
Chapter 18
Correlation, Tail Dependence and Diversification

Dietmar Pfeifer

18.1 Introduction

What is frequently abbreviated as Solvency II is perhaps the most challenging leg-
islative adventure in the European Union (besides Basel II/III for the banking sector)
in the last decade. It is a fundamentally new, risk driven approach towards a harmo-
nization of financial regulation for insurance and reinsurance companies writing
business in the European Union. One of the major aims of the Solvency II frame-
work is a customer protection limiting the yearly ruin probability of the company
to at most 0.5 % by requiring sufficient economic capital. The calculation of this so
called Solvency Capital Requirement (SCR) is based on a complicated mathemati-
cal and statistical framework derived from an economic balance sheet approach (for
more details, see, e.g., Buckham et al. 2011; Cruz 2009; Doff 2007 or Sandström
2006). An essential aspect in the SCR calculation here is the notion of diversifica-
tion, which aims at a reduction of the overall capital requirement by “distributing”
risk in an appropriate way. There are several definitions and explanations of this
term, some of which are presented in the sequel.

“Although it is an old idea, the measurement and allocation of diversification in portfolios
of asset and/or liability risks is a difficult problem, which has so far found many answers.
The diversification effect of a portfolio of risks is the difference between the sum of the
risk measures of stand-alone risks in the portfolio and the risk measure of all risks in the
portfolio taken together, which is typically non-negative, at least for positive dependent
risks.”

[Hürlimann (2009a, p. 325)]

“Diversification arises when different activities complement each other, in the field of both
return and risk. [. . . ] The diversification effect is calculated by using correlation factors.
Correlations are statistical measures assessing the extend to which events could occur si-
multaneously. [. . . ] A correlation factor of 1 implies that certain events will always occur
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simultaneously. Hence, there is no diversification effect and two risks identically add up.
Risk managers tend to say that such risks are perfectly correlated (i.e., they have a high cor-
relation factor), meaning that these two risks do not actually diversify at all. A correlation
factor of 0 implies that diversification effects are present and a certain diversification benefit
holds.”
[Doff (2007, p. 167f.)]

“By diversifiable we mean that if a risk category can be subdivided into risk classes and the
risk charge of the total risk is not higher than the sum of the risk charges of each subrisk,
then we have the effect of diversification. [. . . ] This effect can be measured as the difference
between the sum of several capital charges and the total capital charge when dependency
between them is taken into account.”
[Sandström (2006, p. 188)]

“In order to promote good risk management and align regulatory capital requirements with
industry practices, the Solvency Capital Requirement should be determined as the economic
capital to be held by insurance and reinsurance undertakings in order to ensure that ruin oc-
curs no more often than once in every 200 cases. [. . . ] That economic capital should be
calculated on the basis of the true risk profile of those undertakings, taking account of the
impact of possible risk-mitigation techniques, as well as diversification effects. [. . . ] Di-
versification effects means the reduction in the risk exposure of insurance and reinsurance
undertakings and groups related to the diversification of their business, resulting from the
fact that the adverse outcome from one risk can be offset by a more favourable outcome
from another risk, where those risks are not fully correlated. The Basic Solvency Capital
Requirement shall comprise individual risk modules, which are aggregated [. . . ] The cor-
relation coefficients for the aggregation of the risk modules [. . . ], shall result in an overall
Solvency Capital Requirement [. . . ] Where appropriate, diversification effects shall be taken
into account in the design of each risk module.”
[Official Journal of the European Union (2009, (64) p. 7; (37) p. 24; Article 104, p. 52)]

One central idea that is common to all of these explanations is that a small, zero
or even negative correlation between risks implies a diversification effect, while
a large correlation or positive dependence implies the opposite. This is, however,
largely based on a naïve understanding of the relationship between correlation and
dependence which is not at all justified from a rigorous statistical point of view
(see, e.g., Mari and Kotz 2001). This fact has also been emphasized by McNeil
et al. (2005) in Chaps. 5 and 6 of their monograph, and in part also by Artzner et al.
(1999).

