
Abstract 

ON A POISSON MODEL FOR THE SIMPLEX 
ALGORITHM AND THE "SECRETARY PROBLEM" 

D. Pfeifer, Aachen 

It is shown that the simplex algorithm of linear programming (under 
the assumptions introduced by Ross (1983)) and the "secretary 
problem" can be described (asymptotically) by the same stochastic 
model, involving Poisson point processes with either discrete or 
absolutely continuous mean measure. With these models, a rather 
precise average-case analysis of the simplex algorithm becomes 
available, as well as a generalization of the classical "secretary 
problem". 

I. INTRODUCTION AND BASIC RESULTS 

A) The simplex algorithm 

The (primal) linear programming problem can be written in the form 

(1.1) max {ctx ! Ax ~ b, x ~ O} 
x 

..... nere c,x € IR n, b € IR m, A € IRmxn(m,n € IN). 

A well-known tool to· solve iteratively problems of this form is the 
simplex method developed by Dantzig (see Hadley (1962) for references) 
which in its simplest form moves through the extreme points of the 
feasible solutions 

(1.2) {x ~ 0 I Ax ~ b} 

in such a way that less or equally good points are successively exclu
ded from further considerations, starting with x = 0 in the first step. 
Although the worst-case behaviour of this algorithm clearly is expo
nential in time it has proved to be very good "on average". This has 
been shown rigorously by Borgward (1982 a, 1982 b) in his pioneerinq 
papers where it was demonstrated that the average complexity of the 
simplex method is 0(n4m) under the assumption of spherically symmetric 
distributions for the parameters (cf. also the recent bibliography of 
O'h Eigeartaigh et al. (1985)). A different approach without soecifying 
particular distributions for the parameters was made by Ross (1983) who 
assumed that the dynamic structure of this algorithm could be modelled 
by a Markov chain of the fol~owing type. 
Suppose that the feasible region given by (1.2) contains N extreme points 
which w.l .o.g. are ranked according to the corresponding value of the 
gain function (in decreasing order). Let {Xn; n € IN} denote the Markov 

chain of ranks visited during the performance of the algorithm. Since Xl 
is the rank of 0, an extreme ooint of (1.2), and this point could have 
any rank between 1 and N , Ross suggests that 
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it is justifiable to assume a uniform distribution for Xl over the 

rank set {l.2 •...• N}. If in the last step. rank Xk was visited. then 

analogously each of the remaining Xk-I extreme points could be the 

candidate for the next inspection. hence conditionally on Xk = j • 
rank I.2 •...• j-I should be visited with equal probablitiy j:l unless 

j = I in which case the optimal value is found (i.e. I ;s an absor-
bina state). (Note that the assumption of uniformity is mainly a working 

hypothesis which cannot be concluded e.g. from Borgward's assumptions.) 
Now. if 

{
I. if rank k was visited 

(1.3) Ik = 
O. otherwise 

then II •...• IN are actually independent 

1 
(1.4) P(l k = 1) = K 

N 

.I~k~N. 

random variables with 

C 1 ea r 1 y. T = L I k represents the number of steps required to find 
k=I 

the optimal value. with 
N 1 

E(T} = L K ~ log N. 
k=l 

Since 

by Stirling's formula. we have asymptotically. for n,m large, 

(1.6) E(T) ~ 1 + log N ~ n + m + 2 • 

Besides the estimation of E(T}. much more can in fact be done here 
since the distribution of T is of Poisson-Bernoulli type for which 
precise Poisson approximations ~ave been established recently, in 
various distance measures ( Deheuvels and Pfeifer (1986 a, 1986 b, 
1986 c») which allow for a quite precise estimation of the distribution 
of T. pT. With these estimations. it becomes possible to answer ques
tions like these: 
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a) Given a (small) tolerance probability a< 1, what is the maximum 
number of steps required to finish the procedure with probability 
1 - a ? 

b) What is the probability of finishing the procedure with at most K 
steps (K given in advance)? 

B) The "secretary problem" 

Here we prefer a "neutral" presentation of the problem in order to 
avoid "female discrimination", following the excellent review of Free
man( 1983), and in order to give an extension which would better fit 
under the heading "The travelling tourist problem". The following pas
sages are adopted from Freeman's Introduction, describing the general 
problem. 
"A known number N of items is to be presented one by one in random 
order,all N! possible orders being equally likely. The observer is able 
at any time to rank the items that have so far been presented in order 
of desirability. As each item is presented he must either accept it, 
in which case the process stops, or reject it, when the next item in 
the sequence is presented and the observer faces the same choice as be
~ore. If the last item is presented it must be accepted. The observer's 
aim is to maximize the probability that the item he chooses is, in fact, 
t'1e best of the N items available." 
A typical case for which this situation applies is a travelling tourist 
w~o has exactly one picture left on his film, and who aimes at photo
graphing the most beautiful site during the remainder of his journey. 
~ simple extension of this problem - which will also be considered in 
tne sequel - would be given by the fact that the tourist has exactly K 
Jictures left on his film, and he aims at catching the "best item" 
:i .e. the most beautiful site) with his reservoir of K. 

