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SUMMARY 

In this Chapter we extend previous work of the authors on Poisson 
approximation for (general) independent Bernoulli summands with respect 
to the total variation distance, without imposing any conditions on the 
underlying parameters. This enables one to study also the case of un
bounded means, without asymptotic uniform "smallness" of the individual 
summands, provided that the variance increases with the same rate as the 
mean. An important practical situation in which such an asymptotic 
behavior occurs is described by Ross's Markov chain model for the simplex 
algorithm in linear programming, which will be discussed as an example of 
possible application. 

The main tool for the derivation of the results is the same Poisson 
convolution semigroup approach as used formerly, allowing again for a 
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treatment of optimal choice problems for the Poisson parameter, in differ
ent asymptotic settings. 

1. INTRODUcnON 

Let Xl' ... ' Xn be independent Bernoulli random variables with means 
Pi = P(Xi = 1) = 1 - P(X; = 0),05. Pi 5. 1, i = 1,2, ... , n, and T(p.) a 
Poisson random variable with mean p. > o. We are concerned with the 
approximation of the partial sums Sn = Ek-IXk by T(p.), where the good
ness of fit is measured by the total variation distance 

d(Sn' T(p.») = sup IP(Sn E M) - P(T(p.) E M)I 
Mt;;,Z+ 

1 00 

= - L IP(Sn = k) - P(T(p.) = k)1 (1.1) 
2 k-O 

Estimations and asymptotic expansions for the distance d have been given 
by different authors, for instance, LeCam (1960), Kerstan (1964), Chen 
(1974, 1975), Serfling (1975, 1978), Barbour and Hall (1984), and most 
recently by Deheuvels and Pfeifer (1986). Whereas in earlier approaches, 
mainly the choices p. = Ek-IPk (LeCam, Kerstan, Chen, and Barbour and 
Hall) or p. = - Ek_I log(l - Pk) (Serfting) have been considered, which 
possess certain optimality characteristics in that they asymptotically mini
mize the distance d(Sn' T(p.)) if Ek-IPk » 1 and Ek-IP~ « 1 (Deheuvels 
and Pfeifer, 1986) or Ek-IPk « 1, resp. (Serfting, 1978; Deheuvels and 
Pfeifer, 1986), it is more generally of importance to consider also the cases 
where 

n n 

p.= LPk+yLPZ=P.(Y) 
k-l k=l 

with 0 5. Y 5. t, where Y = t (asymptotically) 

corresponds to Serfting's approach. This is because for large n, if Ek-IP k is 
close to some positive value a and Ek-IPZ « 1, then there always exists 
some y = y( a) E [0, !] such that the choice p. = p. ( y( a )) asymptotically 
minimizes d(Sn' T(p.)) (Deheuvels and Pfeifer, 1986). For instance, in the 
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range 0 < a < 2, we have 

n 
if 0 < a :::s; 1: y(a) = !, d(Sn' T(I'(y(a»» =: !e-a L PZ 

k=l 

n 

if 1 <a:::s;v1: y(a) = !, d(Sn' T(I'(y(a»» =: !ae-a L PZ 
k=l 

if.fi < a:::s; ~: 
1 3 2 - a 

y(a) = - - ---
2 2a 3 - a' 
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1 [ ( a2
) 3 2 - a] n d(Sn' T(I'(y(a»» =: - a + 1 - - - -- e-a L PZ 

2 2 a 3 - a k=l 

1[a
2 

( a
3
)32-a] n = - - + 1 - - - -- e- a L PZ 

2 2 6 a 3 - a k=l 

if 3 (6 < a < 2: y(a) = 0, 

1[a
2 

( a
3

)] n d(Sn' T(I'(y(a»» =: - - + 1 - - e-a L PZ 
2 2 6 k=l 

This follows from Theorem 1.3 and Section 3 in Deheuvels and Pfeifer 
(1986) [note that for 0 < a :::s; v1 in (1.2), we could as well have used 
Serfling's choice for 1']. 

Whereas in all former investigations the condition Lk-lP~ « 1 is (more 
or less) necessary to obtain asymptotically sharp results, we should also like 
to deal with more general cases in which Lk-lP~ may be arbitrary. It turns 
out again that the semigroup technique as developed in Deheuvels and 
Pfeifer (1986) can be fruitfully applied, as will be worked out in Section 2. 

