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Abstract 

Given an i.i.d. sequence of random variables with 
continuous cumulative distribution function, we present 
a construction for the jump times of an extremal process 
on the same probability space which interpolate the given 

record times. This provides another approach to the strong 
approximation of extremal processes developed by Deheuvels 

(1981,1982,1983), and allows for a simplified investi
gation of the relationship between the record times and 
the jump times of the extremal process. In particular, 

we show that the surplus number S of extremal jumps in 
(1, 00) over the record times is apnroximately Poisson 

distributed with exact mean E(S) = 1 - l' where l' denotes 
Euler's constant. Further, we show that an approximation 
of record times by the sequence of records rather than 
extremal jumps is a.s. of the same order, with a doubly 

exponential limiting distribution. The possibility of 
a joint strong approximation of records, record and 

inter-record times by Wiener processes derived from this 
is also pointed out. 
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1. Introduction 

Let {Xn ; n c :IN} be an i. i. d. sequence of random 

variables (r.v.'s) with continuous cumulative distribution 

(cdf) F, and let X(n) = max {X1 , •• 'Xn~' n c IN. Of particular 

interest are the times Un when these partial maxima change 

their values, defined by 

(1.1) 

Due to the continuity of F, (1.1) is a.s. well-defined; 

Un is called the nth record time, and Xu the nth record 
n 

value of the sequence. Several efforts have been made to 

clarify the asymptotic properties of record times, using 

different approaches such as canonical representations 

( [15] , [16J), strong approximation techniques ([3], (8)) 

or embedding into extremal processes ([9],(11)), all of 

them saying that {log Un; n e IN} asymptotically behaves 

like a homogeneous Poisson point process with unit rate. 

Here the extremal process {Eet); t >O~ (called extremal-F) 

is a right continuous non-decreasing pure jump Markov 

process such that for all selections 0 <. t1 <. ••• <: tk of 

time points we have 

(1.2) 
k p( (){E(t.)<.x.}) 

i=1 l - l 

t1 k t· -t· 1 
F (min{x1 , •• ,xn~) n F l l- (min{x., •• ,xk~) 

i=2 l 

where x 1 , •• ,xk c lli. Especially, from (1.2) it follows 
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that we have {X(1)' •• 'X(n)} ~ {E(1), •• ,E(n)! for all 

n e~, where ~ means equality in distribution. The 

structural properties of such extremal processes are 

well-investigated (cf. (5), [9J - (12],[1~]), and their 

importance is given by the fact that they occur as 

functional weak limits of the normalized processes 

{t (x( [nt)) - an); t > 0 ~ ([.] denoting integer 'part) where 
n 

an e JR, b n > 0 are constants which make t (X(n) -. an) 
n 

converge weakly to an extreme value distribution 

(whenever this is possible) (see e.g. [11J and further 

references therein). Also, if t"t'n; - 00 <:. n < QQ} denotes 

the jump times of the extremal-F process, it has been 

shown that these form a non-homogeneous Poisson point 

process with intensity ACt) =~, t >0 (in fact, the 

extremal process has infinitely many jumps in every 

neighbourhood of the origin). Correspondingly, the 

sequence {E("t'n); -oo<n< oo} of states visited forms a 

Markov chain with transititon probabilities 

(1.3) P(E(1: n +1 ) > y I E(1: n ) = x) = i~~ ;~;~, y ~ x 

where x,y are chosen such that 0 < F(x) ~ F(y) < 1. Since 

the distribution of{~ \ is independent of F, {E(t)~ n 

can be transformed to an extremal-A process {E~(t)l by 

letting E)f(t) = -log {-log F(E(t))~, t > 0, where 

!\ (x) = exp (- e -x), x c JR is the cdf of a doubly exponential 

distribution. Then {E*(~n)} forms a homogeneous Poisson 
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process onE with unit rate. It follows that the time

transformed process {E·(et ); t e llil now is homogeneous 

Poisson both in time and space. 