A better way to tackle the understanding of a diversification effect is to replace
the notion of correlation by the notion of copulas which describe the dependence
structure between risks completely (see, e.g., Nelsen 2006, for a sophisticated sur-
vey). With respect to the “dangerousness” of joint risks, tail dependence is often
used as a characteristic quantity (see, e.g., McNeil et al. 2005, Sect. 5.2.3). In case
of a positive upper coefficient of tail dependence, it is likely that extreme events
will occur more frequently simultaneously, just in the spirit of Doff’s explanation of
diversification above. This might suggest that risks with positive upper tail depen-
dence are less exposed to diversification than those with zero upper tail dependence.
However, a more sophisticated analysis shows that this is also not true in general.

The aim of this chapter is twofold:
Firstly, to show that the notion of correlation is completely disjoint from the no-

tion of diversification under the risk measure VaR used in the Solvency II directive,
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i.e., we shall show that a state of no diversification between risks can be achieved
with almost arbitrary positive and negative correlation coefficients, especially with
the same marginal risk distributions.

And secondly, that a state of no diversification between risks can also be achieved
with a zero tail dependence coefficient, or even worse, with a partial countermono-
tonic dependence structure, in particular for risks being lognormally distributed
which is a basic assumption in the Pillar One standard model of Solvency II.

18.2 A Short Review of Risk Measures

In this section, we shall only focus on risk measures for non-negative risks since
these are the essential quantities in insurance, and are also the fundamentals of the
SCR calculation under Solvency II. We follow a simplified setup as in Sandström
(2006), Sect. 7.4 which is formally slightly different from the approach in Artzner
et al. (1999) or McNeil et al. (2005, Chap. 6).

Definition 18.1 Let X Let be a suitable set of non-negative random variables X on
a probability space (Ω,A,P ). A risk measure R on X is a mapping X →R

+ with
the following properties:

PX = PY ⇒R(X)=R(Y ) ∀X,Y ∈X , (18.1)

i.e., the risk measure depends only on the distribution of the risk X;

R(cX)= cR(X) ∀X ∈X ∀c ≥ 0,

i.e., the risk measure is scale-invariant;

R(X+ c)=R(X)+ c ∀X ∈X ∀c ≥ 0, (18.2)

i.e., the risk measure is translation-invariant;

R(X)≤R(Y ) ∀X,Y ∈X , X ≤ Y, (18.3)

i.e., the risk measure is monotone.
The risk measure is called coherent, if it additionally has the subadditivity prop-

erty:

R(X+ Y)≤R(X)+R(Y ) ∀X,Y ∈X . (18.4)

This last property is the crucial point: it induces a diversification effect for arbi-
trary non-negative risks X1, . . . ,Xn (dependent or not) since it follows by induction
that coherent risk measures have the property

R

(
n∑

k=1

Xk

)
≤

n∑
k=1

R(Xk) ∀n ∈N.
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In what follows we shall use the term “(risk) concentration effect” as opposite to
“diversification effect”, characterized by the converse inequality

∃(X,Y ) ∈X ×X :R(X+ Y) > R(X)+R(Y ).

Example 18.1 The popular standard deviation principle SDP which is sometimes
used for tariffing in insurance is defined as

SDP(X)=E(X)+ γ
√

Var(X) for a fixed γ > 0 and X ∈X = L2+(Ω,A,P ),

the set of non-negative square-integrable random variables on (Ω,A,P ). Obvi-
ously, SDP fulfils the properties (18.1) to (18.2) and (18.4); the latter because of

SDP(X+ Y) = E(X)+E(Y)

+ γ

√
Var(X)+Var(Y )+ 2ρ(X,Y )

√
Var(X) ·Var(Y )

≤ E(X)+E(Y)+ γ

√
Var(X)+Var(Y )+ 2

√
Var(X) ·Var(Y )

= E(X)+E(Y)+ γ

√(√
Var(X)+√Var(Y )

)2
= SDP(X)+ SDP(Y ) (18.5)

for all X,Y ∈X . Here ρ(X,Y )= Cov(X,Y )/
√

Var(X)Var(Y ) denotes the correla-
tion between X and Y . However, SDP does in general not fulfil property (18.3) and
is hence not a proper risk measure, as can be seen as follows: Let Z be a random
variable binomially distributed over {0,1} with P(Z = 1) = 1 − P(Z = 0) = p,
and 1/(1 + γ 2) < p < 1. Consider X := 2Z and Y := 1 + Z. Then X ≤ Y , but
R(X)= 2p+ 2γ

√
p(1− p) > 1+ p+ γ

√
p(1− p)=R(Y ).

