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A SEMIGROUP APPROACH TO POISSON APPROXIMATION 

By P. DEHEUVELS AND D. PFEIFER 

UniversitM Paris VI and Technical University Aachen 
The aim of this paper is twofold: first, to show that Poisson approxima- 

tion problems for independent summands can in a natural way be treated in a 
suitable operator semigroup framework, allowing at the same time for an 
asymptotically precise evaluation of the leading term with respect to the total 
variation distance; second, to determine asymptotically those Poisson distri- 
butions which minimize this distance for given Bernoulli summands. Besides 
semigroup methods, coupling techniques as well as direct computations are 
used. 

1. Introduction. Let X1, .. ., X,, be independent Bernoulli random variables 
with pi = P(Xi = 1) = 1 - P(Xi = 0), ? < Pi < 1, i = 1, 2, ... ., n, and Y1, ... ., Yn 
be independent Poisson random variables with expectations pi, i = 1, 2, ... . Let 
further Sn = E. 1Xi and Tn = EJ' Yi. We are interested in the approximation of 
the distribution of Sn by the distribution of Tn with respect to the total variation 
distance 

d(Sn Tn) = sup IP(Sn E M)-P(Tn E M) 
McZ+ 

00 

= E I, P(Sn = k )- P( Tn = k ) 
k=o 

Estimations of this distance have been given by different authors, for instance 
Le Cam (1960), Kerstan (1964), Chen (1974,1975), Serfling (1975,1978), and most 
recently by Barbour and Hall (1984), however with a special emphasis on the case 
Pi = pi in most of these papers. Besides this choice, also Ii = Xi = - log(1 - pi) 
is of importance since for n = 1, this minimizes d(S1, T1) with respect to /11 as 
was shown by Serfling (1975,1978) using coupling arguments. If we especially 
assume Xi and Yi to be maximally coupled, then by Doeblin's inequality, 

n n 

d(Sn Tn) < P(Sn Tn) < 1 - F (1 -P(Xi = Yt)) = 1- H((1 + Xi)eX) 
il i=1 

n n 

< ? (ell - 1 - Xi)eX < 2 L i 
i=I i=1 

which is a better estimation than those known for the case Ii = pi if X X= Xi is 
small in some sense. Moreover, Pi = Xi is, in an asymptotic sense, also the best 
possible choice as can be seen from the following result. 

Received July 1984; revised March 1985. 
AMS 1980 subject classifications. Primary 60F05, 62E20; secondary 47D05, 20M30. 
Key words and phrases. Poisson approximation, operator semigroups, coupling techniques. 

663 

This content downloaded from 134.106.136.73 on Tue, 30 Jul 2013 13:38:23 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


664 P. DEHEUVELS AND D. PFEIFER 

THEOREM 1.1. If 0 < EinXXi < 1, then for all choices of ,i, i = 1,2,..., n, 
we have 

d(Sn, Tn) > ( (ex, -1- Xi)}exp - Xi 

2 -( L tgexp - X i. 

Consequently, if pl,..., pn depend on n such that Epl=jpi 0 for n x , 
then uniformly in n, we have 

n 

inf d(Sn Tn(pM)) - d(Sn Tn(X)) - I E P 
2 i=1 

while 
n 

d(Sn, Tn(p)) - L p2 only, 
t= 1 

where for M = (111. IL ), Tn(7 ) denotes a Poisson random variable with expec- 
tation EnXIU ti, and the inf is taken over all admissible values of IL. The last result 
also shows that the estimation of Theorem 1 in Barbour and Hall (1984) which is 

d(Snq Tn(p)) < - exE(- P ( )) 2Pl 

is sharp in this case. For i 1mpi being large, however, it can be shown that 
d(Sn, Tn(p)) < d(Sn, Tn(X)) which follows from a general evaluation of the lead- 
ing term in d(Sn, Tn(1)) by means of an appropriate semigroup approach. If we 
assume that E 1pi tends to infinity in a certain way for n -x o, then it can be 
shown that the choice I = p is indeed asymptotically optimal. 

THEOREM 1.2. If En21pi -* o and max(pl,..., pn) -O 0 for n xo , then 

d (Sn, Tn( p)) - (2iTe ) 1/2 (LP?2/ i 

If additionally {Ein1 pi}max(pl,..., pn) 0, then also 

inf d(Sn, Tn(p>)) d(Snq Tn( p)). 