In the light of (1.2), one might ask whether extremal 

processes can also be constructed by some sort of extension 

of the partial maxima (or records) from the original 

sequence, on the same space. Such considerations have 

recently been made by Deheuvels ([1] ,(2)) who started 

with a strong apuroximation of the record times {Un~' 

which he then extended to a strong approximation of the 

inverse extremal process, and finally to the extremal 

process itself. We shall show here, that in a certain 

sense also a direct approach is possible, constructing 

first the extremal jump times from the given record times. 

This simplifies the investigation of the relationship 

between the jump times {~n~ of the extremal process and 

the record times {U }, completing results of Resnick 
n 

([9],[11)). In particular, if S denotes the surplus of 

extremal jumps over the record times in the interval 

(1,00), then S is approximately Poisson-distributed, 

with an exact mean 

(1.4 ) E(S) 1-1' 

where 1= .577 denotes Euler's constant. Also, 

10gUn = 10g't'n+S + 0(1) a.s. 

log't'n + O( logn) a.s. (n ~ (0) 
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where {log~n\ forms a homogeneous Poisson process with 

unit rate. On the other hand, if F is the cdf of an 

exponential distribution with unit mean, it can be 

shown that 

';£ 
(1.6) Xu - log U ~ /\ 

n n 
(n ~ (0) 

from which it follows that 

(1.7) log Un Xu + O( log n) a.s. 
n 

(n ~ (C ) 

where again (xu i forms a unit-rate Poisson process. 
n 

This indicates that it is possible to approximate 

simultaneously records, record and inter-record times 

by the same Poisson process, or, likewise, by the same 

Wiener process in the strong sense. 

2. Construction of the extremal jumps 

In view of what has been said earlier, it is easier 

to work with the time-transformed process (E(et ); t e JR l 

since then the corresponding jump times {log 'tn ;-00< no( co} 

form a homogeneous Poisson process with unit rate. Further, 

by the general structure of extremal processes~ the jump 

times log1:n must be a.s. concentrated in the random 
()Q 

set U ( log (Uk - 1) , log Uk). In fact, in our construction, 
k=1 

log '1:1 e (lOg(U1 - 1) , log U1 ). 

Let, for real numbers a <: b, N (a, b) denote the number 



52 

·of log'1: -points in the interval (a,b). As a simple n 

consequence of the Poissonian nature of tlog~n\' in a 

successful construction, the random variables 

Ak = N( log (Uk-1). log Uk) should be conditionally 

independent given the cr-field .A= u(U1 ,U2 , •• ), following 

a below truncated Poisson distribution Q(Ak ), say, with 

parameter 

(2.1 ) 

where 

(2.2) 

), 
k 

Qo.,j) 1 -x-
e -1 j! 

j e:IN 

Further, conditioned on A and the number Ak , the location 

of the jumps in (log (Uk-1), log Uk) s.hould be distributio

nally the same as that of an ordered sample of a population 

distributed uniformly over this interval. 

--

0 log 2 log, log 4 log 5 log 6 t 

log Uo 110g U1 I log U2 

log~1 log"t 2 log 1:, 
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By means of two independent i.i.d. uniformly U(0,1) -

distributed sequences {Wn(i); n c IN 1, i = 1,2 (which can 

independently of {Xn~ be defined on the same probability 

space, eventually after enlarging by products) we are 

thus able to interpolate the given record times by 

extremal jumps, in the following way. 

Step 1. Determination of number of jumps. 

Let FQ(A) denote the cdf of the truncated Poisson 

distribution with parameter A ~ 0. Define 

(2.3) Ak 
-1 

FQ(.\ )(Wk (1)), k cJN, 
k 

where Ak = log (U~~1) • Ak denotes the number of jumps 

to be implanted in the interval (log (Uk -1) , log Uk)' 

Step 2. Determination of position of jumps. 

Let 

Bk { 

0, 

A1 + ••• + Ak , 

k=O 

k > 1. 