Example 18.2 The risk measure used in Basel II/III and Solvency II is the Value-at-
Risk VaR, being defined as a (typically high) quantile of the risk distribution:

VaRα(X) :=QX(1− α) for X ∈X and 0 < α < 1,

where QX denotes the quantile function

QX(u) := inf
{
x ∈R | P(X ≤ x)≥ u

}
for 0 < u< 1.

Value-at-Risk is a proper risk measure, but not coherent in general. This topic
will be discussed in more detail in the next section (for a more general discussion,
see e.g., McNeil et al. 2005, Sect. 6.1.2).

The “smallest” coherent risk measure above VaR is the expected shortfall (ES),
which is in general defined as

ESα(X) := 1

α

{
E(X · I{X≥VaRα(X)})+VaRα(X)

[
α − P

(
X ≥VaRα(X)

)]}
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for X ∈ X and 0 < α < 1, where IA denotes the indicator random variable of some
event (measurable set) A. In case that P(X ≥VaRα(X))= α, this formula simplifies
to

ESα(X)=E
(
X |X ≥VaRα(X)

)= 1

α

∫ α

0
VaRu(X)du

(see McNeil et al. 2005, Definition 2.15 and Remark 2.17); note that the role of α
and 1− α are interchanged there). A more thorough discussion on the relationship
between VaR and ES (and other coherent risk measures) in connexion with Wang’s
distortion measures can be found in Hürlimann (2004). Expected shortfall is the
risk measure which is used in the Swiss Solvency Test (SST), see, e.g., Sandström
(2006, Sect. 6.8) or Cruz (2009, Chap. 17).

18.3 A Short Review of Copulas

The copula approach allows for a separate treatment of the margins of joint risks
and the dependence structure between them. The name “copula” goes back to Abe
Sklar in 1959 who used it as a function which couples a joint distribution function
with its univariate margins. For an extensive survey, see, e.g., Nelsen (2006).

Definition 18.2 A copula (in n dimensions) is a function C defined on the unit cube
[0,1]n with the following properties:

1. the range of C is the unit interval [0,1];
2. C(u) is zero for all u= (u1, . . . , un) in [0,1]n for which at least one coordinate

is zero;
3. C(u)= uk if all coordinates of u are 1 except the k-th one;
4. C is n-increasing in the sense that for every a≤ b in [0,1]n the volume assigned

by C to the subinterval [a,b] = [a1, b1] × · · · × [an, bn] is nonnegative.

A copula can alternatively be characterized as a multivariate distribution function
with univariate marginal distribution functions that belong to a continuous uniform
distribution over the unit interval [0,1].

It can be shown that every copula is bounded by the so-called Fréchet–Hoeffding
bounds, i.e.,

C∗(u) := max(u1 + · · · + un − n+ 1,0)≤ C(u1, . . . , un)

≤ C∗(u) :=min(u1, . . . , un).

The upper Fréchet–Hoeffding bound C∗ is a copula itself for any dimension; how-
ever, the lower Fréchet–Hoeffding bound C∗ is a copula in two dimensions only. If
X is any real random variable, then the random vector X = (X,X, . . . ,X) with n

components possesses the upper Fréchet–Hoeffding bound C∗ as copula, while the
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random vector X = (X,−X) with two components possesses the lower Fréchet–
Hoeffding bound C∗ as copula. Random variables who have C∗ or C∗, respectively,
as copula are also called comonotone or countermonotone, respectively. An impor-
tant and well-studied copula is the independence copula, given by C(u)=∏n

i=1 ui .
The following theorem due to Sklar justifies the role of copulas as dependence

functions:

Proposition 18.1 Let H denote some n-dimensional distribution function with
marginal distribution functions F1, . . . ,Fn. Then there exists a copula C such that
for all real (x1, . . . , xn),

H(x1, . . . , xn)= C
(
F1(x1), . . . ,Fn(xn)

)
.

