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We present an extension to the multinomial case of former estimations for 
univariate Poisson binomial approximation problems and generalize a result 
obtained by N. K. Arenbaev (Theory Probab. Appl. 21 (1976), 805-810). As an 
application, we evaluate the total variation distance between superpositions of 
independent Bernoulli point processes and a suitable Poisson process. The main 
tool will be a multiparameter semi group approach. © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Operator methods in connection with Poisson approximation problems 
have received some attention recently (Shur [18J, Presman [15J, Barbour 
and Hall [2J, Deheuvels and Pfeifer [5-7J, and Pfeifer [13, 14J), 
extending or improving an approach introduced originally by LeCam 
[12]. 

All these papers deal with the univariate case, giving estimations or 
asymptotic expansions for distances between the distribution of sums of 
independent Bernoulli summands and a suitable Poisson distribution. 

In the following, we give an extension of the semigroup approach 
developed in Deheuvels and Pfeifer [5, 6 J for a general multinomial 
approximation with respect to the total variation distance. This problem 
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has been studied by Arenbaev [1 J in the case of i.i.d. multinomial sum
mands, and we generalize his results in a wider setting. 

Our methods can be applied to the estimation of the total variation 
distance between the superposition of independent point processes and a 
suitable Poisson process (see, e.g., Serfozo [17 J and the references therein). 
The estimations we obtain are generally sharper than those obtained by 
martingale (the papers of Freedman [8J and Serfling [16J are essentially a 
martingale approach in discrete time) and compensator approaches (the 
first compensator approach of this problem is given in Brown [3,4 J; see, 
e.g., Valkheila [19J, Kabanov, Liptser, and Shiryaev [10J, and the referen
ces therein), due to the specific setting taylored to the Poissonian 
semi group. 

This paper is organized as follows. In Section 1 we give our main results 
for multinomial approximations. Section 2 is devoted to the semigroup 
evaluations. In Sections 4 and 5, we compute the leading terms of our 
expansions. Section 6 contains our results for point processes. 

2. MAIN RESULTS 

Let k~ 1 be a fixed integer, and let Zn= (Zn(I), ... , Zn(k)), n= 1, 2, ... , be 
a sequence of independent random vectors of IRk, such that, for j = 1, ... , k, 

= Pnj~O, 
k 

P(Zn(l) = .,. =Zn(k)=O)= 1- L Pnj= I-Pn~O. 
j=1 

Consider Sn = L7= 1 Zj = (Sn(l), ... , Sn(k)), where Sn(j) = L7= 1 Zj(j), 
j= 1, ... , k. 

Let, for j= 1, ... , k, Aj = L7=1 Pi}' and define Tn = (Tn(l), ... , Tn(k)) as a 
random vector such that Tn(l), ... , Tn(k) are independent, and that Tn(j) 
follows a Poisson distribution with mean Aj , j = 1, ... , k. 

The main purpose of this paper is to provide sharp evaluations for the 
total variation distance An between the distribution L(Sn) of Sn and L(Tn) 
of Tn: 

1 
=2 L IP(Sn=m)-P(Tn=m)l· (2.1 ) 

m 
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Up to now, this problem has received attention in the particular cases 
listed in the examples below. 

EXAMPLE 2.1. For k = 1, Zn follows a Bernoulli B(Pn) distribution, and 
Tn a Poisson distribution with mean :L7= 1 Pi' This is the classical Poisson 
approximation problem for sums of independent Bernoulli random 
variables which has received an extensive treatment (see the references in 
Section 1). 

EXAMPLE 2.2. When Pi} = Pi is independent of i = 1, ... , n for all 
j = 1, ... , k, Sn follows a multinomial distribution such that 

n! (k )n- R 
P(Sn(1)=r1, ... , Sn(k)=rk)= ,... '( _ )' p~I"'Pkk 1- I Pi ' 

r1· rk·n R. i=1 
(2.2) 

where r1 ~O, ... , rk ~ 0, and R = :Ly= 1 ri~ n. 

Under these assumptions, Arenbaev [1] has proved that, whenever 
PI, ···,Pk are fixed and :LY=l Pj>O, we have, as n -+ 00, 

_1 '" f..J IP(Sn = r) - P(Tn = r)1 
2 rt + ... + rk';;;; n 

Let Un= Tn(1) + ... + Tn(k) and P=:LY=l Pj' Routine manipulations 
show that P(Un~n+1)~(P/(I-P))(2nn)-1/2 exp(-n(P-l-logP))= 
0(n-l/2) as n -+ 00. Hence, Arenbaev has shown that, for any fixed 
O<P< 1, 

as n -+ 00. (2.4 ) 

In our first theorem, we show, among other results, that the validity of 
(2.4) can be extended to the case where PI' ... , Pk vary with n. 