2. THE SEMIGROUP TECHNIQUE 

In order to facilitate the understanding for readers who are not familiar 
with the language of functional analysis and operator theory, we shall first 
state the main results, without appealing to the concept of semigroups. 
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1beorem 2.1. Suppose that Xl' ... ' XII are independent Bernoulli random 
variables with means p; = P(X; = 1) E [0,1], i = 1,2, ... , n and T(p.) is a 
Poisson random variable with mean p. > O. For abbreviation, let 

II 

Aj = L pl, j = 1,2,3 and p.(y} = Al + yA 2 forO:::;; y:::;; t 
k-1 

Then 

(2.1) 

where 

_ {A8
-

1(8 - (1 - 2y)A} A,,-l«l - 2y}A -1J}} -A 
K(y,A}- 8' + , e . 1J. 

(A > O) (2.2) 

with 

8 = [(1 - y}A + t + Vy2A2 + (1 - y}A + *] 

1J = [(1 - y}A + t - Vy2A2 + (1 - y}A +* ] 

where [ ] means integer part and 

Especially, 

(2.3) 

for A -+ 00 

(2.4) 
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1beorem 2.2. Under the conditions of Theorem 2.1, we have 

(2.5) 

which can be minimized (asymptotically) by choosing the correspond
ing value for 'Y that minimizes (2.2) for A = AI. Here, the (asymp
totically) optimal value for 'Y for Al « 1 is 'Y = t, whereas the 
(asymptotically) optimal value for Al » 1 is 'Y = o. 

2. If A 2 remains bounded and Al » 1, then 'Y = 0 is asymptotically 
optimal, and 

Note that the condition under 2 implies that Var(Sn) = Al - A2 = Al = 
E(Sn) for Al » 1, and that by Theorem 2.1, no Poisson convergence takes 
place unless A :zIAI -+ 0, that is, for A 2 bounded (and bounded away from 
0), Al » 1 is a necessary condition for Poisson convergence. 

Theorems 2.1 and 2.2, which extend results of Deheuvels and Pfeifer 
(1985), will be proved by the following operator semigroup technique, 
paralleling (but improving) LeCam's (1960) approach. 

Consider the Banach space 11 of all absolutely summable sequences 
1= (/(0),/(1), . .. ) with norm 

00 

1= L If(k)1 (2.7) 
k ... O 

The convolution I. g for I, g E 11 is defined by 

n 

I.g(n)= LI(k)g(n-k), n~O (2.8) 
k-l 

being again an element of 11 with 

III· gil ~ 11/11 II gil (2.9) 

Henceforth we shall think of discrete probability measures ." over Z + as 
elements (.,,({O}), .,,({1}), ... ) Ell. Specifically, £k will denote the Dirac 
measure concentrated in k E Z +. The infinitesimal generator of the Poisson 



444 SEMI GROUPS AND POISSON APPROXIMATION 

convolution semigroup is defined by 

A ( )={g(n-1)-g(n), 
g n -g(O), 

such that 

n~l 

n=O 
(2.10) 

t ~ 0, g E [1 

(2.11) 

where IT(t) denotes the Poisson distribution with mean t. Also, 

g E [1 (2.12) 

where B ( P k) denotes the binomial distribution with mean P k over {O, 1 } 
and I denotes the identity operator. Because of (1.1), we can now rewrite 

where go = (1,0,0, ... ) E [1. Since I + P kA is the first-order Taylor expan
sion of the semigroup etA for t = Pk [see, e.g., Butzer and Berens (1967)], it 
seems natural that the right-hand side of (2.13) could be attacked by 
general operator semigroup theory, in combination with the well-known 
fact that for commuting operators U1, ••• , Un' VI' ... , Vn we always have 

n n n n Uk - n Vk = L Uk+1 ••• Un(Uk - Vk)V1 ••• Vk- 1 (2.14) 
k-l k-l k=l 

as can be easily proved, for example, by induction. 
Consider first the case p. = AI' From what has been said above, we 

should have, in some sense, 

A more precise statement is given below. 
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Theorem 2.3. We have, for A\k) = LioiakPi' 

Proof. From (2.14) we obtain, as in the proof of Theorem 2.1 in Deheuvels 
and Pfeifer (1986), 

