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Abstract: We present estimations and asymptotic expansions for the total variation distance between 
the superposition of independent Bernoulli point processes and the Poisson point process with the same 
intensity measure. Special emphasis is given to the lattice case which arises in connection with the image 
reconstruction in computer tomography. 

1. Introduction. 

In the field of X-ray tomographic image reconstruction it is usually supposed that the emission of 

radioactive particles implanted in a patient's body follows a spatial Poisson point process with some 

absolutely continuous intensity measure J.L. Emission of particles is recorded from outside the body 

by e.g. PET t scanners consisting of detector elements surrounding the patient's body; collected 

data are then used to estimate the intensity measure J.L for instance by maximum likelihood methods 

(see Geman and McClure (1987) or Vardi, Shepp and Kaufman (1985)). Actually, the image 

domain is partitioned into a large number of pixels which means that instead of the hypothetical 

Poisson point process governed by a continuous intensity measure J.L the Poisson proces with the 

corresponding discrete intensity measure v which groups the mass of the pixel areas is considered. 

Hence the estimation problem reduces to the estimation of a vector of parameters for a Poisson 

process with discrete intensity measure v, or, equivalently, Poisson distributed random vectors 

with independent components. 

The· assumption of a Poisson point process for the radioactive decay process carries, however, a 

systematic error since it would require an infinite source of particles with substitution of particles 

after each decay. Actually, implanting nuclear material in a patient's body creates a superposition 

of a finite (but large) number of independent Bernoulli processes, each of which describes the 

spatial position and the life length of the individual isotopes. Grouping by pixels then results 

into a Bernoulli point process with discrete intensity measure v* again, which will in general 

be close in distribution to a Poisson point process with the same intensity v = v*. In general, 

the discrete Bernoulli process can be described by a string tt s = (51"'" 5m ) of independent 

Bernoulli ~(nj,p)-distributed random variables 5j , 1:::; j :::; m, with n = 2::j=1 nj, and p E (0,1) 

where m is the number of pixels, n is the total number of particles implanted, n j is the number 

(concentration) of isotopes in pixel no. j and p is the probability of decay during the observation 

period. Typically, p is very small (in the range < lO-k for some kEN), whereas the nj are rather 

large (note that one mol of isotopes always contains ~ 6.1023 atoms, according to Avogadro's 

law). The discrete intensity measure v* hence has the form 

t positron emission tomography 

v*(B) =p Lnj, B ~ R. 
jEB 

(1) 

tt Note that the actual 2- or 3-dimensional structure of pixels can always be one-to-one transformed to 

such a string by a convenient numbering, preserving the independence structure of individual pixels. 
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In what follows we shall present some estimations and asymptotic expansions for the total variation 

distance of such processes which have recently been obtained by Deheuvels and Pfeifer (1988). 

2. The Model. 

Let (Q, A) be a measurable space and P, Q be probability distributions over A. The total variation 

distance d(P, Q) between P and Q is defined as 

d(P, Q) = sup Ip(A) - Q(A)I· 
AEA 

(2) 

We shall throughout use the same symbol "d" for the variational distance, even though spaces of 

different dimensions are considered in the sequel which, however, will not lead to confusions. 

With the notations to (I), let P denote the distribution of the random vector S, and Q denote 

the Poisson product distribution Q = ®j:l ~(njp). We have the following simple estimations for 

the variational distance between P and Q: 

d( ~(n,p), ~(np)) :::; d(P, Q) :::; min {I, f d( ~(nj,p), ~(njp))}. (3) 
j=l 

The left inequality can be obtained by choosing in (2) the particular sets A = UkEI Ak , I ~ 

{O, ... ,n}, with Ak = {(kl, ... ,km ) E z+m I "L,j'=lk j = k}, 0:::; k :::; n, whereas the second 

inequality follows directly from d(P, Q) using the independence assumption and the well-known 

inequality 

I IT aj - IT bjl :::; f laj - bjl 
j=l j=l j=l 

for all al, ... ,am, bl , ... ,bm E [0,1]' mEN. 

