Reflections on a canonical construction principle for multivariate copula models

Dietmar Pfeifer Institut für Mathematik Fakultät V Carl-von-Ossietzky Universität Oldenburg

October 2023

Abstract We consider a canonical construction principle for multivariate copula models on the basis of independent standard random variables which is in particular well suited for Monte Carlo Studies.

1. Introduction. There are many approaches to copula modelling in the literature, cf. e.g. the papers listed in the References below. Now for our investigations, let $\mathbf{U} = \{U_k\}_{k \in \mathbb{N}}$ be a sequence of independent standard random variables, i.e. each U_k has a continuous uniform distribution over the interval [0,1]. Let further T_1, \dots, T_n , $n \in \mathbb{N}$ be real continuous functions over $\mathbb{R}^{\mathbb{N}}$ and $V_i = T_i(\mathbf{U})$ for $i = 1, \dots, n$ with a continuous uniform distribution over [0,1] each. Then $\mathbf{V} = (V_1, \dots, V_n)$ is a representative of an *n*-dimensional copula.

Note that if $W_i = T_i(\mathbf{U})$ is not immediately uniformly distributed then $V_i = F_i(W_i)$ is so if F_i denotes the c.d.f. of W_i .

2. Particular Cases. Consider the following special cases of a construction as indicated in the Introduction.

Case 1. Let n = 2 and $T_1(\mathbf{U}) = U_1$, $T_2(\mathbf{U}) = \alpha U_1 + (1 - \alpha)U_2$, $0 < \alpha \le \frac{1}{2}$. it can easily be shown that the c.d.f. F_2 is given by

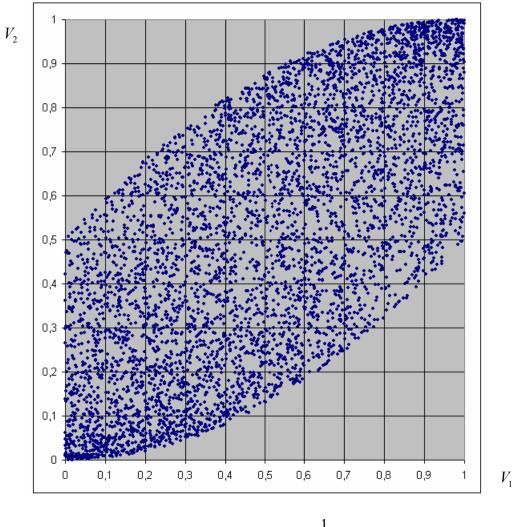
$$F_2(x,\alpha) = \begin{cases} \frac{x^2}{2\alpha(1-\alpha)} & 0 \le x \le \alpha \\ \frac{x}{\alpha} - \frac{\alpha^2}{2\alpha(1-\alpha)} & \alpha \le x \le 1-\alpha, \\ 1 - \frac{(1-x)^2}{2\alpha(1-\alpha)} & 1 - \alpha \le x \le 1 \end{cases}$$

The following graphs show 5.000 simulations of V each, for various values of α .

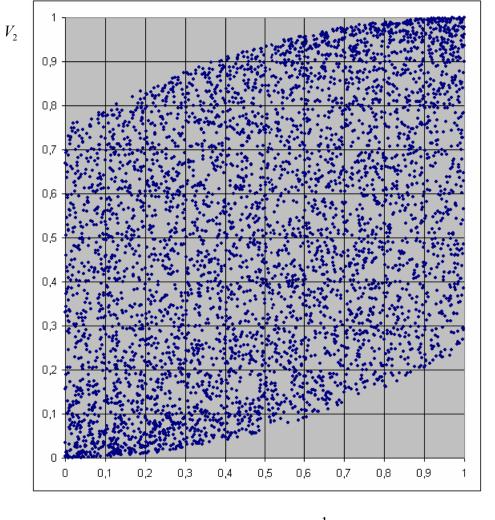
D. Pfeifer (🖂)

Institut für Mathematik, Schwerpunkt Versicherungs- und Finanzmathematik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland

E-Mail: dietmar.pfeifer@uni-oldenburg.de

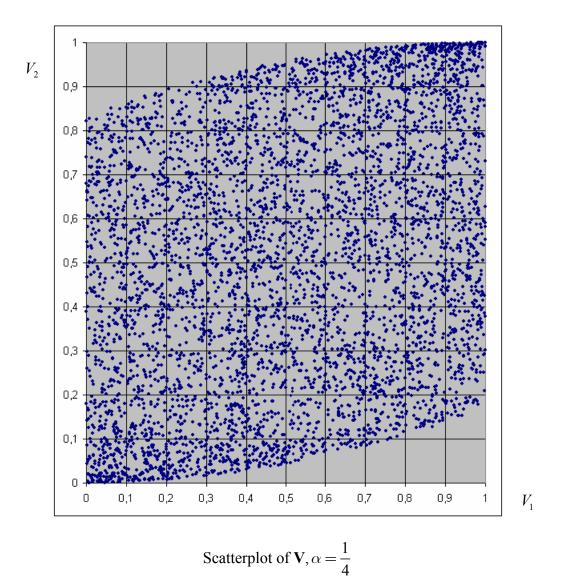


Scatterplot of **V**, $\alpha = \frac{1}{2}$



Scatterplot of **V**, $\alpha = \frac{1}{3}$

 V_1



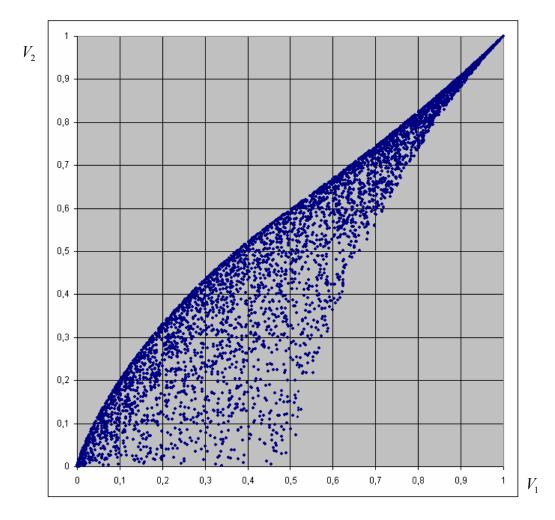
Case 2. Let n = 2 and $T_1(\mathbf{U}) = U_1 + U_2$, $T_2(\mathbf{U}) = U_1 \cdot U_2$. It is easy to see that the c.d.f. F_2 is given by

 $F_2(x) = (1 - \ln(x)) \cdot x, \ 0 < x \le 1$ and

$$F_1(x) = \begin{cases} \frac{x^2}{2}, & 0 \le x \le 1\\ 1 - 2\left(1 - \frac{x}{2}\right)^2, & 1 \le x \le 2 \end{cases}$$

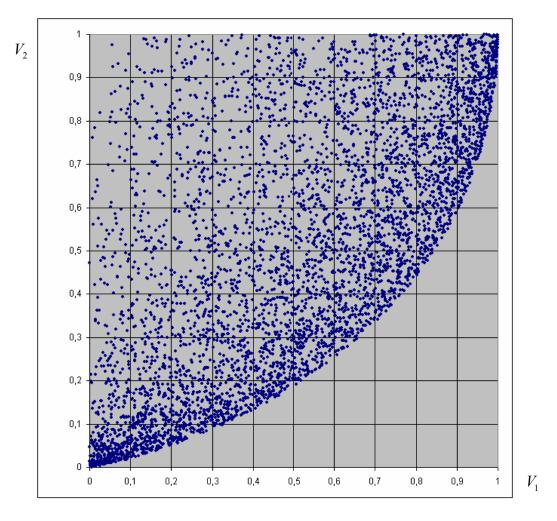
(cf. Case 1 for $\alpha = \frac{1}{2}$).

This follows from the observation that $-\ln(T_2(\mathbf{U}))$ represents the sum of two independent standard exponentally distributed random variables, hence is gamma-distributed. The following graph shows 5.000 simulations of **V**.



Scatterplot of \mathbf{V}

Case 3. Let n = 2 and $T_1(\mathbf{U}) = U_1 \cdot U_2$, $T_2(\mathbf{U}) = \max(U_1, U_2)$ with the c.d.f. F_2 given by $F_2(x) = x^2, 0 \le x \le 1$ and $F_1(x) = (1 - \ln(x)) \cdot x, \ 0 < x \le 1$ (cf. Case 2).

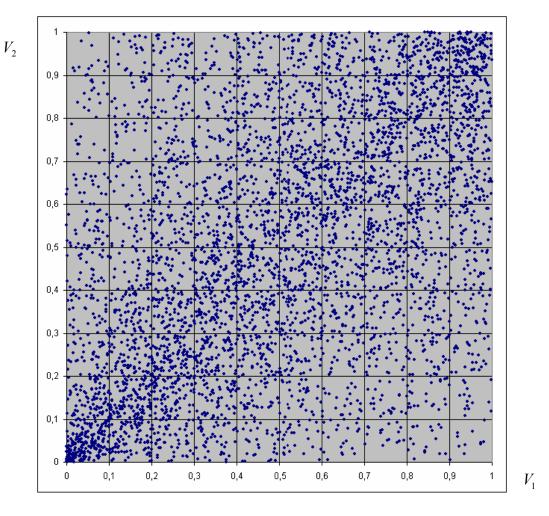


Scatterplot of V

Case 4. Let n = 3 and $T_1(\mathbf{U}) = U_1$, $T_2(\mathbf{U}) = (U_1 \cdot U_2)^{U_3}$. Note that $V_2 = T_2(\mathbf{U})$ is already uniformly distributed over [0,1] since for 0 < x < 1

$$P(V_{3} \le x) = P(-\ln(V_{3}) \ge -\ln(x)) = P\left(-\ln(U_{1}) - \ln(U_{2}) \ge \frac{-\ln(x)}{U_{3}}\right)$$
$$= \int_{0}^{1} \left(1 - \frac{\ln(x)}{w}\right) \cdot x^{1/w} dw = w \cdot x^{1/w}\Big|_{w=0}^{w=1} = x$$