But 

e-p;A(I + PiA) = (I + PiA ){ I - PiA + foP;(Pi - u) e- UAA2du} 

= 1- p;A2 + (I + PiA) foP;(Pi - u) e- uAA2du (2.17) 

hence 

lIe-P,A(I + PiA) II ~ 1 + p;IIAII2 + tp; eP;IIAIlIIAII2 (2.18) 

where IIAII = 2, such that, since Pi ;:5; 1, the left-hand side of (2.16) can be 
estimated by 

(2.19) 

But 

lIe>.\k) AAjll ~ e-PkAlllle>'lAAjll ;:5; 9I1e>'l AAjll, j ~ 1 

Hence the result. • 
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In a similar manner, the following result can be obtained. 

lbeorem 2.4. We have 

with 

A2 
IRnl ~ e 22A1 [6A3I1eAIAA311 + 99A2211eAIAA411] + 2y2 A 

2 
{2.21} 

1 

Proof. The proof is analogous to the proof of Theorem 2.1 in Deheuvels 
and Pfeifer (1986). 

From relation (3.19) in Pfeifer (1985a) we see that 

{2.22} 

but also 

Theorem 2.1 now follows from Theorem 2.4 and Theorem 1.2 in Deheuvels 
and Pfeifer (1986). Theorem 2.2 follows from Theorem 2.1 and the fact that 
for y > 0, we have 1I(2yA + A2) eA1AII = 0(1/ p::;), but IIA2e A1A II = 
0(1/A1) for Al » 1. 

REMARK 2.1. An application of the above technique directly to the norm 
term 

IleA>A - D1 (I + p.A) II yields 

d( S., T(A1)) :!> e22A
, { tA2K(O, A1) + 27 ~ } (2.24) 

which is considerably sharper than the corresponding bound in Barbour 
and Hall (1984) for moderate and large values of Al when A2 « 1. 

3. APPUCATION 

Here we shall consider Ross's (1983) Markov chain model for the simplex 
algorithm in linear programming and the average-case analysis correspond
ing to it. Characteristically, the simplex algorithm moves through the n 
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(say) extreme points of the feasible region defined by the linear constraints 
in such a way that at each step of the algorithm, all points visited and those 
that cannot increase the value of the goal function are excluded from 
further consideration. If we assume that the extreme points are ranked such 
that 1 corresponds to the optimal and n to the worst point, then the ranks 
visited can be considered as a homogeneous Markov chain with uniform 
initial distribution, absorbing state 1 and uniform transition probabilities 
for the remaining higher ranks [see Ross (1983, Chapter 4)]. If we assume 
that the random variable Xk takes the value 1 if rank k was visited and 0 
otherwise (k = 1, ... , n), then it is possible to show that by the structure of 
the underlying Markov chain, Xl' ... ' Xn are independent with Pk = 11k 
(note that 1 is absorbing, hence PI = 1, and the first selected extreme point 
is the worst with probability lin). Then Sn denotes the number of steps 
required for termination. Here, 

Al =:: logn + C, 
'11'2 

A - - for n -+ 00 
2 6 (3.1) 

(where C = 0.5772 denotes Euler's constant). Hence by Theorem 2.2, Sn is 
asymptotically Poisson with mean Al =:: log n and 

'11'2 1 ( 3/2) 
d(Sn' T(AI ») = .~ -1 - + 0 (log n)- for n -+ 00 (3.2) 

6y2'11'e og n 

Note that by methods similar to those above, we obtain only 

d( S.' T(log n» =.; C + o( (log n) -') for n --+ co (3.3) 
2'11' log n 

which means that Sn is indeed (asymptotically) closer to a Poisson random 
variable with mean Al than to a Poisson random variable with mean log n. 

4. FURTHER COMMENTS 

It seems reasonable that the generalizations presented in this chapter should 
also apply to distance measures other than total variation, for instance, the 
Kolmogorov distance or Wasserstein distances [see, e.g., Deheuvels and 
Pfeifer (1985)], since these can also be treated in the operator semigroup 
framework, and Theorems 2.3 and 2.4 do not heavily depend on the 
underlying semigroup or the underlying Banach space. 

A generalization to Poisson point process approximation by the semi
group approach seems also to be tractable quite well (Pfeifer, 1985b), 
although in this area we are still far from sufficient results. 
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Note that the constants which appear in our theorems can be precised. 
For instance the constant 22 in (2.24) originates from (2.18) and the crude 
inequalitites 

If p --+ 0, it follows that 22 can be replaced by any constant c > 6, for 
asymptotic validity. 
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