond-
ing boundary value problem (Hsu & Waltman 1993; Ap-
pendix S3), which unfortunately cannot be solved in gen-
eral. In the following we show that, with the assumption
of exponential resource distributions (eqn 7), it is pos-
sible to calculate the invasion threshold for species with
similar resource requirements.

Calculation of the invasion threshold

Consider first the simplest case where resident (species
1) and invader (species 2) differ only in their half satura-
tion constants, HN,i and HI,i, but are otherwise identical
(µmax,1 = µmax,2, m1 = m2, D1 = D2). As the invader
density is assumed to be small, and its influence on the
resource distributions can thus be neglected, the possibil-
ity of invasion depends entirely on the invader’s growth
rate in the equilibrium resource distribution shaped by
the resident, µ2(Ñ1(z), Ĩ1(z)). The mathematical iden-
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tity

1

H2
ecz =

1

H1
ec(z−∆z) , with ∆z =

1

c
ln

H2

H1
, (9)

shows that division of an exponential function by differ-
ent (half-saturation) constants H1 and H2 is equivalent
to a shift ∆z in position along the z-axis. Therefore,
assuming that the growth rate follows eqn 2 and the re-
source distributions are exponential (eqn 7), it is possible
to express the growth rate, µ2(z), of the invader through
that of the resident

µ2(Ñ1(z), Ĩ1(z)) = µ1(Ñ1(z−∆zN), Ĩ1(z−∆zI)) . (10)

Here the shifts ∆zN = c−1
N,1 lnHN,2/HN,1 and ∆zI =

−c−1
I,1 lnHI,2/HI,1 have opposite signs, since the resource

gradients are inverse.
Introducing a new position z′ = z−∆zN , we find that

µ2(z) = µ1(Ñ1(z
′), Ĩ1(z

′ + ∆)), with ∆ = ∆zN − ∆zI .
The change of variables z → z′ corresponds to a shift
along the z-axis (see Fig. 2c) and has no effect on the
conditions for survival as long as boundary effects can
be neglected. Thus, the difference in growth between in-
vader and resident depends only on the value and sign
of the single parameter ∆. If ∆ = 0, the distinct re-
source requirements of the species just result in a paral-
lel translation of the growth rate profile. Since the res-
ident species at equilibrium has zero total growth, the
same holds for the invader, and the population of the in-
vader cannot establish. By contrast, if ∆ > 0, we obtain
I(z′ + ∆) < I(z′) since I(z) decays with z. This leads
to negative net growth of the invader since the function
µ(N, I) increases monotonically with its arguments. Us-
ing the same arguments, ∆ < 0 gives rise to positive
growth of the invader.

Thus, we can formulate the invasibility criterion in the
form ∆ < 0. The parameter ∆ describes the invasion
threshold and can be interpreted in terms of resource
gradients and relative competitive abilities

∆ =
1

cN,1︸︷︷︸
inverse

log gradient
in N

ln
HN,2

HN,1︸ ︷︷ ︸
log of relative
competitive

abilities for N

+
1

cI,1︸︷︷︸
inverse

log gradient
in I

ln
HI,2

HI,1︸ ︷︷ ︸
log of relative
competitive

abilities for I

.

(11)
If for instance, both species have equal resource require-
ments for N , HN,2 = HN,1, invasion is only possible,
∆ < 0, if the invading species is a better competitor for
I, i.e. ln(HI,2/HI,1) < 0.

If the limitation of growth follows von Liebig’s law
(eqn 3), the spatial profiles for light and nutrient limi-
tation are shifted independently and the net shift ∆ =
∆zN −∆zI measures the difference in the size of the res-
ident and invader’s favorable habitats. This is depicted
in Fig. 2c for a situation with ∆zN < ∆zI , where the
narrowing of the favorable range due to higher N re-
quirements (N∗

2 > N∗

1 ) is less than the widening due to

better I adaptation (I∗2 < I∗1 ). Therefore the net growth
rate of the invader is greater than that of the resident, al-
lowing for successful invasion (see Fig. 2c). Note that in
the example shown in Figs. 1 and 2, the invader, species
2, is a good light competitor, I∗2 < I∗1 , but needs higher
nutrient concentrations, N∗

2 > N∗

1 . Therefore it will have
maximal production at a deeper depth (Fig. 2c).