THEOREM 2.1. Assume that P1=Pi1, ... ,Pk=Pik are independent of 
i = 1, ... , n. Let P = :L'j= 1 Pi and 8 = nP. Then 

_~ (8 CX
-

1(IX-8) _ 8P-
1(f3- 8 )) -(J 

L1 n - 2 P8 IX! f3! e + Rn 

1 P 
=4 dn + Rn ="4 D(8) + R n, (2.5) 
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where (with [u] denoting the integer part of u) 

f3 = [0 + ! - ( 0 + ~) 1/2 ], 

and 

Furthermore, if n ~ 1 and P vary in such a way that P -+ 0, we always have 

(2.6) 

In addition, if 

O=nP-+ 00 and p-+o, (2.7) 

then 

(2.8) 

On the other hand, if 

O=nP-+O, (2.9) 

then 

(2.10) 

Proof It follows from Lemma 5.1 in the sequel. Observe that (2.6) and 
(2.8) follow from (2.5) by straightforward expansions as in Deheuvels and 
Pfeifer [5]. 

Remark 2.1. In Theorem 2.1, we do not make any growth assumption 
on n ~ 1. Likewise, k ~ 1 need not remain fixed. In particular we may not 
assume that n -+ 00. On the other hand, the estimations of the error term 
Rn lack precision when P -A 0. 

By choosing an arbitrary ° < B < 1 and by applying Arenbaev's [1] 
technique for P ~ B and Theorem 2.1 for 0< P < B, we can easily prove that, 
if n ~ 1 and P vary in such a way that nP -+ 00 and 0< P < 1 - b for some 
fixed b > 0, then 

P 
An = ~ (1 + 0(1)). 

y2ne 
(2.11 ) 

The evaluations in (2.5) cover the situation where nP -+ a E (0, 00), 

n -+ 00, P -+ 0, in which case we have An = (P/4) D(a)(1 + 0(1 )). 
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Our next theorem deals with the general case. We obtain the following 
results. 

THEOREM 2.2. Let Pi}' j = 1, ... , k, i = 1, ... , n, be arbitrary. We have 

(2.12) 

where 

(2.13) 

(2.14 ) 

1 ( k) 1 K = 1 + -2 exp 2 m~x L P i} ~ 1 + -2 e2 < 4.70, 
l~l~n j=l 

and where T 1, .•. , T k denote independent Poisson random variables with 
expectations E( TJ = L:7= 1 Pi}' j = 1, ... , k. Throughout, we use the conven
tion that % = o. 

Proof It follows from (3.19)-(3.30) and (5.3) in the sequel. 

Remark 2.2. By (2.10) we see that the upper bound evaluation of the 
leading term !dn in (2.13) is sharp in the range where L:7= 1 L:J= 1 Pi} ~ o. 
On the other hand, in the case covered by Theorem 2.1, if 
L:7= 1 L:J= 1 Pi} = n L:J= 1 Pj ~ 00, (2.13) yields the upper bound 

1 1 {k } 4dn~2 .L Pj , 
J=l 

(2.15) 

to be compared with the exact asymptotic coefficient given by (2.8): 

(2.16) 
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It can be verified that 1/~ ~ 0.242 < ~ = 0.5. It follows that in this 
range, the upper bound in (2.13) is sharp up to a coefficient only, even 
though it gives the right order of magnitude (see Theorem 4.2 in the 
sequel). 

In order to make simple evaluations of (2.13) in closed form, com
plementary assumptions have to be made on the Pij's. An example is given 
as follows. 

THEOREM 2.3. Assume that Pij Pi! = 0 for all 1 ~ j #1 ~ k and 1 ~ i ~ n. 
Suppose that k ~ 1 is fixed and that the P ij's vary in such a way that 

and (2.17) 

n 

I Pij-+ 00 for j= 1, ... , k. 
i=1 

Let dn be as in (2.11). Then (with the convention 010=0) 

(2.18) 

where 

and m=0,1, .... 

Proof See Theorem 4.3 in the sequel. 

Remark 2.3. Let k = 1 and Pi = Pil, i = 1, ... , n. Since VI = 2, we have by 
(2.16) and (2.18) that 

!d __ 1 {i p2}{ i p.}-1 
4 n ~ i=1 I i=1 I 

n 

as I (2.19) 
i=1 

By Theorem 2.2, we see that An - !dn if, in addition, we have 
{L7= 1 Pi} 1 {L7= 1 PJ -+ O. This corresponds to the Poisson approximation 
of the sum of independent Bernoulli summands, where it has been shown in 
Deheuve1s and Pfeifer [5] that 

1 {n }{ n }-1 An=-- I P; I Pi 
~ i=1 i=1 

n n 

as I Pi -+ 00 and I P; = O( 1). 
i= 1 i=1 

(2.20) 
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Remark 2.4. Let k;::: 1 be arbitrary and consider an array 
{ X lj' 1 ~ 1 ~ N, 1 ~ j ~ k} of independent Bernoulli random variables such 
that 

P(Xlj= 1)= 1-P(Xlj=0)=Pj , 

Put n = Nk, and let 

j= 1, ... , k, 1= 1, ... , N. (2.21) 

S. = (S.(1), ... , S.(k» = (t XII, ... , It, X,.). (2.22) 

It is straightforward that an alternative representation for Sn is 
Sn = :L7= 1 Z;, where the random vectors Z;, i = 1, ... , n, collect all k-vectors 
of the form (0, ... , X lj' 0, ... , 0) with X lj in jth position 
(j = 1, ... , k)(I = 1, ... , N). The correspondence between i and (I, j) may be 
chosen arbitrarily as long as it defines a one-to-one mapping between 
{1, ... , n} and {1, ... , N} x {1, ... , k}. 