The usual approach to the solution of the "secretary problem" is dy
namic programming, and is - for the simple case above - be given by 
the following stopping rule: 

a) Let r = min {k € IN 
N-1 
I 

i=k 
1- < I}. 
1 

b) Reject the first r-l items, and accept the first item which is better 
than everything before if such exists; otherwise take the last item. 

It is easy to see that for N large, r is close to ~ , and the correspon~ 
ding probability q of winning (i .e. of actually obtaining the best item) 

is 

1 N-l 1 1 N-l 
(1.7) q = N(r-1) 1. T ~ e log( ~ ) 

i =r-l e - 1 

1 
~e 
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An alternative approach to this problem is as follows, paralleling the 
Markov chain approach of Oynkin (1963). Suppose that {Yk I k € IN} is 
an iid sequence with continuous crlf F. Define record times {Uk : k € IN} 
by 

(1.B) U1 :: 1 , Uk+1= inf {j I Yj > YU } , k € IN 
k 

(This sequence is a.s. well-defined, cf. Shorrock (1972)). The record 
values then are {X

Uk 
! k € IN}. The equivalent problem now is to de-

tect the last record in a series of N observations Y1,··· ,Y N. Surprising
ly, R~nyi (1962) has shown that the random variables 

= {I, if Yk is a record value (i .e. U
Jk 

0, otherwise 

again are independent, with 

1 (1.10) P{J k = 1) = K ' 1 ~ k ~ N! 

k) 

The problem hence is to detect the last "one" in the finite sequence 
J 1, ... ,IN. If we might-analogously to A)-assume that the counting 
(point) process 

(loll) r;{{l,t)) L J k , t ~ 1 
l<k~t 

1 ;s approximately a Poisson point process ~ with rate t 

(i.e. E{~((a,b]) = 10g~, 1 ~ a < b}, then - by the independent in

crements property - the best strategy would be to wait with a decision 
until some time s in such a way that the probability ql of exactly one 
record (or one "one" in the J-sequence) in the interval (s,N' is maxi-
mized. But . 

(1.12 ) l -A q '" Ae wi th A = E{~{{s,N])} = lOg~ 

which is maximal for A :: 1, hence ~ = e or s :: N which is the former 
s e' 

asymptotic solution. 
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Moreover, 

~ -A (1.13) q 'V Ae e 

as expected. 

To solve the K-reservoir problem correspondingly, w~ would have to 
wait until some time w such that the probability ql of at most K, 
but at least one record in the interval (w,N] ist maximized, and 
to choose all items (i .e. take pictures of sites) after w which are 
better than all previous ones, if such exist, or to take the last one. 
Here we have (approximately, for large N) 

l K -A A k 
( l. 14) q 'V Y e IT 

k=1 . 
with A = E{~(w,NJ)} 

which is maximized for A = ~1K:f , or 

-A K!I7'i" K (1.15) w = Ne = N exp(- ~ K! ) 'V N exp(- e) 

N log w 

for large K. By the Central Limit Theorem, applied to (1.14), we would 
then approximately have, for large K (but K « N), 

Jt K ( 1. 16 ) q 'V 4> ( (e-l) e) 

as winning probability where 4> denotes the cdf of the standard normal 
distribution. (Note that the above solution is only suboptimal, but 
rather close to the optimal case; cf. Freeman (1983) ,6.1.) 

II. THE POINT PROCESS SETTING 
From what has been said above it becomes clear that the goodness of the 
approximate approaches depends heavily on a suitable Poisson point pro
cess approximation for an independent sequence {In I n e IN} of Ber
noulli random variables with 

1 
(2.1) P(I n = 1) = 1 - P(I n = 0) = n ' n e IN. 

The corresponding Bernoulli point process ~ then is defined by 

(2.2) ~(A) L Ik ' A e c& 
keA 
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where t& denotes the a-field of all Borel sets in IR. If we especially 
let - as after (1.4) -

(2.3) T = r;([1,N]) for N e IN , 

then it has been proved in Deheuve1s and Pfeifer (1986 a, 1986 b, 
1986 c) that the (asymptotically, for N large) best Poisson approxima
tion is given by the Poisson distribution "(~) with mean 

(2.4) 

where y 

N 1 
~ = L K ~ y + log N 

k=1 

.5772 denotes Euler's constant, with a total variation error of 

T ( 2 . 5) d( P ,:P( ~» = sup ! P (T eM) - ,. ( ~ )( M) I 
M Z+ 

.398 
TOgR' 

If we would instead consider the Ko1mogorov distance 

where Fp , FQ denote the cdf's of the probability measures P, Q, then we 
would obtain 

T n
2 .199 (2.7) do(P ,P(~» ~ -- --=--

12~ log N log N 

This estimation is especially suitable for answering the problems a) and 
b) at the end of chapter I b). 
For the more general point process setting, there are at least three 
different ways how to proceed. 
First consider the coupling approach by Karr and Serf1ing (1985) which 
in our case works as follows. 
Let {Zn I n ~ 2} be an independent sequence of Poisson random variables 
with means 
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1 (2.8) ~n = E(Zn) = - log (1 - n) , n ~ 2 

and define the (Poisson) point process ~ by 

( 2 . 9 ) ~ ( A) = L Zk ' A e j!s . 
keA 
~ 

Let further 

if Zn ~ 1 

if Zn ~ 2 
, n ~ 2. 