Since the maximal growth and mortality rates are as-
sumed to be equal for both species, the ratio of half-
saturation constants equals the ratio of critical resource
values (e.g., HI,2/HI,1 = I∗2 /I∗1 ), and the invasibility cri-
terion reads

∆ =
1

cN,1
ln

N∗

2

N∗

1

+
1

cI,1
ln

I∗2
I∗1

< 0 . (12)

This expression has a straightforward geometrical inter-
pretation: a species can invade the spatial habitat if its
critical resources (N∗

2 , I∗2 ) are located below a straight
line, ln I − ln I∗1 = −γ1(lnN − lnN∗

1 ), with a slope of
absolute value γ1 = cI,1/cN,1 passing through the point
(N∗

1 , I∗1 ) in the double-logarithmic resource plane (blue
dashed line in Fig. 1d). Thus, we have derived a first-
order approximation for the invasion threshold T.

Competition outcome

In a similar way it is possible to analyze the invasion
potential of species 1 in a system with resident species
2. Assume without loss of generality that N∗

2 > N∗

1 and
I∗2 < I∗1 , and denote by γcr the slope (taken with op-
posite sign) of a straight line passing through the two
critical resource points, γcr = −(ln I∗2/I∗1 )/(lnN∗

2 /N∗

1 ).
Then, combining eqn 12 and its counterpart for species
2, we obtain four different outcomes of spatial resource
competition (Fig. 3a). If the critical resource values for
each species are located below the invasion threshold of
its competitor, γ1 < γcr and 1/γ2 < 1/γcr, both species
can invade the monoculture of the other, leading to co-
existence. In the opposite case, if the critical resource
values for every species lie above the invasion threshold
of its competitor, γ1 > γcr and 1/γ2 > 1/γcr, neither
of the two species can invade, leading to bistability. Fi-
nally, one species may be a superior competitor if only
this species can grow in the presence of its competitor.

This analytic conclusion is confirmed by numerical sim-
ulations of the phytoplankton model eqns 3-6 in a large
parameter range (Fig. 3b). The figure demonstrates that
in spite of the high complexity and nonlinearity of the
model, the relation between the slope of the invasion
threshold lines, γi, and the location of the critical re-
source values gives a good prediction of the competition
outcome.
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Figure 4: (a) Interspecific differences in µmax, m, or D yield
a shift δ12 of the invasion threshold in the normal direction.
Compared with Fig. 1d, the invader (species 2, red) can es-
tablish, even though it has higher resource requirements than
the resident (species 1, green). (b) Coexistence due to a
gleaner-opportunist trade-off, where both invasion thresholds
are shifted in opposite directions. Species 1 (gleaner) with
lower resource requirements can coexist at equilibrium with
species 2 (opportunist), which has higher resource require-
ments but higher µmax, or lower m or D.

Differences in growth, mortality and dispersal

In general, the locations of the invasion thresholds may
depend on trait differences between the resident and in-

vader, such as maximal growth rate, mortality and dis-
persal rates. As shown in Appendix S3, the generalized
form of the invasibility criterion reads

1

cN,1
ln

N∗

2

N∗

1

+
1

cI,1
ln

I∗2
I∗1

< ∆12 (13)

where ∆12 is a complicated function of the trait values
and resource gradients, but does not depend on the crit-
ical resource levels. If all trait differences vanish, we ob-
tain ∆12 = 0 and recover the previous result, eqn 12. The
geometrical representation of the new term ∆12 is a shift
of the invasion threshold line toward larger (∆12 > 0) or
smaller (∆12 < 0) resource requirements in the normal

direction by δ12 = ∆12cN,1cI,1/
√

c2
N,1 + c2

I,1. Thus, the

slope of the invasion threshold lines remain unchanged,
but their location is shifted. Fig. 4a shows an exam-
ple with a positive shift of the invasion threshold, where
species 2 can invade the system despite the fact that it
has higher requirements for both resources than the res-
ident species 1.