With the estimations in Barbour and Hall (1984), we eventually obtain 

1 m 

32 min{p,np2} :::; d(P, Q) :::; min {I, L min{p, njp2}} :::; min{l, mp, np2}. (4) 
j=l 

When np gets large relation (4) (or (3)) gives a bound ofthe order min{l,mp} only where m is the 

number of pixels which in practical applications might be large also. Note that np is the average 

number of overall decays registrated by the scanner which may not be taken too small in order to 

enable sharp image reconstructions, and which will therefore in general be much larger than the 

number m of pixels. On the other hand, it has been shown by Prohorov (1953) that whenever np 

is large, the left hand side of (3) behaves like 

d( ~(n,p), ~(np)) ~ b 
y27re 

(5) 

which indicates that the true variational distance should be proportional to p whenever np is 

large. By functional analytic methods, using convolution semi groups of operators, and normal 

approximations to quadratic forms of Poisson distributed random variables Prohorov's expansion 

(5) has been extended to the higher dimensional case in Deheuvels and Pfeifer (1988); an application 

of Theorem 2.3 there to the situation under consideration gives 

1 (m )m/2 
d(P, Q) ~ 2 Vm 27re mp (6) 
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whenever m,in {njp} is large and p is small where Vm is the volume of the m-dimensional unit 
l:SJ:Sm 

sphere, i.e. 

{ :~ Vm = 22r+l r !1I r 

(2r + I)! 

ifm = 2r 

r EN. (7) 
if m = 2r + 1, 

For m being large, Vm(~)m/2 ~ ~, such that (6) becomes 
211e V 11m 

1~ d(P, Q) ~ - -p = 0.28Vrnp 
2 11 

(8) 

whenever min1:Sj:Sm{njp} is large and p is small. This means that in the situation under conside

ration, the right magnitude of the approximation error is of the order VrnP' 

Similar considerations hold when the total variation distance between point processes e and C (as 

random elements in a space of measures) is considered since in R2 or R3 (or more generally, a polish 

space X which carries a metric that renders the space separable and complete) this distance can 

be reduced to the calculation of 

d(pe,p() = sup sup d(pWB,), ... ,e(Bk»,p«(B1), ... ,((Bk))) 
kEN B" ... ,BkEB 

(9) 

where B denotes the Borel O"-field over X and P is the underlying probability measure. In our case, 

if e denotes the Bernoulli point process and C the Poisson point process with intensity measure v* 

given by (1), (9) reduces once more to 

(10) 

where J consists of all disjoint partitions I = (II,' .. , h) (1 ::; k ::; m) of subsets of {I, ... ,m}, 

and 
k k 

PJ=Q9SB(L:nj,p), 
i=1 jEJi 

QJ = Q9 I-lJ (L: njp) , 
i=1 jEJi 

IE J. (ll) 

Since the right hand side of (4) and (6), resp. is independent of the nj (with 2::=1 2:jEJi nj being 

bounded by n) and is monotonically increasing with m a comparison with (10) and (11) shows 

that the bound in (4) and the asymptotic evaluation in (8) remain also valid for d(pe,p'). 

(Different approaches to this problem have been studied by Barbour (1988) using Stein's method, 

and Karr (1986, Proposition 1.46) who uses a particular coupling approach with a stochastically 

larger Poisson process; see also Witte (1988).) 

3. Numerical evaluations. 

According to Geman and McClure (1987) or Vardi, Shepp and Kaufman (1985) the number of 

pixels is typically in the range of m :::::! 100 x 100 = 104 , whereas the overall number of particle 

counts is in the range of:::::! 106 . Further, the decay prol;>ability P w.r.t. one second of observation 

time can be expressed as 

p = 0.01l6 . h-1 (12) 
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where h is the half-life measured in minutes. If one assumes that the half-life of the material used 

is around 20 minutes (for instance, lle carbon), then the decay probability per second would be 

roughly p ,::::: 6 . 10-4 • This shows that with one second of observation time the right hand side of 

(3) or (4) would not give a reasonable error bound for n > 3.106 • From (8), however, we obtain 

an error of approximately 28p ,::::: 0.015 or 1.5% which is acceptable. Seemingly, the approximation 

error increases when the half-life of the isotope in use decreases. For oxygen 15 0 which is for 

instance used in quantitative measurements of regional cerebral blood flow (see Frackowiak et al.) 

the half-life is only 2 minutes. In that paper, it is stated that the total number of particle counts 

is typically in the range of 7.5 to 10.105 within 5 minutes of scanning time (i.e. n ,::::: 9 to 12 x 105 ), 

i.e. the overall approximation error increases to around 15% for one second of observation time t 
which is not neglegible, especially since there is an additional image error of 3% due to prompt 

scatter coincidences, not to speak of the estimation error by the maximum-likelihood method itself. 

Here again the upper bounds in (3) and (4) are larger than one (with n ,::::: 5200 for one second 

of scanning time). Indeed, medical experiments seem to show that it is not very useful to choose 

too many pixels in the procedure of image reconstruction since this does not necessarily lead to a 

sharper image, which might in part also be due to the theoretical deviations in the model outlined 

above. 
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