Define unordered samples 

(2.4) D\k) WB ,(2) log (Uk-1) + (1-WB +J,(2))log Uk 
J k-1 +J k-1 

for 1 ~ j ~ Ak , k!.. 1. Let 

(2.5) log'C
Bk

_
1

+j D g ~, 1 i j i Ak , k > 1 

(ordered samples). 
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",. Extremal jumps and record times 

From the foregoing it is clear that the sequences 

{log"t ; n e 1n and {log U ; n e IN\ are closely related 
n n 

since log"'t only takes values in the set 
n 

co 
U ( log (Uk-1) , log Uk); particularly, there exists some 

k=1 

a.s. finite r.v. S '>0 such that 

for sufficiently large n (cf. [9],[11J). From here it 

follows that 

log1: S + o(exp(-n+nH(1)!) n+ n 

= log"t n + O(logn) a.s. (n -9 00 ) 

where t H(t), t > 0 belongs to the upper class of a Wiener 

process (see [ 8]) since log U - log (U _1)N J (n -'00 ). 
n n n 

Relation (,.2) does not provide the best possible 

strong approximation of {logUn~ by a homogeneous Poisson 

process with unit rate. In fact, in [8] it was proved 

that there exists a Poisson arrival process {Tn; n e IN i 

with unit rate, defined on the same probability space 

as the original sequence, and a r. v. Z ~ 0 which is 

asymptotically independent of this process such that 

log U = T + Z + o(exp{-n + n H(1)}) a.s. (n-.. cO) n n n 
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which gives an a.s. 0(1) rate result. It was also shown 

that Z can be represented as 

0.4) Z 
00 Wk 
L log (1 + U -1) 
k=1 k 

where {W k \ is an i.i.d. sequence of U(0,1)-distributed 

r.v.'s, independent of {uk5 , and that E(Z) = 1-r 
(cf. also [7]). Although tT \ and tlog~ } are not directly 

n n 

comparable, there is however an interesting conditional 

relationship between Z and S, given the a-field A generated 

by the record times. 

Theorem 1. we have 

0.5) E( c I ~) E(zIA) a. s. , 

hence E(C) 1 - r. 

Proof. According to what has been said in Section 2, 

we have 

E(Akl Uk) UklOg(U~~1) a.s. 

which is the (conditional) mean of the truncated Poisson 

distribution Q(A k ) with Ak 109(U~~1)' A little 

analysis shows that also 

0.6) Uk log (U~~1) E {lOg (1 + U:~1) Iuk } tl B.,;. 

from which the result follows by the observat.i C':, i LcJ t 
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S L (Ak - 1); hence 

k=1 
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E(Z IA) a.s. 

In the light of (3.1), S is the surplus number of extremal 

jumps over the record times counted in (1,00). 

It should be pointed out that since {log~nl has i.i.d. 

increments following an exponential distribution with unit 

mean, 

of Z* 

the limiting distribution of log U - log 1: is that 
S n n 

= LYk , where {Yk \ are LLd. exponential r.v.'s 
k=1 

with unit mean, independent of S, such that again 

E(Z*) = 1- 6 , However, Z~ and Z are not identical in 

distribution since peS = 0) ~ '0,>0; hence Z k has an atom 

at zero, while Z has no atoms. 

Let now In' n e lli denote the indicator r.v. for the 

event that a record occurs at time n. It is well-known 

that {In) is an independent sequence with success proba

bilities 

(3.8) p( I = 1) 
n 

1 
n (= Pn' say). 

Let ~ denote the point process of superpositions of the 

Bernoulli processes induced by In' n.? 2, and 

Let ~ denote a Poisson point process with mean measure 

E(f(B» = L. f-k' B!: lli\{1} which is coupled with ~ 
keB 
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in the sense of Serfling (13) and Karr [6], Chapter 1.6. 