Note that the first relation above corresponds to an evaluation of Kerstan's 
(1964) leading term, improving at the same time asymptotically the inequality 
(2.7) in Barbour and Hall (1984) for this case. It is also possible to derive results 
for intermediate cases, for instance if EX pi -- a with n -x o for some 0 < 
a < x. 
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POISSON APPROXIMATION 665 

THEOREM 1.3. Suppose that E pip --- a with 0 < a < x, and 
max(pl,..., p) 0 for n -x o. Then 

(n )(ala] 

and 

infd(Sn, Tn(1i)) - d(Sn, Tn(X)) iff a < ?2 

Here [a] denotes the integer part of a. 
Further, for a > C2 , there exists 0 < {a < 2 such that 

infd(Sn, Tn(1i)) - d(Sn, Tn(p + tap2))9 

where p2 =(p2 p2 

Precise evaluations for the last expression as well as for {a will be given in the 
sequel. 

2. The semigroup approach. Consider the Banach space 11 of all ab- 
solutely summable sequences, and let A denote the set of all probability 
measures with support contained in the nonnegative integers Z +. For m E X , 
identify m with the element (m({O}), m({l}),...) E 11. Let further f * g denote 
the convolution of If, g E 11, i.e., 

n 

(2.1) f *g(n)= A f(k)g(n-k), n?O. 
k=O 

Then f * g E 11, and 11 f * gil < 11 f 11 11ghj. Define a contraction B on 11 by Bf = 
El* f where Ek denotes the unit mass at point k E Z +. Then any measure m E - 

can be interpreted as operator on 11 via 
00 

(2.2) mf = m* f = A m({k})Bkf, ff lG. 
k=O 

Further, if I stands for the identity mapping from 11 to 11, and if A = B - I, 
then A is the infinitesimal generator of the Poisson convolution semigroup, 
given by 

tA 
0 k 

kf et f -A~ 
k =O 

(2.3) te k ! 

kO k! Ek 

=Po(t)* f, t0o, f El1, 

where Po(t) denotes the Poisson distribution with mean t. 
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666 P. DEHEUVELS AND D. PFEIFER 

Since for measures m1, m2 E X., we have 
00 

d(ml, m2) = 2E Iml({}) - m2({k}) 
(2.4) k= O 

- 211(ml - m2)0 11E 

where again d is the total variation distance, we can easily formulate Poisson 
approximation problems for independent summands in this Banach space setting. 
Namely, if W1,..., WV are independent random variables with distributions 
m1, ..., mn EdX, and if Un = EIq 1Wi, we can write 

(2.5) d(UnTn(1i)) = 2| (exP( Eii)~ ^- Hm)|| 

Since all operators involved are contractions, a simple estimation for (2.5) is 
n 

(2.6) d(UnTn(1)) ? 2 L Aexp( A)- mi 
i=1 

For instance, if mo is the binomial distribution on {Oi1) with mf({1}) =i 
then also mi = I + piA, hence 

n 

(2.7) d (Un, Tn(p)) < ) Pi E 
i=l 

which follows for instance by Proposition 1.1.6 in Butzer and Berens (1967) [in 
fact, mi represents the two first terms in the Taylor expansion of the Poisson 
semigroup at t = pa; cf. (2.3)]. Likewise, if mi is the geometric distribution over 
Zhe with n i({O}) = = 1 - pi, then also mi = (q/pi)R(qi/pi) where for s > 0, 
R( s) = (sI - A) -1 denotes the resolvent of the semigroup, hence 

n 

(2.8) d(Un, Tn(p>)) 
< 

t9Pqi 

i=1 

where fio = po/q [see e.g., Pfeifer (1985a), Theorem 7.5 and Pfeifer (1985b)]. This 
generalizes results of Vervaat (1969)t tothe case of non-i.i.d. summands. While in 
the introduction it was shown that the estimate (2.7) is sharp for Xi. 1pi small 
and n large, it can be proved by methods developed in Pfeifer (1985a) that the 
same is true for relation (2.8). 