For an illustration of how specific trait values can
change the sign of δ12, consider the particular case that
species 2 has higher values of both growth rate, µmax,2 =
βµmax,1, and mortality, m2 = βm1, with β > 1. Since
the critical resource values N∗

2 > N∗

1 and I∗2 > I∗1 are
independent of β, this scaling would not affect the com-
petition outcome in a uniform environment and species
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Figure 5: Competition analysis in the phytoplankton model.
Maximal growth rates and mortalities are (a) identical, β =
1, and (b) different, β = 2. The competition outcome (in
color coding) of species 1 (critical resource values indicated as
circle) is shown in dependence of the critical resource values of
species 2. Solid lines show invasion thresholds obtained from
numerical simulation of eqns 3–6; dashed lines in (a) show
their analytical approximations (Appendix S2). Parameter
combinations (N∗

2 , I∗

2 ) in the area below the solid green line
allow invasion of species 2 in the presence of species 1. In
contrast, species 1 can invade in the presence of species 2 with
critical resource values taken from the area above the solid
red line. The intersections of these lines define the ranges of
coexistence, alternative states, and competitive exclusion.

2 would not be able to invade the system. However, in a
heterogeneous system the invasion threshold (green line
in Fig. 4b) is shifted by δ12 > 0 (see Appendix S3). Simi-
lar analysis, using rescaling by a factor of 1/β, shows that
the threshold for invasion of species 1 in a monoculture
of species 2 is shifted in the opposite direction (red line in
Fig. 4b). This mechanism can lead to stable coexistence
of a species having high growth rate and resource require-
ments with another species having low growth rate and
resource requirements (gleaner-opportunist trade-off).

Application to a phytoplankton model

Applying this approach to a phytoplankton commu-
nity, the slopes γi of the invasion lines can be obtained
by numerical simulations (Fig. S2), analytic estimations
(Appendix S1), or in field enclosure experiments (Jäger
et al. 2008). Tracing the dependence of γi as a function
of system parameters allows us to project shifts in the
species composition. Consider, for instance, the effects of
increasing the nutrient resource concentration at the bot-
tom of the water column, NB. More nutrients at the bot-
tom give rise to a larger biomass of the resident species,
which in turn yields a steeper nutrient decay within the
production layer, i.e. a reduction of γi (see Fig. S2c).

In the resource plane this effectively leads to a counter-
clockwise rotation of the invasion threshold line, and
graphical analysis reveals that by increasing NB the com-
munity composition shifts from dominance of the best nu-
trient competitor, through a regime of coexistence, to the
prevalence of the best light competitor (Fig. S3). This
result might explain observed negative correlations of the
abundance of high light-adapted species with nutrient
concentrations (Johnson et al. 2006).

Similarly we can study the influence of consumption
rates. In a well-mixed water column the slope of con-
sumption vectors is given by Γi = (ki zB)/αi (Huisman
& Weissing, 1994; Diehl 2002). Thus, the relative re-
source consumption scales with the ratio of the light at-
tenuation coefficient to the cell nutrient content, ki/αi.
In our model, according to Fig. 3, two species coexist
if γ1 < γcr < γ2. Since the ratio of resource gradients
γi also grows with ki/αi (see Fig. S2a and eqn S6), we
observe coexistence if the best nutrient competitor (here
species 1) has a small k1/α1 ratio and species 2 a large
k2/α2 ratio. The reverse situation (large k1/α1 and small
k2/α2) leads to bistability (Fig. 3a). Thus, we obtain a
rule which is diametrically opposed to that for uniform
systems: coexistence arises if each species reduces its
least limiting resource more strongly in relation to the
other, whereas stronger reduction of the most limiting
resource favors bistability (compare Figs. 3 and S1).

Fig. 5a shows the competition outcome in dependence
of the critical resources of species 2 for the case that
k1/α1 > k2/α2, i.e. species 1 shades relatively more light
than species 2. In accordance with our rule, if species 2,
which has a smaller light attenuation coefficient, is more
strongly limited by light (I∗2 > I∗1 ), it may coexist with
species 1 (upper blue area), whereas stronger nutrient
limitation of species 2 (N∗

2 > N∗

1 ) can lead to bistabil-
ity (white area). However, if the difference in nutrient
limitation is sufficiently large, then the two species can
again coexist (lower blue area, Appendix S2). The model
further exhibits a regime of bistability between coexis-
tence and single-species dominance (gray area), where
the invasion of species 1 does not exclude species 2, but
species 2 cannot invade if species 1 has already estab-
lished (see also the vertical profiles in Fig. S6). If the
two species differ in their maximal growth and mortality
rates, β > 1 (Fig. 5b), all bifurcation lines are shifted
towards larger critical resource values. Then, if species
2 is parameterized to have higher resource requirements
(i.e., critial resource levels located above the black dashed
lines in Fig. 5b), it can have all possible competition out-
comes, even without a trade-off in resource requirements.
The corresponding spatial profiles in Fig. S6 reveal two
fundamentally different types of coexistence in a spatial
system, mediated either by a trade-off in resource re-
quirements (characterized by spatial segregation of the
two species) or by a gleaner-opportunist trade-off (lack
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of spatial segregation).