In this case, Theorem 2.3 (see also Theorem 4.1 in the sequel) applies 
and 

(2.23) 

whenever k;::: 1 is fixed and N;::: 1, PI' ... , P N vary in such a way that 

k 

N I Pj -+ 00 
j=1 

and 

Assume, in addition to (2.24), that 

N 

N I P;=O(1). 
j=1 

j= 1, ... , k. 

Then, we have likewise (or by (2.20)) 

j= 1, ... , k. 

(2.24 ) 

(2.25) 

(2.26) 

Since (see Remark 4.2 in the sequel) 2Vk(kI2ne)kI2 '"'-' 21fo as k -+ 00, 

we see that for any 8> 0 there exists a k = k e ;::: 1 such that, under (2.24) 
and (2.25), ultimately 

{ 
e }1/2 

~ (1 + 8) 2k . (2.27) 
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It is noteworthy that Sn(1), ... , Sn(k) are independent and that Sn(j) 
follows a binomial B(N, Pj) distribution. Recall that Tn(1), ... , Tn(j) are 
also independent and such that Tn( j) follows a Poisson distribution with 
expectation NPj • The evaluation in (2.27) shows that, for large k's, the 
upper bound 

k 

dv(L(Sn), L(Tn)) ~ 1 - fl {I - dv(L(Sn(j)), L(Tn(j)))} 
j=l 

k 

~ I dv(L(Sn(j)), L(Tn(j))), (2.28) 
j=l 

which can be obtained by maximal independent couplings of Sn(j) and 
Tn(j), j = 1, ... , k, is far from optimal (Recall that a maximal coupling of ~ 
and, is a construction of ~ and, on the same probability space such that 
P(~ =1= 0 = dv(L(~), L(O). Such a construction always exists and can be 
made here with ~ = Sn(j) and ,= Tn(j) in such a way that (Sn(1), 
Tn(1)), ... , (Sn(k), Tn(k)) are independent 2-vectors.) 

Consider now the general situation described in Example 2.2 and 
Theorem 2.1, corresponding to the multinomial distribution. In this case 
Sn(1), ... , Sn(k) are dependent so that (2.28) does not hold. However, it is 
remarkable that, under the assumptions of Theorem 2.1, if (2.7) holds, we 
have 

k 

dv(L(Sn), L(Tn))- I dv(L(Sn(j)), L(Tn(j))) 
j= 1 

k 

-1 - fl {1- dv(L(Sn(j)), L(Tn(j)))}. (2.29) 
j=l 

On the other hand, if (2.9) holds, and with the particular choice of 
Pj = P/k, j = 1, ... , k, we see that 

which can be rendered as great as desired by a suitable choice of k ~ 1. 
These examples show that there is no hope to obtain sharp evaluation of 

dv(L(Sn), L(Tn)) in terms of LY= 1 dv(L(Sn(j)), L(Tn(j))) without specific 
assumptions on the Pij's. 

Remark 2.5. It is straightforward that dv(L(Sn), L(Tn)) ~ 
dv(L(LY= 1 Sn(j)), L(LY= 1 Tn(j)))· A simple proof of this statement uses a 
maximal coupling between Sn and Tn and the inequalities P(Sn =1= Tn) ~ 
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PC2:.J= 1 SnU) =I- LJ= 1 TnU)) ~ dv(L(LJ= 1 SnU)), L(LJ= 1 TnU)))· This 
enables one to obtain lower bounds for 11 n by using classical Poisson 
approximation arguments (see, e.g., Example 2.1). 

3. THE SEMI GROUP SETTING 

Let k ~ 1 be a fixed integer, and consider the Banach space I~k) if all 
sequences 1= I(m), m = (ml, ... , mk) E Nk = {O, 1, ... }\ such that 

11/11= L I/(m)l<oo. (3.1 ) 
mENk 

For J, g E I~k), the convolution 1* g = g * I is defined by 
00 00 

l*g(m1,···,md= L ... L l(r1,···,rk)g(m1-r1,···,mk-rd, mEN k. 
rJ = 0 rk = 0 

(3.2) 

Note for further use that if, J, g E I~k), 

III * gil ~ 11/11 IIgll" (3.3 ) 

with equality whenever l(r)g(s)~O for all rEN k and sENko 
In the sequel, we shall identify a bounded measure Ji on N k with the 

sequence I E I~k) via the equivalence 

Ji ~ I <=> I(m) = Ji( {m} ), (3.4 ) 

In particular, the set Mk of all probability measures on N k will be iden
tified with the subset of I~k) composed of all nonnegative sequences I such 
that II III = 1. 