As a third example, take m- = (1 - pi + p2/2) R i + pi(l - pwere + p/282 = 

I + pIA + p2/2A2; then 
n 

(2.8) d( Un , Tntp)) 
< 

3plq 
) 23 

i=l 

which can be proved similarly to (2.7); just note that in general, we have 
]IAkII - 2k for all k e Z+. 

Although the semigroup approach resembles the operator technique used by 
Le Cam (1960) and Chen (1975), it has the advantage of covering different 
problems such as the one above, and allowing for an immediate translation of the 
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POISSON APPROXIMATION 667 

results obtained to the situation when other distance measures than the total 
variation distance are considered, for instance the cumulative distribution dis- 
tance do given by 

(2.10) do(S, T,) = sup IP(S,< k) - P(Tn,< k) 
k?O 

This is possible by a simple change from 11 to lx [see Pfeifer (1985b)]. 
To shorten matters, we shall for the remainder of this paper restrict ourselves 

to the discussion of Poisson approximation for Bernoulli summands with respect 
to the distance d. However, most of the results given can also easily be 
formulated for the more general setting outlined above. 

THEOREM 2.1. For p1,..., pn arbitrary, we have 

(2.11) d(Sn, Tn(p)) = (Lp} exp( (p )A}A2Eo + rA(p) 

with 

yn 3 

rn(p) < 2.6 En - 

<2.6 1 max(p1,...,pn) if maxtpi} ? '. 

In general, we have 

n 

d(Sn, Tn(1i)) = 2 (pi - pi)exp{( ( pi ) A}Ao + 

(2.12a) 
nn 

+ 2 p2 exp( p A A 2o| + rn*(p) + sn(p,K) 

with 
n (n\ 

r*(p) < 3 p3+ 2E p2max(px,... Pn) 
i=1 + lP 

and 

Sn( P 

< I(Ei) pi) max( exp{( Ei )A}A2E0 , exp( pi) A}A2Eo } 
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668 P. DEHEUVELS AND D. PFEIFER 

It should be pointed out that the error estimate for rn( p) is basically the one 
given in Kerstan (1964), relation (5). For a discussion of this estimate, cf. also 
Barbour and Hall (1984). 

The following result gives a precise evaluation of the norm terms in Theorem 
2.1. 

THEOREM 2.2. For t > 0, y E R we have 

t[t] 2 
(2.12b) lletAAc0oI = 2e`t [t] 2 _ (t x), 

letAA2oI ' a(a -t) t~(P10je 11e oll = ( a! eB! 
(2.13) 4 

~~ 
- 

~(tx) 

where 

(2.14) a'= [t+ - + (t+ 4)1/2I and /= [t+ 2 - (t+ )1/2] 

|yt-l/2etAAco+etAA2eo 2 {-( Y+ ) _ ( (7 +yv)}e-t 

(2.15) t2 {exp(-2 2) + rexp(- 2)} 

4 
> (t x ), 

where 8 = [t - p + (t + p2)1"2], 1 = [t - p - (t + p2)1/2] with P = 2(Yt - 1) 
and - = y/2 + (1 + _y2/4)1/2 (TI! = x for iq < 0). 

Note that relation (2.13) is just an evaluation of Kerstan's (1964) leading term 
(t) as can be seen from the proof of Theorem 2.2, giving a simple proof of the 
right-hand side in Theorem 1.2 via Theorem 2.1, with t p= Lipi. On the other 
hand, if t = -b 0 for n - x, we have IIetAA2 oI 20- IIA2o0II = 4, hence 
d(Sn, Tn(p)) - En pi as was stated in the introduction. Similarly, the first part 
of Theorem 1.3 is readily obtained from (2.15) and Theorem 2.1; we only have to 
observe that we may choose y2 = t = ,4',pi giving 8 = [t + 1] and r1 = 0, and 
that XA - pi = ,2pi + O(p ) 

A comparison between (2.12b) and (2.13) in the light of Theorem 2.1 shows 
that in general, the choice 1i = X is (in an asymptotic way) better than ,i = p, as 
long as 

a[a] aa l(a - a) a 1(/3 - a) 
[a]! a! - 3! 

where a and P are as in (2.14). Straightforward numerical computations show 
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POISSON APPROXIMATION 669 

that this occurs as long as a < a0, where 1.59 < ao < 1.60. In this range, we have 
[a] = 1, a = 3, and 13 = 0, which implies that x = a0 - 1 is the root of the 
equation 

X3 + 3x - 2 = 0 

which is x = (v + 1)1/3 - (2 - 1)1/3, giving ao = 1.596071.... This proves: 

COROLLARY 2.1. Let En2 pi a with 0 < a < x, and max(pl,..., Pn) -? 0 
for n -x oo. Then asymptotically 

d(Sn, Tn(/X)) < d(Sn, Tn(p)) 

whenever a < a0, while the converse is true for a > a0. 