-nen the J-sequence is identically distributed with the original 
I-sequence since 

1 
(2.11) P(Jn = 0) = P(Zn = 0) = e-~n = 1 - ~ = P(I n = 0) , n ~ 2. 

Obviously, now 

L J k , A e ;A, 1 • A 
keA 

(2.12) r,;(A) 

where ~ means equality in distribution. 
Let for simplicity denote 1,;B = r,;(.nB), ~B = ~(.nB), B e as denote the 
point process restricted to the set B e ~ , where we also assume that 

1.B(henCe1,;B(A)~ L Jk.Ae~). 
keA"B 

Then with the arguments in Karr and Serf1ing (1985), we can show that 

which indicates that ~ is a good approximation for 1,; if inf(B) is laroe, 
which is the case in the "secretary problem" where B = r!!,oo)(in the stan-e 
dard version), hence, for large N, 

'lIe 
LN -:7 ~ r-e . 
k~ k 
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We could thus have used the Poisson point process ~ with discrete mean 
measure 

(2.15) E(~(A)) = L ~k 
keA 

1 L - 1 og (1 - K) , A e ~ 
keA 

k~2 k~2 

for evaluating the approximate solution to the "secretary problem", which, 
however, by its discrete nature is a little cumbersome. A more elegant 
way is to consider the correspondinQ Poisson point process ~. with abso
lutely continuous mean measure 

(2.16) E(~I(A))= f +{dt,Ae~. 
An IR 

Then obviously,for a set A = (n-1, n], n ~ 2, we have 

(2.17) E(~I(A)) = J {dt = - log (1 - ~) = ~n ' n ~ 2 
n-1 

which means that ~I "distributes" multiple points of ~ (which may occur 
at inteqer times n > 2) into the adjacent intervals (n-l,n!. This means 
that distributionalTy the processes ~ and ~I coincide for all these sets 
A = (n-1,nJ, n ~" 2, hence the procedure outlined in Chapter I b) (where 
only sets of the form (l,tJ are considered) is justifiable. 
It should be pointed out that the point process ~I also arises from an 
inbedding of the sequence{ max Yk I n e IN} into a so-called extremal 

l~k~n 

process (which is a continuous-time Markov process), providinq a continu
ous analogue of the record times defined in (1.8) (see e.g. Resnick 
(1973) and Pfeifer (1985)). 

Unfortunately, the approach by Karr and Serflinq (1985) does not provide 
the best possible approximation since with 

(2.18) TJt = 1 + ~(C2,N)) • N ~ 2 

we would only get a Poisson approximation for T in (2.3) of the order 

• (2.19) d(pT,pT) = 0(_1_ ) • N -> co 

.t'fO"9N 
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(cf. also Deheuvels and Pfeifer (1986 a. 1986 b, 1986 c». A third 
method of treating the problems outlined in Chapter I could thus be 
obtained by a suitable "thinning" of the point process F;~ in the 
fo 11 owi ng way: 
Let {Wn T n € IN} be an independent sequence of Bernoulli random vari-
ab les with 

( -lin 
(2.20) P (Wn = 1) = 1 - P Wn = 0) = n (1 - e ) < 1, n € IN . 

Then the sequence {WnJ n ! n ~ 2} also is independent Bernoulli with 

(2.21) P(WnJ n = 1) = P(Wn = 1) p(J n = 1) = 1 - e- 1/n , n € IN. 

If we now consider the Karr-Serfling approximation F;~~ , say for the 
latter sequence, then we would in fact have a Poisson point process 
with 

( 2 . 22 ) E ( ~ ~~ ( {n}) ) n' n € IN , 

for wh1i ch 

(2.23) T~~ = ~~~( [I,N]). n ~ 1 

would realize the (asymptotically) optimal Poisson approximation for T. 
Note that here the point process ~t would yield 

N 1 
(2.24) E(~~( [I,N])) = f 1" dt = log N, N ~ 1 

1 

which differs only (asymptotically) by Euler1s constant y from the true 
mean E(T). Nevertheless, an approximation with a "(log N)-distribution 
for T would still give an error of 

(2.25) d(pT,"(log N») '\, _Y-'---_ 
v'27TTOg1f 

(cf. Deheuve1s and Pfeifer (1986 b)). 

(N -> oo) 
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