Any sequence I E I~k), or equivalently, any bounded measure Ji ~ I on N \ 
defines a bounded linear operator on I~k) by 

(3.5) 

where Ji and I are related via (3.4). 
Let e{ denote the unit mass at point (m 1, ... , md, where m i = 0, i =I- j, and 

mj = I. Then the identity operator I on I~k) corresponds via (3.5) to eg, since 
we have 

Ig=g=eg * g, (3.6) 

By (3.3) and (3.6), we have, for any J, g E I~k) and Ji ~ J, 

III * gil = IlJigli = 11(1 * eg) * gil ~ 11/11 II gil = 11(1 * e8)11l1gll, (3.7) 
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with equality when g = eg. This shows that the operator norm 
sup{ll/* gll/llgll: g#O} of the operator defined by (3.5) coincides with 
IIIII = III * egll. In the sequel, both norms will be denoted by 11/11. 

Consider now, for j = 1, ... , k, the operator Bj defined by 

(3.8) 

It is straightforward that B 1 , ••• , Bk commute and that the operator in 
(3.5) corresponds to 

gE1ik)-+>I*g=( f··· f l(rl, ... ,rdB~l ... B~k)g. (3.9) 
q =0 rk=O 

For j = 1, ... , k, A j = Bj - I defines the generator of the contraction 
semigroup {exp(ljAj), Ij ~ O}. The operator exp(ljAj) corresponds via (3.5) 
and (3.9) to a probability measure which is a product of unit masses at 
the origin for the coordinates 1, ... , j - 1, j + 1, ... , k, and of a Poisson 
distribution with mean Ij for the jth coordinate. 

Likewise, the multiparameter semigroup 

11' ... , Ik ~ 0, (3.10) 

corresponds to products of probability measures having mean I j on the jth 
coordinate, j = 1, ... , k. 

Let E 1 , ••• , Ek denote disjoint random events with Pj = P(Ej ), j = 1, ... , k, 
and LY= 1 Pj ~ 1. Let Nj = 1 Ej denote the number of outcomes of Ej , 
j = 1, ... , k, and let v stand for the probability distribution of the random 
vector (Nl' ... , N k ). It will be convenient to denote such a distribution by 
B(Pl' ... , pd· By (3.9), we see that v corresponds by (3.5) to the operator 
1+ LY= 1 pjAj. 

Assume now that Zi= (Zi(I), ... , Zi(k)), i= 1, ... , n, are independent ran-
dom vectors such that for each i = 1, ... , n, Zi follows a B(Pil' ... , Pik) dis
tribution. Set Aj = L7= 1 Pi}' j = 1, ... , k. If Sn = (Sn(l), ... , Sn(k)) = L7= 1 Zh 
and if Tn=(Tn(l),····, Tn(k)), where Tn(l), ... ,Tn(k) are independent 
Poisson random variables with means )'1' ... , Ak, then the total variation 
distance between the distributions L(Sn) of Sn and L(Tn) of Tn, namely 

dv(L(Sn), L(Tn)) = sup IP(Sn E A) - P(Tn E A)I 
AcNk 

(3.11) 
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is nothing else but the corresponding operator norm halved: 

In the sequel, we shall evaluate this expression by suitable Taylor expan
sions for semigroups as in Deheuvels and Pfeifer [5, 6]. We begin with 
general evaluations dealing with linear operators in Banach spaces. 

THEOREM 3.1. Let Db ... , Dn be bounded linear operators on a Banach 
space X, with values in X, and such that I + D i are contractions for 
i = 1, ... , n, where I denotes the identity operator on X. Let II ·11 denote the 
norm (and the operator norm) on X. Then also the operators exp(DJ are 
contractions for i = 1, ... , n, and we have 

1= I 

where 

I#i 

(3.14 ) 

and 

K = 1 +! exp(max {IIDIII, ... , liDnll}). 

Proof Recall that u: X -+ X is a contraction iff Ilull ~ 1. We have by 
(3.3) that 

(3.15 ) 

where we have used the fact that {eM} x = e)'x for all x E X and It E IR, 
jointly with the inequality Ileell ~ e ilCil valid for all bounded operators C on 
X. Hence exp(DJ is a contraction for i = 1, ... , n. 

Next, by the same factorization technique for differences of products as 
in Deheuvels and Pfeifer [5, proof of Theorem 2.1] (see also LeCam [12]), 
we have 
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I¥- i 

I¥- i 

+~ itl Dfexp Ctl D/)[~ll (l+Dm) e-Dm-I} (3.16) 

I¥- i 

Consider in (3.16): 

(I+Dm)e-Dm~ (J+Dm) {I-Dm+ ( (1- I) e-'DmD~ dl} 

= I - D~ + (I + Dm) ( (1- t) e- tDm D~ dt. 

