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Communicated by J.A. Goldstein 

Introduction 

We investigate the approximation of the distribution of 

the sum of independent (but not necessarily identically 

distributed) Bernoulli random variables by Poisson 

distributions with respect to selected probability 

metrics (total variation, Kolmogorov metric, Fortet

Mourier metric). Special emphasis is given to the 

problem of the (asymptotically) best choice of the 

Poisson mean as well as a precise evaluation of the 

leading term in the corresponding distance. The general 

approach to these kind of problems chosen here is an 

appropriate application of the theory of operator 

semigroups, generalizing and improving earlier results 

of LeCam (1960). 
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§ 1. Preliminaries and basic definitions 

Let X1 ' •• 'Xn be independent Bernoulli random variables 

with values in {O,1} and success probabilities 

p.(n) = p(X. =1), 
~ ~ 

(possibly depending on n), and Y1 ' •• 'Yn be independent 

Poisson random variables with expectations 

E(Y.) = p..(n), 
~ ~ 

1 ~ i '= n. 

We are interested in the approximation of the 

distribution of Sn 
n 

of Tn .L Yi . As 
~=1 

n 
L X. by the (Poisson) distribution 

i=1 ~ 
a measure of accuracy, we shall 

consider suitable metrics on the set of all probability 

measures concentrated on the non-negative integers l+, 

such as 

(1.1 ) 

1 00 

= -2 L I peS = k) - peT = k) I 
k=O n n 

(total variation), 

(1.2) 

(Kolmogorov metric), and 
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inf E ( I Sn - Tn I ) 
Q 

~ I t {P(Sn = j) - P(Tn = j) J I 
k=O j=O 

where Q ranges through all possible joint 

distributions ~(Sn,Tn) of (Sn,Tn ) with given 

marginal distributions ~(Sn) and £(Tn ) 

(Fortet-Mourier metric; a specific Wasserstein 

metric). 

Note that we have used the notation d(Sn,Tn ) etc. 

instead of d(~(Sn),£(Tn)) for simplicity. 

For a good survey on probability metrics the interested 

reader is referred to Zolotarev (1984) and Vallender 

(1973). Statistical applications of these metrics are 

outlined in Serfling (1978) and Deheuvels, Karr, Pfeifer 

and Serfling (1986). 

While the case of Poisson approximation in total variation 

has received relatively complete treatment by various 

authors such as LeCam (1960), Kerstan (1964), Chen 

(1974, 1975), Serfling (1975, 1978), Barbour and Hall 

(1984) and Deheuvels and Pfeifer (1986 a ), relatively 

little is known with respect to the metrics dO and d1 
(see e.g. Franken (1964), Gastwirth (1977), Serfling 

(1978)). Following an idea developed in Pfeifer (1985a), 

we shall show in the sequel that approximation problems 

of the above kind can very generally be treated in an 

operator semigroup framework resembling LeCam's (1960) 
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approach, allowing at the same time also for a 

discussion on (asymptotically) optimal choice problems 

for the Poisson mean as in Deheuvels and Pfeifer 

(1986 a). 

For abbreviation, we shall denote by pen) 

(P1(n), •• ,Pn(n)), ~(n) = (~1(n)' •• '~n(n)) and A(n) 

(A1(n)' •• '~n(n)) where 

(1.4) - log (1 - p. (n)) , 1. 
1 , i , n. 

The choices ~(n) = pen) and ~(n) = A(n) are of special 

interest here since they turn out to be asymptotically 

optimal when 

or 

(1.6) 

n 
L p. (n) -+ 00 , 

i=1 1. 

o( 1) 

n 2 
L Pi (n) 

i=1 

(n ~ 00). 

0(1 ) (n .-. 00 ) 

More generally, it will be of importance to consider 

also the choices 

(1.7) 2 
IA- i (n) = Pi (n) + t( t) Pi (n) , 

for some constant ret) c [o,~] in case that 

n 
(1.8) .L Pi (n) ~ t, max {Pi (n)} = 0(1) 

1.=1 1'.L =1.-n 

(n ... cO) 

for some positive finite t. It will be shown in the 

sequel that under condition (1.8), there will always 
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be such a T(t) which asymptotically minimizes the 

distance between ~(Sn) and ~(Tn) measured with respect 

to the above metrics. (The case t = 0 could have been 

included here as well since A.(n) = p.(n) + -21 p~(n) + ••• 
~ ~ ~ 

••• + o(p~(n)), hence 0(0) = ~ would be an appropriate 

choice; correspondingly, under (1.5) which corresponds 

to the case t = QO, we would have ''0(00) = 0.) 