DISCUSSION

The extension of resource competition theory to spa-
tially variable environments remains a major challenge
for community ecology. Usual approaches to include en-
vironmental heterogeneity consider a range of resource
supply points, assuming that the system evolves indepen-
dently for each supply point (Tilman 1982), while other
studies have concentrated on patch occupancy mod-
els (Levins 1979) or metacommunity models of discrete
patches that are connected by dispersal (Levin 1974;
Mouquet & Loreau 2003; Abrams & Wilson 2004; Gross
& Cardinale 2007). However, links between local patches
might not only affect the dispersal of species, but also
the spatial flow of matter and resources, leading to meta-
ecosystem dynamics (Loreau et al. 2003) which require a
distinct theoretical approach (Huston & DeAngelis 1994,
Smith & Waltman 1995, Wu et al. 2004).

Our study takes a significant step in this direction by
exploring competition in a spatially continuous environ-
ment where species interact indirectly by modifying re-
source availability beyond their local neighborhood. We
study the critical resource requirements of a successful in-
vader in such a system and find that the invasion thresh-
old can be approximated by a straight line on a double-
logarithmic scale, with a slope that is determined by the
ratio of logarithmic resource gradients. Thus, the like-
lihood of invasion in a two-species community can be
understood from the analysis of equilibrium resource dis-
tributions in a monoculture of the resident.

Using this approach, we clarify the bases of coexis-
tence in spatially variable habitats for a model that has
widespread and important applications (see Table 1).
Thereby, we synthesize two previous sets of results con-
cerning coexistence: i) uniform habitat theory, showing
that coexistence can arise from trade-offs in the use of
two resources (Tilman 1980, 1982), and ii) spatially vari-
able theory showing that coexistence can arise from a
growth-based trade-off (Hsu & Waltman 1993; Smith &
Waltman 1995; Wu et al. 2004). We show that in a spa-
tially variable habitat with two resources, both forms of
coexistence can occur.

Assuming that two species trade off in their resource
adaptation, in a uniform system both species can coexist
if each species mostly consumes its most limiting resource
(León & Tumpson 1975). In contrast, in a spatial envi-
ronment the species coexist if they each, in monoculture,
create a resource distribution with a relatively smaller
gradient (cI or cN ) of their most limiting resource. In
other words, invasion is possible if the resident species
does not “shade” its most limiting resource too much. As
a consequence, parameter combinations which allow co-
existence in a uniform system can lead to alternative sta-

ble states in a spatially extended system and vice versa.
These striking differences between resource competi-

tion in uniform and spatially variable systems can be
explained by the observation that in a uniform en-
vironment, resources are equally available everywhere,
whereas in a spatially extended system consumers com-
pete for locally available resources. Thus in a uniform
system, a species can suppress invasions by reducing
those resources for which it is the best competitor. In a
spatial setting the same strategy may not work because
a local reduction of vital resources does not exclude in-
vasions elsewhere in the habitat. Consider for instance
the situation shown in Fig. 2c. Here the resident, species
1, is the best nutrient competitor, so that in a uniform
environment invasions are prevented if species 1 reduces
nutrients more strongly than light (i.e. a small value of
k1/α1, or Γ1, in Fig. S1). In a spatial situation, how-
ever, this strategy (small value of k1/α1) will promote
invasion of species 2 (see Fig. 3), because species 1 can
only shade nutrients vertically above its favorable range,
whereas species 2 invades at a greater depth. There-
fore, to prevent invasions, species 1 should reduce light
as much as possible (large value of k1/α1) to deteriorate
growth conditions in the deep layers.

Applying our theory to a spatial phytoplankton model,
we identify two distinct regions of bistability, of either
alternative states for each species or bistability between
coexistence and a monoculture. Bistability has been the-
oretically described in phytoplankton communities with
differently mixed layers (Yoshiyama et al. 2009, Ryabov
et al. 2010). Here we identify bistability in a system
with uniform diffusivity, however, unlike in well-mixed
systems, the range of bistability is smaller than that of
coexistence (see Fig. 5).