By taking norms and making use of the fact that (I + D m) is a contrac
tion, we get 

where K = 1 +! exp(max {IIDIII, ... , IIDmll}). 
Similar arguments show that 

II(eD;-I-Di-~ Df) exp (~i D')II 

"liD; exp C~i D')IIII ( (1 ~ If e'D, dl II 

,,(K; 1) II D; exp (~i D/)II. 

By all this, we have proved that 

I¥- i 

(3.17) 
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Next, we have 

and 

It follows that 

,., I II D~D;' exp Ct DI)11 K exp (K j~tl IIDJ'). (3.18) 
l-=/=i 

Here, we have used the fact that 

11-1+ (1+ Dm) f: (1- t) e-'Dm II ,., 1 + ~ e lID
•

1I 
,., K 

By (3.17) and (3.18), we have 

which completes the proof of Theorem 3.1. 

THEOREM 3.2. Under the assumptions of Theorem 3.1, we have 

where 

IR:I'" 2(K -1) t II D; exp (t DI)II (1 + (K ~ 1) exp ( K I IIDmll')) 

+2K(K-l) itl I II D~D;' exp (t DI)11 exp (K I IIDmll'). 
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Proof We have 

II ;tl D; (exp (t DI) ~exp Ct DI) )11 
l#i 

~;tl liD; exp Ct DI)IIIIJ: e-'D'dtll, 

where we have used the fact that 1- e- Di = Dd6 e- tDj dt. It is also 
straightforward that IIH e- tDi dtll ~ e liDili ~ 2(K - 1), and likewise that 
lie-Dill ~ 2(K -1). This, jointly with Theorem 3.1, suffices for proof of 
Theorem 3.2. 

EXAMPLE 3.1. Put k= 1, A =Al' B=B1 , and Di=PiA, O~Pi~ 1, 
i = 1, ... , n. Let Am = 'L7= 1 P7\ and assume, as in Example 2.1, that Sn is the 
sum of independent Bernoulli B(Pd, ... , B(Pn) random variables while Tn 
follows a Poisson distribution with mean A = AI' Then, a direct 
application of Theorem 3.2 yields IIDil1 = 2P i , K ~ 1 + !e2 < 4.70, and 

where 

IRnl ~ (K ~ 1) A, IIA'eAA II ( 1 + (K; 1) e4KA
,) 

+ K(K
2
- 1) A~ IIA4eAA II e4KA2 

~ (8.25 A3 IIA3eAAII + 8.68 A~ IIA4eAAII) e18.78 A2. 

(3.20) 

It can be verified (see, e.g., Deheuvels and Pfeifer [7]) that A 3 ~ A 2, 

IIA4eAA II ~ 16A -2, IIA3eAA II ~ 8A -3/2, and IIA 2eAA 11- 4A -1(2ne )-1/2 as 
A ~ 00. Hence a direct application of (3.20) shows that, whenever A ~ 00 

and A2 = 0(1), we have 

(3.21 ) 

This result has been proved by similar arguments m Deheuvels and 
Pfeifer [7]. 

We turn back now to (3.12), which corresponds to the particular case 
where Di = 'LY= 1 pijA}, i = 1, ... , n. It is here straightforward that 1+ Di is a 
contraction for all i since 1+ D i corresponds to a probability distribution. 



POISSON APPROXIMATIONS 79 

Hence Theorems 3.1 and 3.2 apply. Note that, for i = 1, ... , n, 

k 

IIDil1 =2 L Pij=2Pi~2 
j=l 

and (3.22) 

k 

Di= -PJ+ L PijBj' 
j=l 

and (3.23 ) 

k k k 
Df=PfI-2Pi L pijBj + L L PijPijkBjB1• 

j=l j=I/=1 

Likewise, we have, for all m ;::: 1, 

IIDrll ~ IIDili m = 2m {.f pij}m = 2mPt 
J=1 

(3.24 ) 

In the sequel, let 

k 

and A = Al = L Aj . (3.25) 
j=1 

By (3.12) and (3.19), we have 

d,(L(S.), L(Tn» ~ ~ II i~l D; exp (,~, DI)II + R. ~~ dn + R n, (3.26) 

where 

IRnl" t ( L, II D: exp (,~1 DI)II 

+ L2 I II DiD~ exp (,~1 DI)II) exp(L,A2) 

~ (8LI A 3 + 16L2 AD exp(L 3 A 2 ), (3.27) 

and where Ll = (K -1)(1 + (K -1 )/3) < 8.25, L2 = K(K -1 )/2 < 8.68, 
L3 = 4K < 18.78, and 