§ 2. The semigroup setting of Poisson approximation 

Let .x denote either the Banach space ,(,1 of all 

absolutely summable sequences or the Banach space £~ 

of all absolutely bounded sequences f = (f(0),f(1), ••• ), 

resp. If.At denotes the set of all probability measures 

concentrated on ~+, then any measure m c .A-<. can be 

identified with the sequence fm = (m({0}),m({1D, ••• ) 

c 11 <.= )E • For f c --e1 , g c X the convolution f * g is 

defined by 

(2.1) f jf g(n) 
n 
L f(k) g(n-k), 

k=O 

Then again f lit g C * , and we have 

(2.2) 

n C ll+. 

where II • 1I)t denotes the corresponding norm onX • 

Any measure m c JKthus defines a bounded linear operator 

on )E via 

aO k 
l: m({kl) B g, g c ~ 

k=O 
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where B g = e.1 if g, and E k for k e z::+ denote s the Dirac 

measure concentrated at k. If, as usual, I denotes the 

identi ty mapping on X, then A = B-1 generates a 

contraction semigroup given by 

(2.4) tA 00 t k k 00 -t t k 
e g = L i{T A g = L e -k' E. k '* g = P( t) g, g e ~ 

k=O . k=O . 

for t ~ 0, where pet) denotes the Poisson distribution 

with mean t. The semigroup given in (2.4) is also called 

the Poisson convolution semigroup. It is easy to see 

that the generator A is a difference operator on ~ 

which can also be expressed by 

{ 

g(n-1) - g(n) , 
A g(n) = 

-g(O), 

n ~ 1 

, g e 1 • 

n = ° 
On the other hand, if B(t i ), 1 ~ i ~ n, denote 

binomial distributions over {0,1} with success 

probabilities ti e [0,1] then also 

(2.6) gel 

and hence, in the case of independence, 

n 
(2.7) n (I+p.(n)A)g 

k=1 1 

Further, by (1.1) to (1.3), we see that for measures 

m1 , m2 e.M the metric distances can equivalently be 

expressed by 
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(2.8) 

(2.9) 

(2.10) d1 (m1 ,m2) = lim II (m1 - ID2 )hn ll 1 with 
n-+ oo .e 

hn = (1,1, •• ,1,0,0, ••• ), containing nones 

followed by an infinite string of zeros. 

For short, we shall also write 

(2.11) 

although h is not an element of 11 , considering this 

expression as the limit in (2.10). 

~ith g,h as above, we can thus write 

(2.12) n n I deS ,T ) = ;11(expf t:~. (n)}A - n (I+p. (n))A)gI1 
n n i=1 1 i=1 1 ~ 

(2.13) 
n n 

dOeS ,T ) = II(exp{L: f-L.(n)}A- TT(I+Pi(n))A)hll 
n n i=1 1 i=1 /l00 

(2.14) 
n n 

d1 (Sn,Tn ) = II(exp[:L= p.i(n)}A- .TT(I+Pi(n))A)hIl 1 • 
1=1 1=1 .J. 

In order to evaluate these expressions precisely it will 

be necessary to deal in general with differences 

(2.15) for t ~ 0, ti e [0,1] • 

n 
For t Lt. we would expect the difference in (2.15) 

i=1 1 

to be close to the operator ~ \ f!::. t~ } e tAA2 in some 
i=1 1 
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sense. A more precise statement is as follows. 