If all the marginal distribution functions are continuous, then the copula is unique.
Moreover, the converse of the above statement is also true. If we denote by
F−1

1 , . . . ,F−1
n the generalized inverses of the marginal distribution functions (or

quantile functions), then for every (u1, . . . , un) in the unit cube,

C(u1, . . . , un)=H
(
F−1

1 (u1), . . . ,F
−1
n (un)

)
.

For a proof, see (Nelsen 2006, Theorem 2.10.9) and the references given therein.
The above theorem shows that copulas remain invariant under strictly monotone
transformations of the same kind of the underlying random variables (either in-
creasing or decreasing).

The following result shows the relationship between correlation and copulas.

Proposition 18.2 Let (X,Y ) be a bivariate random vector with a copula C and
marginal distribution functions F and G such that E(|X|) <∞, E(|Y |) <∞ and
E(|XY |) <∞. Then the covariance between X and Y can be expressed in the fol-
lowing way:

Cov(X,Y )=
∫ ∞
−∞

∫ ∞
−∞
[
C
(
F(x),G(y)

)− F(x)G(y)
]
dx dy.

For a proof see, e.g., McNeil et al. (2005, Lemma 5.24).

18.4 Correlation and Diversification

Before going into deeper details, we start with an illustrative example showing es-
sentially that risk concentration under VaR can occur with almost all positive and
negative correlation coefficients, even if the marginal distributions remain fixed. Ac-
cording to the Solvency II standard, we choose α = 0.005 for simplicity here, but
the example can be reformulated accordingly with any other value of 0 < α < 1.
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Table 18.1 Joint distribution of risks

P (X = x,Y = y) x P (Y = y) P (Y ≤ y)

0 50 100

y 0 β 0.440− β 0.000 0.440 0.440

40 0.554− β β 0.001 0.555 0.995

50 0.000 0.001 0.004 0.005 1.000

P (X = x) 0.554 0.441 0.005

P (X ≤ x) 0.554 0.995 1.000

Table 18.2 Moments and correlations

E(X) E(Y ) σ(X) σ(Y ) ρ(β)= ρ(X,Y )

22.550 22.450 25.377 19.912 −0.9494+ 3.9579β

Table 18.3 Distribution of aggregate risk

s 0 40 50 90 100 140 150

P (S = s) β 0.554− β 0.440− β β 0.001 0.001 0.004

P (S ≤ s) β 0.554 0.994− β 0.994 0.995 0.996 1.000

Example 18.3 Let the joint distribution of the non-negative risks X and Y be given
by Table 18.1, with 0≤ β ≤ 0.440, giving VaRα(X)= 50, VaRα(Y )= 40.

For the moments of X and Y , we obtain the values in Table 18.2 (with σ denoting
the standard deviation). This shows that the range of possible risk correlations is the
interval [−0.9494;0.7921], with a zero correlation being attained for β = 0.2399.

Table 18.3 shows the distribution of the aggregated risk S =X+ Y .
We thus obtain a risk concentration due to VaRα(S) = 100 > 90 = VaRα(X)+

VaRα(Y ), independent of the parameter β and hence also independent of the possi-
ble correlations between X and Y .

A closer look to the joint distribution of X and Y shows that the reason for this
perhaps unexpected result is the fact that although one can have a “diversification
effect” in the central body of the distribution, where a fraction of little less than
1− α of the risk pairs are located, the essential “concentration effect”, however, is
caused by a joint occurrence of very high losses, with a fraction of α of all risk pairs.

The following result is related to the consideration of “worst VaR scenarios” as
in McNeil et al. (2005, Sect. 6.2).