Then, from Section 2, we see that 

(.3 .10) S ~ limff(Bn) - ~(Bn)~ 
n-:o-co l 

with B = t2,3, .. ,nj which from another point of view 
n 

shows that 

0.11) E(S) = limtE(!(Bn)) - E(~(Bn))~ 
n·~ 

f ..E.. 1 t 
= lim \.log n - L k ) 1 - d. 
n~.,.. k=2 

Alternatively, a distributionally equivalent representation 

for the r.h.s. of (3.10) is 

0.11) 
;l 0<:> 

S 2: I (Y -1) 
2 n n 

n= 

00 

~ _W 
n=2 n' 

say 

where tY ) is an independent sequence of below truncated n 

Poisson r.v.'s with distribution Q(fn)' independent of 

{I L Let now» = f- -p , and Z be Poisson r.v.'s with n n n n n 

mean ~ • Then the following estimation holds. n 

Theorem 2. 

0.12) d(.t(W ) ,:feZ )) sup I pew C A) - P(Z e A) I 
n nAn n, 

p(Z = 1) -peW = 1) 
n n 

2 
-""n t Pn f-'n} e e (~- p ) - - < 

n n 2 
~~ 
3 

-f' 
e n 



Proof. We have 

pew = 0) 
n 

iJ- n 1-p +---
n f"-n 

e -1 

k+1 
~n 
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(1-p )(1+"- ) "n '-n 

k+1 
"'"n (1-Pn) peW = k) 

n Pn iJ-
(k+1)!(e n_1 ) (k+1) ! 

k 
-)I vn 

P (Zn = k) = e n k!' k > 0 

from which it follows that 

P(Zn = 0) 

P(Wn = 0) 

p(Z = k) 
n 

peW = k) n 

Ck+1 ) 

(by series expansion) 

Pn k-1 
e I"-n ~ 0 

k > 1 

(actually, in the cases considered here this ratio 

is always strictly less than 1) 

PCZn = 1) 

PCWn = 1) 

which is strictly greater than 1 in the range 

considered here. 

It follows that the sup in the total variation distance 

between Zn and Wn is achieved for the set {1\ , for all 

n, hence the result. 
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Summing up in (3.12), we get the following estimation, 

according to Serfling [13). 

Corollary. The surplus number S of extremal jumps over 

the record times in (1,~) is approximately Poisson 

distributed with mean 1 - -~ the distance in total 

variation is bounded by 

0.13) 
.D 

d(.t(S), 1'(1-0)) S. L {P(Zn=1) - P(Wn =1)\ !: .065. 
n=2 

Here pet'") denotes a Poisson distribution with mean f.I.. 

4. Records and record times 

In this section we shall show that record times can 

likewise be strongly apnroximated by the record values, 

rather than extremal jumps, with the same a.s. rate. 

Before doing so, we shall briefly pass over to lower 

records and lower record times {L " n >O~ of the n -

original sequence {Xn 1 , defined by 

(4.1 ) LO = 1, Ln+1 inf {k; Xk < XL ~ 
n 

n > O. 

Obviously, {Ln\ again is a Markov chain of the same type 

as {Unl. Suppose now that all Xn are exponentially 

distributed with unit mean. It is clear that 

X(1) = min Ix 1 ,oo,Xn } then also is exponentially 

distributed, and nX(1) is eXDonentially distributed with 

unit mean. The following --1rprising result shows that 
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the latter statement remains valid if n is replaced by 

the Markov time Ln' 

Theorem 3. 

i) Ln and LnXLn are independent for all n ~ O. 

ii) LnXL is exponentially distributed with unit mean. 
n 

Proof. The statement is trivial for n = O. 

According to the upper record case, {(L ,XL )i also forms 
n n 

a Markov chain with transition probabilities 

(4-.2) 

For n 

hence 

P (L 1 = k, XL > x I Ln = m, XL = y) 
n+ n+1 n 

P (X2 ' • • , Xk > Y ,. Xk 1 .,. x) -m - -m+ 

-(k-m-1)y( -x -y) e e - e , 

o (Le. m 1) this yields 

00 

f -(k-2)y( -x -y)-y e e -e e dy 

-x e 

x 

e-x 

k(k-1) 

which proves i) and ii) for n = 1. 