Theorem 2.1. Let ~ be an arbitrary Banach space and A 

the bounded generator of a (uniformly continuous) 

contraction semigroup acting on ~. Let further ti e [0,1] , 
n n n 

1 f: i " n, and t = .L t., s = L t~, and v L t 1 
i=1 1 i=1 1 i=1 1 

Then, for all f e ~, we have 

(2.16) 

where K 

eKUA2I1s+ IIAIIHv~etAA3rll +~s21IetAA4-fI11 

1 + ~ (1 + II A II ) e II A II • 

Proof. We shall make use of a suitable telescoping 

argument valid for commuting operators U1 , •• ,Un ' 

V1 ,--,Vn on ~ for which we have 

n n n 
(2.17) nU·-TIv. 

i=1 1 i=1 1 
L U. 1- - -u (U. -v . )V

1 
•• ·V. 1 

i=1 1+ n 1 1 1-

(cf. also the proof of Theorem 1 in LeCam (1960)). 

From this we obtain, letting w. = Lt., 
1 j=t=i J 

(2.18) II etAf - IT (I + t .A)f - ~ f!:. t~ eWiAA2rli l:: 
i=1 1 i=1 1 
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Further, for every u ~ 0, we have 

u 

(2.19) e -uA ( I +uA) = (I + uA) {I - uA + f (u-x) e -xA A 2 dX} 

° u 
= 1- u2A2 + (I+uA) J (u_x)e-xAA2 dx, 

° 
hence 

(2.20) 

which is bounded by exp(KIIA2I1u2 ) for u f 1. 

Second, we have, by Taylor's formula and the contraction 

property, for u,w ~ 0, f e~, 

(2.21 ) 

Third, by (2.17), we have, for every w ~ 0, f e ~, 

(2.22) II e w A A 2 {iF( e - t 1 A ( I + t 1 A) - I} f /I ' 
1=1 

\::1 in' II e -tjA(I+t .A)III!ce -tlA(I+tlA)_I)eWAA2fll 
1=1 j=1+1 J 

where the last estimation follows from (2.19). 

Fourth, for j = 1,2,3, we have 

(2.23) 

hence the right hand side of (2.18) js bounded by 
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(2.24) 

Fifth, we have, again by Taylor's formula, 

(2.25) 

The theorem now follows from (2.18), (2.24) and (2.25) •• 

It should be pointed out that if I+uA, 0" u ~ 1, also 

is a contraction (as is the case in our applications, 

where I+uA = B( u) ), then K may likewise be replaced by 

the smaller constant K* ::: 1 + ~ e IIAU. Note that in 

general, the semigroup f e -uA; u ~ 0 i used in the proof 

will in general not be a contraction (as is the case in 

our applications), but that we only have 

u ~ o. 

The following result will be the key for an appropriate 

treatment of optimal choice problems in Poisson 

approximation mentioned above. 

Theorem 2.2. Under the conditions of Theorem 2.1, 

we have, for arbitrary u ~ 0, f e *, 

(2.26) 

with 
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(2.27) I Rn (f) I " eKftA2U s+ nA~ vie tAA3f II + ~ 8 211e tAA4fl~ + 

••• + 2S2 s2 max {lIeuAA2fll ,lIetAA2fl!} 

r U - t where 0 = --. s 

Proof. We have 

(2.28) lIeuAf_ i~(I+tiA)f-~ etA (2&A+A2)fll t, 

IletAf _ n (I+t.A)f - ~etAA2fll + lIeuAf - etAf - (u_t)etAfll. 
i=1 l. 

The assertion now follows by Theorem 2.1 and another 

application of Taylor's formula as in Deheuvels and 

Pfeifer (1986 a) , Lemma 4.1 •• 

Theorems 2.1 and 2.2 generalize results obtained in 

Deheuvels and Pfeifer (1986 b) for the special case of 

Poisson convergence in total variation. 

In the sequel we shall apply Theorem 2.2 to the norm 

representations (2.12) to (2.14) of the various 

distances under consideration, allowing for precise 

determination of the leading terms in the asymptotic 

expansions, and for determination of the asymptotically 

best choice of the corresponding Poisson parameters. 

The results obtained here are (at least asymptotically) 

better than those of LeCam (1960) due to the fact that 

we consider second order expansions rather than only 

first order expansions for the semigroup, and that 
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IletAA11 and lIetAA211 tend to zero with t tending to 

infinity. 