Proposition 18.3 Let X and Y be non-negative risks with cumulative distribution
functions FX and FY , respectively, which are continuous and strictly increasing on
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their support. Denote, for a fixed α ∈ (0,1),

Q∗(α, δ) :=min
{
QX(u)+QY (2− α − δ − u) | 1− α − δ ≤ u≤ 1

}
for 0≤ δ < 1− α.

Then there exists a sufficiently small ε ∈ (0,1− α) with the property

Q∗(α, ε) >QX(1− α)+QY (1− α)=VaRα(X)+VaRα(Y ). (18.6)

Assume further that the random vector (U,V ) has a copula C as joint distribution
function with the properties

V < 1− α − ε ⇐⇒ U < 1− α− ε and

V = 2− α − ε −U ⇐⇒ U ≥ 1− α − ε.
(18.7)

If we define

X∗ :=QX(U), Y ∗ :=QY (V ), S∗ :=X∗ + Y ∗,

then the random vector (X∗, Y ∗) has the same marginal distributions as (X,Y ), and
it holds

VaRα

(
X∗ + Y ∗

)≥Q∗(α, ε) > VaRα

(
X∗
)+VaRα

(
Y ∗
)=VaRα(X)+VaRα(Y ),

i.e., there is a risk concentration effect. Moreover, under the assumption (18.7), the
correlation ρ(X∗, Y ∗) is minimal if V = 1− α − ε −U for U < 1− α − ε (lower
extremal copula C) and maximal if V = U for U < 1 − α − ε (upper extremal
copula C).

Proof By assumption, the (non-negative) quantile functions QX and QY are con-
tinuous and strictly increasing over the interval [0,1] (with a possibly infinite value
at the point 1), so that

Q∗(α,0)

=min
{
QX(u)+QY (2− α − u) | 1− α ≤ u≤ 1

}
>QX(1− α)+QY (1− α),

the minimum being actually attained. Since by the continuity assumptions above,
Q∗(α, ε) is continuous in ε and decreasing when ε is increasing, relation (18.6)
follows.

The copula construction above now implies that

P
(
S∗ ≤ s

)≤ 1− α − ε

for s ≤QX(1− α − ε)+QY (1− α − ε)=VaRα+ε(X)+VaRα+ε(Y ),

P
(
S∗ ≤ s

)= 1− α − ε for VaRα+ε(X)+VaRα+ε(Y ) < s <Q∗(α, ε),

P
(
S∗ ≤ s

)≥ 1− α − ε for s ≥Q∗(α, ε).

(18.8)
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Table 18.4 Examples of risk measures and correlations for various values of σ

σ VaRα(X)

=VaRα(Y )

VaRα(X)

+VaRα(Y )

VaRα(X
∗ + Y ∗) ρmin(X

∗, Y ∗) ρmax(X
∗, Y ∗)

0.1 1.2873 2.5746 2.6205 −0.8719 0.9976

0.2 1.6408 3.2816 3.3994 −0.8212 0.9969

0.3 2.0704 4.1408 4.3661 −0.7503 0.9951

0.4 2.5866 5.1732 5.5520 −0.6620 0.9920

0.5 3.1992 6.3984 6.9901 −0.5598 0.9873

0.6 3.9177 7.8354 8.7134 −0.4480 0.9802

0.7 4.7497 9.4994 10.7537 −0.3310 0.9700

0.8 5.7011 11.4022 13.1401 −0.2136 0.9556

0.9 6.7750 13.5500 15.8969 −0.1002 0.9362

1.0 7.9712 15.9424 19.0412 0.0050 0.9108

1.5 15.4675 30.9350 40.4257 0.3127 0.6839

2.0 23.3748 46.7496 66.8923 0.2723 0.3794

2.5 27.5107 55.0214 86.2673 0.1399 0.1637

3.0 25.2162 50.4324 86.7034 0.0565 0.0611

Relation (18.8) in turn implies that VaRα(S
∗)=VaRα(X

∗ + Y ∗)≥Q∗(α, ε) which
proves the first part of Proposition 18.3, due to relation (18.6).