3. Asymptotic optimality. First we may observe that for any p, 
infd(Sn, Tn(ji)) is actually attained by the continuity of d(m, Po(t)) in t ? 0, for 
any measure m E M. Also, by Theorem 1.1, Serfling's approach was proven to be 
asymptotically optimal for Lin' p- 0 (n -x oc). Suppose now that Lin' m- a 
with 0 < a < x, and that max(pl,..., )pn) -O 0. Then for any optimal choice of 
Ai, we have 

d(Tn(1i), Tn(p)) < d(Sn, Tn(ji)) + d(Sn, Tn(p)) 

< 2d(Sn, Tn(P)) -? 0 

by Theorem 2.1, and since 

2d(Tn(1i), Tn(p)) ? I P(Tn(i) = 0) - P(Tn(p) = 0) 

- exp E i ) - exp(- Pi= ) 

we must have En' 1i, , =- Epi. But then we can conclude from Theorem 2.1 
again that for any such ji there exists some real (a with 

n n n n 
(3.1) E t Pt EPi+(aE2 

(3.1)~ i=1 i= 

implying that for any optimal choice of At, 

(3.2) tL p + (aP2 with p2= (p2 .p2), 
ng~~~~~~~~~~~~~~~~ 

giving 

n 
( 

I 
4EPi 2ae AAC0 + eaAA2.0| 

(3.3) 
4 

i=1 - 
n 

a"-'(S- (1 - 2~a)a) an-1(ii - (1 - 2~a)a)~ 
2 P 
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670 P. DEHEUVELS AND D. PFEIFER 

by Theorem 2.2 and the continuity of the left-hand side of (2.15) in t > 0. Here 

8 =[(1-a)a + 2 + {2a2 + (1 a)a+ }1/2 , 

n ( a)a + 2 - {2a 2 + 11-() 1 }1/2], 

which shows that for optimality, we must have 0 < (a < 2, and 

(3.5) a = inf{t E [O, 1 ] a (8() - * (! > 1 for a > , 

where 8(t), (t) are as in (3.4) with (a being replaced by A. Similarly, we can see 
that for a < V2, (a = 2 is optimal as long as a[a+l]/[a + 1]! < 1, which is 
equivalent to a < V2. This proves Theorem 1.3 completely. Similar arguments 
show that under the situation of Theorem 1.2, we must have 

(3.6) (-P+ pi) P2 forsomey?0; 

but then the right-hand side of relation (2.15) indicates that for an optimal 
choice, we must have D = 1 which corresponds to y = 0. This proves Theorem 1.2 
completely. 

We shall conclude with a discussion of relation (3.5) which allows for a precise 
evaluation of the second-order term in the minimizing tL. Let D+ (p) = a - p ? 
(a + p2)1/2 for p = ata - 2. Since D+(p) is monotonically decreasing in p and 
- < ? p < (a - 1)/2 (since O < (a 2), and D-+(p) must be an integer by (3.3), 
we thus have 

a+ 1 <D+(p) < [a+ 2+ (a+ )1/2I, 
(3.7) 

0 < D-(p) < [a + - (a + 1)1/2I 

This proves the following result. 

THEOREM 3.1. Let lPi -* a with V2 < a < x and max(pl,..., pn) 0 
for n -c. Then 

E(1 (1- |a + 1[ < N < [a + 2 + (a + 4 

(3.8) 

or 0 < N < la + (a + 1)] U{?}t 

where ]x[ denotes the smallest integer not less than x. 
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POISSON APPROXIMATION 671 

For example, if r2- < a < 6} then the only possible value for N in Theorem 
3.1 is N = 3, from which we obtain 

1 3 2- a 
(3.9) (a= 2 1-- 

Of course, by Theorem 2.2, we have (a O 0 for a xo. 