§ 3. Consequences for Poisson convergence 

Let again denote g = (1,0,0, ••• ), h = (1,1,1, ••• ). Then 

Ah = - g, which is an element of "e1. Since in all 

investigations, only powers Ak with k e ~ are of 

interest, no more limit relations have to be considered 

with respect to asymptotic expansions for the Fortet

Mourier metric (i.e. the right-hand side of (2.26) and 

(2.27)). 

The following expansions and estimations have, in 

different contexts, partially been obtained earlier 

(Pfeifer (1985 b) , Deheuvels and Pfeifer (1986 a) ). 

Lemma 3.1. For th& Poisson convolution semigroup, 

we have, for t ~ 0, 

(3.1) ~ -t t k 
,-e -

k=O kl 
1 

where [.] denotes integer part 
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f min{8, t~ \ 

II etAA4gli 1 L (4 t i - 16 mint1, ~ 5 

-t t n 
e sup nT e

- t t[t] A.l __ 1_ ( 
f...... t ~co) 

[t]! .y21T t 
n~O 

-t t
n

-
1 I e sup nr1t-n 

n~O 

-t { t a - 1 (a-t) 
e max aI ' 

lie t AA3h ll 
.eot:> 

t t n - 2
1 2 e - sup --nr t -2nt + n(n-1) I {. 

min[2, ~! 
t1't 

n~O 

II etA A 4h II ~ 16 min {1, ~} • 
..e,0Ja t 

Further, by (2.5), we see that in any case, we have 

IIAII ~ 2, hence K = 13 (K *' = 5, resp.) would also be 

an admissible value in (2.16) and (2.27). 

A simple comparison of Lemma 3.1 and Theorem 2.2 with 

relations (2.12) to (2.14) shows that under condition 

(1.8) the asymptotically optimal choice for the Poisson 
n 

mean fJ-= L f-Li (n) is actually given by (1.7), at least 
i=1 

for some real constant oCt). The following expansions 

show that we may indeed restrict the range for ret) 
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to the interval [O,~]. 

Lemma 3.2. For the Poisson convolution semigroup, 

we have, for t ~ 0 and every real 6 , 

( 3 • 10) II e tA ( 2 cSA + A 2 ) g II 1 = 
..I. 

(3.11) 

t 00 t k - 2 2 1 I 
e- ~k!lk -2k(t+'2- ct )+t(t-2c5t) 

k=O 

~ 2 t ~ exp (_ _1 ) + 1 exp (_ 1 ~2) ~ 
ti21i 2~2 z.; 2 

~ _4 __ 

t 1211" e 

where c = I[ t - r +It+r2], d = I[ t - r -Vt+r2] 

and r = 6t -~, ~ = ~vt + -11 + c5 2 t 

AJ t11r exp(- 2~) (t ~ 00 ) 

(3.12) lIetA
(26A+A

2
)hll£1 = e-t k~O t=~1Ik - (1-2.5)t I 

N k 
26 - 4~ L e-t L 

k=O k! 

216 
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rv 2 exp (- ~~~~) + 26 - 4 0 ~ (-20ft) (t+aD) 
V2n( 1-20) t 

where N = [(1-2cS)t] 

and for ~ > 0, 

x . 2) 
and ~(x) = J _1_ exp(- ~ dU, 

.f21r 
-00 

(t~ cO). 

Note that some of the above asymptotic relations are 

valid only for 6 ~ 0, but from the exact representation 

of the norm terms it is easy to see that only this range 

for & is the interesting one. 

Correspondingly, we see that under condition (1.6), in 

all three cases the choice b= ~ gives the asymptotically 

minimal value for the norm terms above. The fact that 

instead of taking I-'i (n) = Pi (n) + ~ pf(n), we prefer the 

choice ~(n) = A(n) (which is asymptotically equivalent) 

is due to the circumstance that it can be shown by 

different methods (see Serfling (1975), (1978) and 

Deheuvels and Pfeifer (1986 a) that the latter is 

precisely optimal in some cases. Intuitively, we should 

expect that under (1.6), the difference between the 

probabilities of observing zero will be the major 

contribution to the metric distances above, which is 

and which is zero for the choice fen) = A(n). 