The remainder part follows from Theorem 5.25 in McNeil et al. (2005) when
looking at the conditional distribution of (X∗, Y ∗) given the event {U < 1 −
α − ε}. �

Note that both types of copulas that provide the extreme values for the correla-
tions, C and C, are of the type “shuffles of M”, see Nelsen (2006, Sect. 3.2.3).

In the following example, we shall show some consequences of Proposition 18.3
in the case of lognormally distributed risks, which are of special importance for
Pillar One under Solvency II, see, e.g., Hürlimann (2009a, 2009b).

Example 18.4 To keep things simple and comparable with Solvency II specifi-
cations, we shall assume that X and Y follow the same lognormal distribution
LN (μ,σ ) with μ ∈ R, σ > 0 and E(X) = E(Y) = 1 which corresponds to the
case μ = −σ 2/2. Table 18.4 shows all relevant numerical results for the extreme
copulas C and C in Proposition 18.3, especially the maximal range of correlations
induced by them. According to the Solvency II standard, we choose α = 0.005 (and
ε = 0.001, which will be sufficient here).

Note that the bottom graph in Fig. 18.1 resembles the graph in Fig. 5.8 in McNeil
et al. (2005).

The graph in Fig. 18.2 shows parts of the two cumulative distribution functions
under the extreme copulas C and C for S∗ :=X∗ + Y ∗ in the case σ = 1. Note that
especially for smaller values of σ (which is typical for the calculation of the SCR in
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Fig. 18.1 Top: Graph of
VaRα(X

∗ + Y ∗) (red) and
VaRα(X)+VaRα(Y ) (blue)
as functions of σ ; bottom:
graph of ρmax(X

∗, Y ∗) (red)
and ρmin(X

∗, Y ∗) (blue) as
functions of σ

Fig. 18.2 Graph of
cumulative distribution
functions for extreme copulas
for S∗ =X∗ + Y ∗ with σ = 1

the non-life risk module of Solvency II) the range of possible negative and positive
correlations between the risks is quite large, with the same significant discrepancy
between the Value at Risk of the aggregated risks and the sum of individual Values
at Risk.

Note also that any correlation value ρ of ρ(X∗, Y ∗) between ρmin(X
∗, Y ∗) and

ρmax(X
∗, Y ∗) can be achieved by a proper mixture of the extreme copulas C and C
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Fig. 18.3 Graph of
cumulative distribution
functions for extreme copulas
and conditional independence

namely for the copula

C(p)= λC + (1− λ)C with λ= ρmax(X
∗, Y ∗)− ρ

ρmax(X∗, Y ∗)− ρmin(X∗, Y ∗)
.

This is a direct consequence from Proposition 18.2, for example.
There are, of course, also other possibilities to achieve appropriate intermedi-

ary values for the correlation, for instance if U and V are conditionally indepen-
dent given the event {U < 1 − α − ε}. The graph in Fig. 18.3 adds a part of
the cumulative distribution function of S∗ := X∗ + Y ∗ for this case to the graph
in Fig. 18.2. The correlation between X∗ and Y ∗ is here given by ρ(X∗, Y ∗) =
0.3132.

18.5 Tail Dependence and Diversification

As in the case of a large positive correlation between risks, it might be intuitively
tempting to assume that a positive upper tail dependence would have a positive im-
pact on risk concentration, too. But this is not true here either. In this section, we
shall show that a risk concentration effect can occur with and without tail depen-
dence, while the marginal distributions remain unchanged.

Note first that the copula construction of Proposition 18.3 implies no upper tail
dependence since, by the continuity assumption for the marginal distributions made
there (see, e.g., McNeil et al. 2005, Sect. 5.2.3),

λu = lim
u↑1

P(U > u,V > u)

1− u
= 0
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because for 1 − (α + ε)/2 < u ≤ 1, we have 2 − α − ε − u < u and hence, for
these u,

P(U > u,V > u) = P(U > u,2− α − ε −U > u)

= P(u < U < 2− α − ε − u)= P(∅)= 0.