K = 1 + ! exp(2 max { PI' ... , P n} ) ~ 1 + !e2 < 4.70. 
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We will now evaluate dn = 11L:7= 1 Df exp(L:I= 1 D/)II. By straightforward 
calculations, paralleling the procedure in Deheuvels and Pfeifer [5], we 
obtain 

q=O 

00 )/, ••• Ark 1 n ({ k ( )}2 k 2)1 " 1 k -A" " 1 _!.i. _ " Pijrj 
~ ,..., e ~ ~ Plj A ~ A2 

rk = 0 r 1 • r k • i = 1 i = 1 ) i = 1 ) 

=E(I.f ({.f Pij(l- i.)}2 - .f pi;i)I), 
1=1 )=1 ) J=1 J 

(3.28) 

where T 1, .•. , T k are independent Poisson random variables with expec
tations AI, ... , Ak' 

Routine computations show also that 

( n {k ( T .) } 2) (n k P~' T .) k {n } {n } -1 E.L .LPij l-i =E.L.L 1/ =.L .LP~ .LPij . 
1=1 J=1 ) 1=IJ=1 J J=1 1=1 1=1 

(3.29) 

It follows from (3.29) and the triangle inequality that we have in (3.28) 

(3.30) 

In the next section, we shall detail these evaluations. Note here that 
the same arguments as in (3.22) show that Rn = o(dn) whenever 

L:7 = 1 Pf = O( 1 ). 

4. THE MAIN TERM 

Consider dn defined as in (3.28): 

(I 
n ({ k ( T.)}2 k p~.T·)I) 

dn = E.L .L Pii l-i -.L 1/ . 
1=1 J=1 J J=1 J 

(4.1 ) 

In the sequel, we shall show that, in general, dn is close to D n , where 

Dn = E (I.f ({.f Pij (l-r)}2 -.f ~~)I)· (4.2) 
1=1 J=1 ) J=I) 

It is straightforward that 

(4.3 ) 
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LEMMA 4.1. Let 7: follow a Poisson distribution with mean A. Then, there 
exists an absolute constant C such that, for any A> 0, 

(4.4 ) 

Proof We have (see, e.g., Johnson and Kotz [9, p. 91]) E(I7:-AI)= 
2e- AA[A] + I/[A]! "" A as A -+ 0, while E(I7: - AI) "" {2Aln} 1/2 as A -+ 00. This 
suffices for (4.4). 

Let C be as in (4.4). We have, by (4.3), 

(4.5) 

We will now evaluate Dn- First, we introduce some notation. Let 

Consider Fn = R;; 1/2MnR ;; 1/2 and the sets en= {UERk: u'Fnu~Tr(Fn)} 
and 

{ 
n ({ k ( t .)}2 k P~') } = t= (tl' ... , tdERk: .L .L Pi} l-i -.L / ~O . 

1=1 )=1 ) )=1) 

Note for further use that Tr(Fn)=:L;=1 {:L7=IPt}{:L7=IPi}}-I~k and 
that 

( 
n ( k P~' {k ( 7: .)}2)) Dn=2E 1{-ce Qn }.L .L /- .L Pi} I-t . 

1=1 )=1) )=1 ) 

(4.6) 

Our next result describes the limiting behaviour of dn • 

THEOREM 4.1. Assume that 

(4.7) 

Then 

dn"" 2(2n)-k/2 f (Tr(Fn) - u' Fnu) exp (- -2
1 

u'u) duo (4.8) 
{u e Rk: u'TnU";; Tr(Tn)} 
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Proof First, we remark that {uERk:u'u=l}cen={uERk:u'rnu~ 
Tr(rn)}. This follows from the inequality u'rnu~ (u'u) f3n, where 
f3n ~ Tr(rn) is the greatest eigenvalue of rn. We have therefore the 
inequalities 

Next, we use the central limit theorem in local form. Here, we can see by 
Stirling's formula that 

P(rj = Aj + VAJl2) = j_,2/: {I + 0 (1 ;/~2)}, (4.10) 
2nAj } 

for Aj + vAJl2 integer and Aj ---+ 00. 

Let vn =(min{21, ... ,2d)1/5 and set An={UERk:u'u~v~}. Put 
~ = R;1/2(r - 2). We have 

Dn = 2E(1 U; E ennAn}(Tr(rn) -~' rn~» + 2E(1 {~E ennA~}(Tr(rn) - ~'rn~» 

=Dn1 +Dn2 · 

It is now straightforward that Dn2~kf3nP(~~An)=o(f3n)' while 
ultimately 

for some constant y (here we have used the central limit theorem for ~). It 
follows that Dn2 = o(Dnd. The conclusion follows by (4.5) and (4.10). 

In the course of our proof, we have shown the following result. 

THEOREM 4.2. Assume that (4.7) holds. Then, for any B > 0, we have 

for all n sufficiently large, where 

Co = -k
2 

(2n)k/2 f, (1- u'u) exp (--2
1 

u'u) duo (4.12) 
{u u:O;; 1} 

Proof The upper bound in (4.11) is given by (3.30), while the lower 
bound follows from (4.9). 

Theorem 4.2 shows that, in the range where (4.7) holds, the rate given by 
(3.30) is sharp and can be determined only up to a fixed constant. 