In what follows we shall for short omit the variable n 
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in p(n), f-L(n) etc., writing p, fA. etc., and we shall write 

Tn(~) instead of T , expressing that Tn follows a Poisson 
n n 

distribution with mean l- fL' • 
i=1 ~ 

The following statement gives a summary of the results, 

without explicitly appealing to the operator-theoretic 

background. 

Theorem 3.1. 
n 

A) Under the condition L p. ~ ° (n ~ ~) we have 
i=1 ~ 

(3.14) 

(3.16) 

(3.17) 

all relations valid for n'" d:J • 

n 
B) Under the condition L p. ~ t e (0,00), max{p.;!-+O 

i=1 ~ .. 
1'if n 

(n~oo), we have 

(3.18) 1 ~p2. -t{ta- 1 Ca-t) t b- 1 Ct_b)} deS ,T (p)) IV -2 J:..- e - - +~~-~~-
n n i=1 ~ al bi 

with a,b as in (3.3) 

( ( )) 1 ~ p2. -t t [tIl 
d Sn' Tn). tV "'i L- e rr:;:nT 

c:. 1=1 ~ [tD. 
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which is asymptotically larger than d(Sn,Tn(p)) 

iff t > 1 + (42 + 1 ) 1 /3 - (,f2 - 1 ) 1/3 = 1 • 5960 ••• 

with a,b as in (3.3) 

which is asymptotically always larger than 

which is asymptotically larger than 

d1 (Sn,Tn (p)) iff t >log2 = .6931 ••• , 

all relations valid for n ~ 00 • 

n n 
C) U . - "" 2 nder the condi t1.on L Pi~ 00, L. Pi 

we have 

(3.25) 

i=1 i=1 

n 
~ 2 "'- p. 

deS ,T ()))I\J 1_ i=1 1. 
n n 212 'ii 1;, f p. 

i=1 1. 

219 
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IV 

inf 
fA-
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E- 2 
Lp· 

_1_ i=1 1 

2"211' /L p. 
1'{=1 1 

1 n 2 
d1 (Sn ' Tn ( JJ) (V -2 .c p . , 

i=1 1 

all relations valid for n ... 00 • 

Furthermore, under the conditions specified in B), 

in all three cases, there will always be an 

asymptotically optimal choice for t-' = p.(n) of the 

form 

(3.30) 1 '- i ~ n 

for some constant'r(t) € [o,~J which can be determined 

by the corresponding minimal value of 6 in Lemma 3.2. 

It should be pointed out that there is in general not a 

nice closed expression for ret). Some examples are 

given below. 
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Example 3.1. 

I) For the total variation distance, we have 

1 If 0 < t ~ 1: r( t) = 2' ' 

(3.32) If 1 < t ~ t'2: 1"( t) = ~ , 

(3.34) If 3.y'6 < t ~ 2: 0'( t) = 0 , 

1 n 2 t ( t 2 t 3 } 
d(Sn,Tn(t'-)) N2' ,L

1
Pi e- t2" + (1-b') • 

1= 

II) For the Kolmogorov distance, we have 

1 n 2 1 -t 
dO(Sn ,Tn (ft)) IV 2' t=1Pi 1+t e 

If "V'3 - 1 < t , 1: 'D( t) = 1 __ t_ , 
2 2+t2 

n 
dOe Sn ,Tn (~) ) IV -21 L p~ -2.:L e -t • 

i=1 1 2+t2 

III) For the Fortet-Mourier distance, we have 
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1 
If 0 < t , log 2: r( t) = "2 ' 

1 n 2 
d1 (8n ' Tn ( u.» rv -2 L p. 

1;. i=1 J. 

(3.38) If log 2 <t ~ 1: ret) = 0 

(3.39) 1 1 If 1 < t , oc. = 1.6784 ••• : 't (t) = "2 - 2t ' 

( 3 .40) If ~ 4 t ~ 2: '0 ( t ) = 0 , 

n 2 -t 
d1 (8 ,T (u.» N 2: p. t e • 

n n \ i=1 J. 

Here ~ denotes the positive root of the 

equation 2 e-oo. (1 + ()I.) = 1. 

Finally, we should like to mention that besides 

asymptotic expansions as given in Theorem 3.1, Theorem 

2.2 also allows for upper and lower bounds for the 

metric distances under consideration, in connection 

with Lemma 3.1. 
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