4. Proofs of theorems. It remains to prove Theorem 1.1, Theorem 2.1, and 
Theorem 2.2 only. 

PROOF OF THEOREM 1.1. Let m denote the distribution of Sn and let 
t = El= Xi. Then 

2d(m, Po(t)) 2 Im({O)) - Po(t)({O}) I + Im({1}) - Po(t)({1})I 
+ Im({2,3,... }) - Po(t)({2,3,... 1)1. 

Put A = XinU1X and h = t - A. It follows that 

2d(m,Po(t)) > e-A{I1 - e-hl + (ear - 1 - XA) + A - e-h(A + h) 

n 

+ 1 + E (ex, - 1 - Xj + A - e h(A + 1 + h) 

= A(h)eA 

For 0 < A < 1 and h -O 0, it can be seen that 
n 

A(h) - 2 E (ex, - 1 - Xj + 2hA - h + Ihi 
i=1 
n 

2 (ex, - I - AX) = A(O) . 
i=1 

The result now follows from the fact that 
n 

2A(h)21- h+ E (ex 1 - X) + A - eh(A + h) 
i=1 

2'A(O) for h 2>0, 
and n 

2A(h) ? E (e, - 1 - )+ A - eh( + h) 
i=1 

2? A(O) for h<0. 

The proof of Theorem 2.1 relies on the following auxiliary result. 

LEMMA 4.1. For O < s) t < x we have 

esAE - EO = (s - t)e tAA0 + R(s, t) 
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672 P. DEHEUVELS AND D. PFEIFER 

with 

*IR(s, t) 11 < 2 max min(1 M);min(1, -)(S _ t)2. 

PROOF. Let f E 11 be arbitrary. Then from the general Taylor expansion for 
the semigroup [cf. Pfeifer (1985a), Lemma 4.1] we have 

esA f - etAf = (s - t)etAAf + (s - u)euAA2f du 

with 

18(s - u)euAA2fdu < |-IS - ulmax{IlesAA2f 11, IetAA2f iidUi 

=2( - t)2max{IlesAA2f 11, IletAA2f 11}. 

Now everything follows from the observation that by (2.13), we have lIe tAA2EOil < 
4 min(1, 1/t). 

PROOF OF THEOREM 2.1. For abbreviation, let t = Ein=lpi, s = 1iv = 

Xi= IPi, and ti = Ejipj. We have 

(4.1) AEO = (-1, 1, 0, 0,...) and A2E0 = (1, -2,1,0,0,...), 
hence 

tA 0"~? 
tk-1 

(4.2) Il tAAeoll = e It -k 
k=O k 

??tk-2 
(4.3) IletAA2coII = e-t E k' t2 - 2kt + k(k - 1) . 

k=O 

This proves (2.11) using relation (5) in Kerstan (1964), and the Schwarz in- 
equality. In general, since the semigroup and the infinitesimal generator com- 
mute, using the decomposition in the proof of Theorem 1 of Le Cam (1960), we 
obtain for any f E 11 

n n e t f l (I+ +PA)f - 2 p2etA2f 
i=1 i=l 

n n k- 

= ( exp E Pi A H (I + piA)(ePkA - (I + pkA)) f 
k=lI i=k+l il 

Pk exp(( ? P3A)A2f} 

E exp E p)At | (IpiA)ex (IpiA +A A3 
klxl f, [ ){ (I + p+A I + P 

+ AkA2 )f 

k i +I?2 (P P(k) f} 
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POISSON APPROXIMATION 673 

which implies that 

(4.4) e 1e0- Hl (1 + pjA)E0 - vetAA2c < 16 p + 4 E Pk ek-11iX 
i=1 h ~~~~~~i = 2 

using the contraction property, Proposition 1.1.6 in Butzer and Berens (1967), 
relation (2.5), the estimation (2.2) in Barbour and Hall (1984) and the fact that 

IletAA2f - ettAA2f 11 < pilletAA3f || < 8pill f ||, 

which is to be proved similarly to Lemma 4.1. 
The result now follows from the observation that 

n 

2d(Sn, Tn([t)) = esAc0- Hl (I + pi)Aco 

n 

- (esA- e t) o +e Eo H(I + p.A)0 

- (s - t)etAAcO + 2etAA2c0 + 2rn*(p) + 2sn(p, p), 

where 

r*P <8n 
n 

rn(p) < p3 + 2 E p2max(pl,...,p n) 
i=1 k=l 

by (4.4), and the estimation for Sn(p, l) is due to Lemma 4.1. 