Finally, in a spatial system the slope of the invasion
threshold changes with the biomass of the resident (see
Appendix S1), because species with higher density have a
stronger influence on resource distributions. In this way,
competitive interactions are intricately linked to produc-
tivity, which potentially can give rise to novel causal re-
lations between productivity and diversity (Gross & Car-
dinale, 2007; Hillebrand & Matthiessen, 2009).

Extensions of the theory

An essential part of our analysis is based on the as-
sumption of exponential decay of resources within the
favorable range of the resident (eqn 7). This assumption
makes spatial invasion analysis analytically tractable, as
it allows us to express the growth rate of an invader by
that of a resident species, thereby circumventing the com-
plicated problem of actually having to calculate spatial
density profiles. Exponential resource distributions cor-
relate with field data and can be observed in aquatic
systems (Figs. 2a and S4; Kirk 1994; Karl & Letelier
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Uniform system Spatial system with resource gradient

Invasion threshold simple form defined by resource values, curved shape, defined by gradients and resource availability,
on the ZNGI location depends on differences in µmax, m, or D

Coexistence with each species mostly consumes each species mostly consumes its least limiting resource or
resource trade-off its most limiting resource essential difference in resource requirements

→ spatial profiles with separation

Coexistence without not possible species with higher resource requirements (opportunist)
resource trade-off has larger µmax, or smaller m or D

→ spatial profiles without separation

Bistability equally likely as coexistence, less likely than coexistence,
each species mostly consumes each species mostly consumes its most limiting resource,
its least limiting resource possible also without resource trade-off

Table I: Comparison of competition outcome in uniform and spatially extended systems with inverse resource gradients

2008), but also appear in other systems, such as marine
sediments (Fig. S5).

With increasing distance from the favorable range
one should expect deviations from exponential profiles
(Fig. 2b). Invasion thresholds then become curved
(Fig. 1d) and our analytic theory only provides a first-
order approximation for competition between biologically
closely related species (but note that our general ap-
proach of investigating invasion thresholds does not have
this limitation). In this sense our theory complements
the approach developed by Yoshiyama et al. (2009) for
competition between sufficiently different species.

For simplicity we assumed that the favorable ranges
of both species are far from the system borders, so that
boundary effects on the species survival are negligible. A
general approach should include both forms of the inva-
sion threshold, presented in Fig. 1b and 1d, as limit cases,
where the range of positive growth is confined either by
the boundaries of a well mixed system or by the resource
gradients. Our numerical simulations in the phytoplank-
ton model (not shown) demonstrate that alternative sta-
ble states replace regimes of coexistence or vice versa, as
the favorable range moves from the interior of the water
column to the surface.

The analysis can be extended to take other system pa-
rameters into account. For example, in Appendix S4
we show how sinking or floating can effectively be in-
terpreted as a change of mortality rates, thus also influ-
encing the position of invasion thresholds. To simplify
settings we considered competition between two species
under equilibrium conditions. The approach could be
generalized to include temporal changes in habitat con-
ditions. Resource fluctuations shift SSCs together with
invasion thresholds and can provide different time niches
for r and K strategists (Grover 1990, 1991). A further
interesting perspective would be to consider additional
species. The success of a third competitor can be ana-
lyzed by including another invasion threshold in the re-
source plane. However, analysis of three-species com-
petition is more intricate because it involves the study
of invasion thresholds for three possible pairs of resident

species. In preliminary investigations we have found that
the combination of gleaner-opportunist and resource lim-
itation trade-offs may promote stationary coexistence of
three species on two resources.

The method developed in this manuscript is indepen-
dent of the nature of the abiotic resources involved. Sit-
uations with spatial profiles of two inverse chemical re-
source gradients arise naturally whenever resources are
provided from two opposite sides, such as interfaces be-
tween different environments (D’Hondt et al. 2004).
Moreover, our theory can easily be extended to include
spatial gradients of other vital factors, independently of
whether or not they are actually influenced or consumed
by the population. In fact, such a situation is obtained
as a special case of our phytoplankton model by setting
the light attenuation coefficient ki = 0, so that light in-
tensity decays exponentially with depth in the water col-
umn, independently of the biomass distributions. Sim-
ilar spatial variation of growth factors or stress agents
is abundant along environmental gradients and in tran-
sition zones between different habitat types. Thus, the
general approach that we develop should apply to a wide
spectrum of systems, ranging from flow reactors, stream
ecosystems and transport-limited vegetation systems to
marine sediments and many others.
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