-kx e 

k(k-1) 

Assume now that the statement is true for some n > O. 

Then 



peL = k, XL > x) 
n n 
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P(Ln = k) -kx e 

hence 

fn(k,y) k peL = k) e-ky is a i:f®'t' -density of (L ,XL) 
n n n 

where ~ denotes counting measure and 't' Lebesgue measure 

onJR+. Now 

peL 1 = k, XL > x) 
n+ n+1 

00 

L: ~e-(k-m-1)Y(e-X_e-Y)fn(m,y) dy 
m<k 

x 
00 

L m P(L
n 

= m) f e-(k-1)Y(e-x_e-y ) dy 
m <. k x 

L m m <. k lr(lr_11 P(Ln = m) 
-kx e 

e -kx L peL 1 = k I L = m) peL = m) 
k n+ n n m< 

peL 1 = k) n+ 
-kx e 

which proves the statement also for n+1, and hence 

the theorem by induction. 

Corollary. 

i) Xu - 10gU is asymptotically I\-distributed (n~oo). 
n n 

ii) log Un Xu + O( log n) 
n 

a.s. (n~oo). 

-X 
Proof. Define V = - log ('1 - e n), n c IN. Then (V \ is --- n n 

also i.i.d. exponentially distributed with unit mean, 
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and, if tLn\ denote the lower record times w.r.t. tVni, 

{U } the upper record times w.r.t. {Xn~' then L = U n n n 

for all n. By Theorem 3, 

-logL -logVL = -logUn - logV U n n n 
is 

(exactly) A -distributed for all n. 

But -log Vu 
n 

= -log (-log (1 - exp(-XU ))) 
n 

Xu + 0 (1 ) 
n 

for n ~cO, which proves i). 

a.s. 

ii) is a simple consequence of the Borel-Cantelli Lemrra 

since every /\ -distri buted sequence of r. v. 's (independent 

or not) is at most O(logn) a.s. for n-.cO. 

Note that under the condition of exponential distribution 

for {Xn } the sequence of records {XU i is a Poisson arrival 
n 

process with unit rate. This means that in any case, 

{log Uni can - up to O( log n) - be strongly approximated 

by such a Poisson process; we simply have to choose 

the sequence {- log (1 - F(XU ») ~. 
n 

Let Ll = U - U n c:IN denote the corresponding n n n-1' 
inter-record times. Theorem 3 then gives immediately rise 

to the following strong approximation result. 

'l'heorem 4. 

i) There exists a Poisson arrival process {Tnl with 

unit rate, defined on the same probability space 

where {XnJ is defined, such that 



(4.4) log Un 

logAn 
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T + O(log n) a.s. n 

T + O(log n) a.s. n 

(n-+ 1>0) 

(n -+ co ) 

ii) W.l.o.g., there exists a Wiener process {W(t);t >O} 

on the same probability space where the \Xn\ are 

defined, with EOJ(t» = 0, o-2(W(t» = t, such that 

(4.5) log U 
n n + Wen) + O(log n) a.s. (n-+OQ) 

log Ll n n + Wen) + O(log n) a.s. (n -+(0) 

-10g(1-F(XU » n + Wen) + O(log n) a.s. (n-+eO). 
n 

Proof. i) is obvious from Theorem 3 and [8], choosing 

T = - log (1 - F(XU ». ii) follows from i) by the usual 
n n 

strong approximation procedure a la K6mlos-Major-Tusnady 

for {T i. n 

It should be pointed out that the last result has been 

th extended also to the case of k -records by Deheuvels 

[4] recently, using different techniques. 

Note that the Corollary to Theorem 3, i) also reflects 

the fact that E(logUn ) = n+1-r+o(1) (n-+o;» 

as shown in [7J since ''0 is the mean of a A -distributed 

r.v. Likewise, this can also be concluded from (3.2) 

since log U = 
n 

E( log-c n ) = n, 

If 
10g1:'n + Zn + 0(1) a.s. (n ~ 00 ), where 

* E(Zn) = 1 - r. 
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