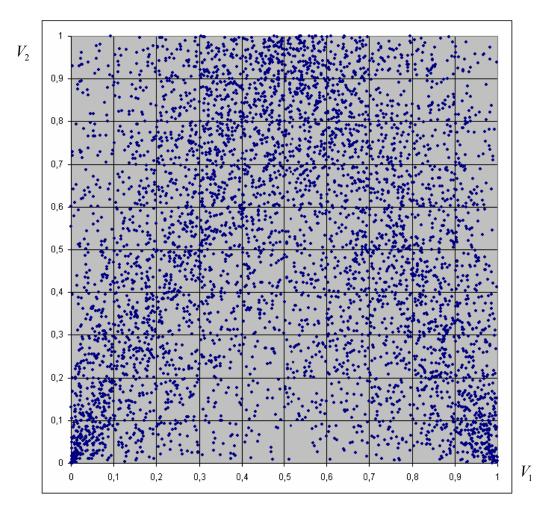
(note that $-\ln(U_1) - \ln(U_2)$ is gamma-distributed).



Scatterplot of V

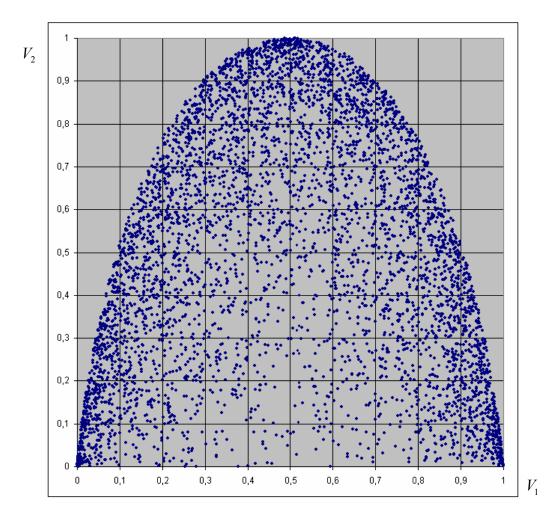
Case 5. Let n = 3 and $T_1(\mathbf{U}) = \frac{U_1}{U_2}$, $T_2(\mathbf{U}) = (U_1 \cdot U_2)^{U_3}$. Note that the c.d.f. F_1 of $T_1(\mathbf{U})$ is given by

 $F_1(x) = \begin{cases} \frac{x}{2}, & x \le 1\\ 1 - \frac{1}{2x}, & x \ge 1 \end{cases}$ while $T_2(\mathbf{U})$ is continuous uniformly distributed over [0,1], cf. Case 4.



Scatterplot of V

Case 6. Let n = 2 and $T_1(\mathbf{U}) = \frac{U_1}{U_2}$, $T_2(\mathbf{U}) = U_1 + U_2$. For the corresponding c.d.f.s, see Cases 5 and 2.



Scatterplot of V

References

- [1] C. Cottin and D. Pfeifer (2014): From Bernstein polynomials to Bernstein copulas. J. Appl. Funct. Anal. 9(3-4), 277 288.
- [2] F. Durante and C. Sempi (2016): Principles of Copula Theory. CRC Press, Taylor & Francis Group, Boca Raton.
- [3] R. Ibragimov and A. Prokhorov (2017): Heavy Tails and Copulas. Topics in Dependence Modelling in Economics and Finance. World Scientific, Singapore.
- [4] A. Masuhr and M. Trede (2020): Bayesian estimation of generalized partition of unity copulas. Depend. Model. 2020 (8),119–131
- [5] H. Joe (2015): Dependence Modelling with Copulas. CRC Press, Taylor & Francis Group, Boca Raton.
- [6] D. Pfeifer, D. Straßburger and J. Philipps (2009): Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas. Paper presented on the occasion of the International ASTIN Colloquium June 1 – 4, 2009, Helsinki. <u>http://arxiv.org/abs/2010.15709</u>

- [7] D. Pfeifer, H.A. Tsatedem, A. Mändle and C. Girschig (2016): New copulas based on general partitions-of-unity and their applications to risk management. Depend. Model. 4, 123 – 140.
- [8] D. Pfeifer, A. Mändle and O. Ragulina (2017): New copulas based on general partitionsof-unity and their applications to risk management (part II). Depend. Model. 5, 246 – 255.
- [9] D. Pfeifer, A. Mändle and O. Ragulina (2017): New copulas based on general partitionsof-unity and their applications to risk management (part II). Depend. Model. 5, 246 – 255.
- [10] D. Pfeifer, A. Mändle O. Ragulina and C. Girschig (2019): New copulas based on general partitions-of-unity (part III) the continuous case. Depend. Model. 7, 181 201.
- [11] A. Sancetta, S.E. Satchell (2004): The Bernstein copula and its applications to modelling and approximations of multivariate distributions. Econometric Theory 20(3), 535 562.
- [12] J. Segers, M. Sibuya and H. Tsukahara (2017): The empirical beta copula. J. Multivar. Anal. 155 (C), 35 – 51.