PROOF OF THEOREM 2.2. It suffices to prove relations (2.12b) and (2.15) since 
(2.13) and (2.14) are obtained from (2.15) for y = 0. Similar to (4.2) and (4.3), we 
have 

IIyt l/2etAAEO + etAA2%0II 

et k2 -2k t+ - Wi ?t( t- yx/i) 
k=o k! | ( 2 2)l 

where 

2 2 Y 2 t ( Y k - 2k t+ + i ?t( t - yx/ > 0 

if and only if 

k<t - p-(p2 +t)/2 or k> t- p+(p2+ t)/2. 

This gives the left-hand side of relation (2.15). 
Since by Stirling's formula, we have 
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674 P. DEHEUVELS AND D. PFEIFER 

whenever w is integer such that w - t = 0(F), the left-hand side of (2.15) is 
asymptotically equal to 

&et(Dt6 + t r (texp(- 2g2) + -exp(- -2)) 

as requested. To complete the proof, note that 

g(x) = x exp( - 22) + -exp( 2j) (x > 0) 

is minimal for x = 1 with g(1) = 2/ x/_. The proof of (2.12b) is similar. 

Note added in proof. Under the assumption that max{pp,..., pnj < . the 
remainder term estimations in (2.11) and (2.12a) can be sharpened as follows. Let 
A be a bounded operator on a Banach space l with IIAlI < 1. Then 

(4.6) log(I + A) = - E 
_ 

A 
k= k 

exists as a bounded operator on E with 

(4.7) log(I + A) || < - log(1 - IhAIl), 
and 

(4.8) exp{log(I +A)} =I+ A. 

Under the situation of Theorem 2.1 (cf. also the corresponding proof) we thus 
have, letting again t = En I p, 

e tA f - (I1+p-A)f -e Af 

(4.9) 

< Il tA~ I I IletAD ~ 1 IlDIlIk 

k C () (k + 2)! 
where 

(4.10) C= {(E Pi}(-A), D= C + { (P}A2 

From here it follows that with Mn = maxf pj,..., Pn,} Ln = - log(1 - 2Mn), we 
have 

(4.11) IletACf I I< _ ~PI3 eulA3f Iexp(Ln), 

n 2 

(4.12) Ile tAD2f ?1 < Ile tAA4f 11(1 + 4Mn(1 + L)2 
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POISSON APPROXIMATION 675 

Generalizing (4.2) and (4.3), it is easily seen that 

(4.13) Ile'AAf 1 = IletAAII, IlelAA2f 1 = IletAA211 

for all f with 11 f 11 = 1 (especially f = e(), such that the r.h.s. of (4.9) can now be 
estimated by 

~~{ex3 A} exp( A)A exp(()A 
Pt= )| 2 ) 2 ) 

(4.14) 

+ 8{ fp1} exp( )A2 exp((1 + 2L) (1 + 4Mn(1 + L 

where the norm terms are now again given in (4.2) and (4.3). Especially, (4.14) is 
an upper bound for the remainder terms 2rn(p) and 2r*(p) in Theorem 2.1, 
improving also the bounds in Kerstan (1964) and Barbour and Hall (1984) 
(Corollary to Theorem 3) for large values of EqZ ph since by Theorem 2.2, if 
En~lp O0 and max(p1,..., p) 0 (n -s oa), (4.14) is asymptotically 

I Pt oo and max/p E, Pn) 1 r6 n n 3/2 

3,, ~2e Pt~j~ \ tj0- 

(4.15) 3?0x7(8( ){ P3}2 { 2 

+O0 468 exp( f Pi){ ( } { Pg) }( 2 P 

The foregoing remarks show that the additional condition in Theorem 1.2 can be 
weakened to 

n 

pi2=~l (n>i) 

i=1 
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