The following proposition shows that we can incorporate an upper tail dependence
in the construction of Proposition 18.3 without essentially loosing the central result.

Proposition 18.4 Assume that the conditions of Proposition 18.3 hold, with the
following modification of the copula construction in (18.7):

V < 1− α− ε ⇐⇒ U < 1− α − ε and

V =
{

2− α − ε − γ −U : 1− α − ε ≤U < 1− γ

U : 1− γ ≤U ≤ 1

with some non-negative γ < α. Then, for sufficiently small ε and γ , we still have

min
{
QX(u)+QY (2− α − ε − γ − u) | 1− α − ε ≤ u≤ 1− γ

}
>QX(1− α)+QY (1− α)

and hence again a risk concentration effect, i.e., VaRα(X
∗ + Y ∗) > VaRα(X) +

VaRα(Y ). Moreover, under this copula construction, the correlation ρ(X∗, Y ∗) is
again minimal if V = 1−α− ε−U for U < 1−α− ε (lower extremal copula Cγ )

and maximal if V =U for U < 1− α− ε (upper extremal copula Cγ ). Further, the
risks are in all cases upper tail dependent with

λu = lim
u↑1

P(U > u,V > u)

1− u
= 1. (18.9)

Proof The first two parts follow along the lines of the proof of Proposition 18.3.
For the last part, observe that we have U = V ⇐⇒ 1− γ ≤ U ≤ 1 which implies
P(U > u,V > u)= 1− u for 1− γ ≤ u≤ 1 and hence (18.9). �

Example 18.5 If we choose γ = 0.0005, we get the extension of the results in Exam-
ple 18.4, under the same initial conditions (see Table 18.5). The graph in Fig. 18.4
shows an extension of the graph in Fig. 18.3 for the extreme copulas Cγ and Cγ

for S∗ := X∗ + Y ∗ in the case σ = 1. The case γ > 0 corresponds to upper tail
dependence, the case γ = 0 correspond to the former situation with no upper tail
dependence.

18.6 Conclusions

As the preceding analysis has shown, neither the notion of correlation nor the notion
of tail dependence as such has in general a direct impact on diversification under the
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Table 18.5 Examples of risk measures and correlations for various values of σ

σ VaRα(X)

=VaRα(Y )

VaRα(X)

+VaRα(Y )

VaRα(X
∗ + Y ∗) ρmin(X

∗, Y ∗) ρmax(X
∗, Y ∗)

0.1 1.2873 2.5746 2.6134 −0.8710 0.9993

0.2 1.6408 3.2816 3.3811 −0.8193 0.9988

0.3 2.0704 4.1408 4.3308 −0.7471 0.9981

0.4 2.5866 5.1732 5.4923 −0.6568 0.9969

0.5 3.1992 6.3984 6.8962 −0.5515 0.9953

0.6 3.9177 7.8354 8.5730 −0.4349 0.9929

0.7 4.7497 9.4994 10.5516 −0.3107 0.9974

0.8 5.7011 11.4022 12.8581 −0.1830 0.9964

0.9 6.7750 13.5500 15.5133 −0.0553 0.9951

1.0 7.9712 15.9424 18.5310 0.0691 0.9744

1.5 15.4675 30.9350 38.8061 0.5658 0.9366

2.0 23.3748 46.7496 63.3300 0.8154 0.9224

2.5 27.5107 55.0214 80.5429 0.9185 0.9423

3.0 25.2162 50.4324 79.8272 0.9636 0.9909

Fig. 18.4 Graph of
cumulative distribution
functions for extreme copulas
and conditional
independence, with and
without upper tail dependence

risk measure Value at Risk. This means that any attempt to implement such con-
cepts into a simple Pillar One standard model under Solvency II for the purpose
of a reduction of the Solvency Capital Requirement in case of a diversification ef-
fect cannot be justified by mathematical reasoning. We can perhaps summarize the
consequences of this insight in a slight modification of a statement in McNeil et al.
(2005, p. 205):

The concept of diversification is meaningless unless applied in the context of a well-defined
joint model. Any interpretation of diversification in the absence of such a model should be
avoided.
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