We apply now the preceding results to specific examples. 
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THEOREM 4.3. Assume that there exists a sequence {Pn} such that 
uniformly in 1 ~ j =1= I ~ k, as n -+ 00, 

and L:7=1 PijPil ( ) 

{ "~ .. } 1/2 {"~ . } 1/2 = 0 Pn . 
L....1=IPIj L....1=IPil 

(4.13 ) 

Suppose, in addition, that for all 1 ~ j ~ k, as n -+ 00, 

n 

I Pij-+ 00. (4.14 ) 
i=l 

Then 

as n -+ 00, (4.15) 

where 

m=0,1, .... (4.16) 

Proof By our assumptions, we have rn '" PnI and Tr(rn) '" kPn (here I 
denotes the (k x k) identity matrix). By Theorem 4.1, it follows that 

dn '" 2Pn(2n) -k/2 f (k - u'u) exp (-! u'u) duo 
{u'u';;;k} 2 

Put U'U=S2, so that du=kVksk- 1 ds, where Vk is the Lebesgue measure 
of the unit ball in ~k. We have now 

which proves (4.15). The proof of (4.16) will be omitted. 

Remark 4.1. Let k = 1 in (4.15). We have then VI = 2 and 

4 {n }{ n }-1 dn ",-- I Pi I Pi 
foe i=1 i=l 

as n -+ 00. (4.17) 

This result gives a new proof of Theorems 1.2 and 2.2 (2.13) in 
Deheuvels and Pfeifer [5]. 

Remark 4.2. In (4.16), we have Yk=2Vk(kI2ne)k/2<2 for k= 1, 2, ... , 
which is in agreement with (2.30). We have here 

Yl = 41foe ~ 0.97, Y2 = 21e ~ 0.74, ... , as k -+ 00. 
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Remark 4.3. In Theorem 4.3, we suppose that rn '" PnI as n --+ 00. If we 
assume more generally that 

as n --+ 00, ( 4.18) 

then the same arguments as above show that (whenever (4.7) holds) 

as n --+ 00, ( 4.19) 

where 

C =-k
2 

(2n)-k/2 f (k - u'ru) exp (-~ u'u) duo (4.20) 
{uTu~k} 2 

Note here that Tr(r) = k, and that (4.19) and (4.20) hold even when 
r~ 0 is a singular matrix. In particular, we may treat the i.i.d. case with the 
notations of Example 2.2, which gives )'j = npj' j = 1, ... , k, 

(fi:) c ~ rn= : ("';PI ···Jpd. 
vP: 

Here, we may see directly in (4.8) that 

(4.21 ) 

In the following section, we shall give a direct proof of (4.21). 

5. THE SPECIAL CASE OF IDENTICAL SUMMANDS 

We assume here that PI = Pil, ... , Pk = Pik are independent of i = 1, ... , n. 
Our main result is as follows. 

LEMMA 5.1. We have 
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n! n-R P 
(n-R)! (l-P) e. 

It follows that 

as requested. 

Lemma 5.1 shows that the i.i.d. case yields dimension-free results which 
can be treated by classical methods. It turns out that Theorem 2.1 is 
therefore a direct consequence of Theorem 2.1 in Deheuvels and Pfeifer 
[5J. It may also be seen that (4.21) follows directly from (2.8). 

Remark 5.1. Consider again the general case where Pi!, ... , Pik depend 
upon i = 1,2, .... By the coupling inequality applied as in (2.28), we have 

(5.2) 

where n (A) denotes a Poisson distribution with expectation A. It is 
remarkable that the same upper bound as in (5.2) holds for the leading 
term !dn , since in (3.26) and (2.5), 

n 

dn ::::; L IIDiexp(DJII 
i= 1 

n {k } (k \ n {k }2 =.L .L Pij D .L pij)::::;4.L .L Pij , 
1=1 J=l J=l 1=1 J=l 

(5.3 ) 

where the last inequality follows from D( 8) ::::; 48. 
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6. ApPLICATIONS TO POINT PROCESSES 

Consider a Polish space (E, b), where b is a metric which renders E 
separable and complete (see, e.g., Kallenberg [11, p. 93]). Let ~1' ~2'''' be 
independent E-valued random variables, whose distributions will be 
denoted by /11, /12' ... , e.g., 

(6.1 ) 

where here and in the sequel B, B 1 , ... , Bk denote arbitrary Borel subsets 
of E. 

For n = 1, 2, ... , the point process {~i' 1 ~ i ~ n} defines a random 
measure 

n 

Nn(B) = I 1{~iEB}' (6.2) 
i= 1 

with intensity 
n 

Mn(B) = I lli(B). (6.3 ) 
i=l 

Consider on E the Poisson process JIn ( .) with intensity M n (·) and let C 
denote an arbitrary closed subset of E. Denote by N;(·) and JI;(.) the 
point processes induced by Mn{-) on C, and by L(M;) and L(JI;) the 
corresponding probability distributions. 

Observe that C = En C is a Polish space with the metric induced by b, 
and that N;(·) and JI;(.) are random variables with values in (N, <ff), 
where N denotes the set of all locally finite integer-valued nonnegative 
Radon measures on C, and where <ff is the Borel ring of subsets of N 
induced by the vague topology. It noteworthy that N is Polish (see, e.g., 
Kallenberg [11, p. 95]) in the vague topology. 

In the sequel, we shall consider the distance in variation between L(N;) 
and L(JI;), namely 

dv(L(N;), L(JI;)) = sup IP(N; E F) - P(JI; E F)I 

= sup IE(N;(h))-E(JI;(h))I, (6.4) 
O,;;;h,;;;l 

where the supremum is taken over all <ff -measurable functions h such that 
O~h~1. 

Because of the fact that (N, <ff) is Polish, any FE <ff has the property that 
there exists a sequence {G i' i ~ 1} of compact sets in N such that 
F~ ur: 1 G j and P(N; E F - ur: 1 GJ = P(JI; E F - ur: 1 GJ = O. It follows 
that in (6.4) we may replace <ff by the set of finite unions of elements of Yf, 
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where Yf is a basis for the vague topology (by this, we mean that, for any 
v E N and for any neighborhood V of v, there exists a neighborhood W of v 
such that We V and WE Yf). 

We shall consider the case where Yf collects all sets of the form 
{mEN:m(BJ=ni' i=l, ... ,k}, where B1, ... ,Bk are Borel subsets of E, 
k?:- 1, and nb ... , nk are nonnegative integers. Recall that Vn --+ v vaguely iff 
for any B such that v(oB) = 0, we have vn(B) --+ v(B), which implies 
vn(B) = v(B) for n large enough. We have evidently 

dv(L(N;/), L(Il;)) 

= sup IP(N; E F) - P(Il; E F)I 

= sup sup dv(L{ N;(Bd, ... , N;(Bk )}, L{ Il;(Bd, ... , Il;(Bk )}). (6.5) 
k;. 1 B\, ... , Bk 

Here we can assume, without loss of generality, that B 1 , ... , Bk are 
disjoint Borel subsets of E. 

By (6.5), the evaluation of dv(L(N;), L(Il;)) can be reduced to the 
problem treated in the preceding section. As a direct application, we 
obtain: 

THEOREM 6.1. Assume that j.l = j.li is independent of i = 1, 2, ... , n. Let 
P = j.l( C) and () = nP. Then 

d"(L(N;), L(O;» =~ PO (0"-1~~ - 0) OP- 1~ - 0») e -9 + R., (6.6) 

where ex and f3 and Rn are as in Theorem 2.1. 
In addition, if n, j.l, and C vary in such a way that, for a fixed 8 > 0, 

nj.l( C) --+ 00 and j.l(C) < 1- 8, (6.7) 

then 

(6.8) 

On the other hand, if 

(6.9) 

then 

(6.10) 

Proof By (6.5) and Theorem 2.1, we have dv = sup(!dn + R n), where the 
supremum is taken over all B 1, ... , B k disjoint Borel subsets of C. It suffices 
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now to use the fact that idn and IRnl are increasing functions of 
Il(U~= 1 BJ, and maximal when U~= 1 Bi = C. The conclusion follows by 
(2.11 ). 

In order to obtain similar evaluations in the non-i.i.d. case, assume that 
there exists a Radon measure v on E such that Ili ~ v for i = 1, ... , n. Such a 
measure always exists, since we way take v = L:7= 1 Ili' 

Let Ii = dill dv denote the Radon-Nikodym derivative of Ili respectively 
to v, and consider the Radon measure (J n defined (with the convention 
010=0) by 

(6.11) 

Observe that (J n is independent of v. Furthermore, since the choice 
v = L:7= 1 Ili implies Ii ~ 1 (v-a.e.), we have evidently (J n ~ L:7= 1 Ili' Note also 
that, whenever Il 1 = ... = Iln = Il, we have (J n = Il· 

Let us now use again Theorem 2.2 and (6.5). It is straightforward that if 
we use the upper bound (3.30) for dn , we obtain the upper bound 

We obtain therefore the following result. 

THEOREM 6.2. Le t (J n be as in (6.11). We have 

dv(L(N~), L(II~)) = idn + R n, 

where 
n 

dn ~ min(2(J n( C), 4 I 1l7( C)), 
i=l 

IRnl';; exp ( 4K ;tl 1';( c») 

x G (K ~ 1)' ;tl 1':( C) + 8K(K ~ 1) t~l I'i( C)},) 

n 

+8K(K-1) I lli(C)~ 
i=l 

and 

Furthermore, 
n 

whenever I 1l7( C) = O( 1). 
i= 1 

(6.12) 

(6.13) 
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Remark 6.1. The condition 1:7=1 J17( C) = O( 1) is probably not 
necessary for the validity of (6.13) (see, e.g., Theorem 6.1). 
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