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Spatial Point Processes and their Applications 
to Biology and Ecology 

D. Pfeifer, H.-P. Baumer & M. Albrecht 

Summary 

Random spatial point patterns occur in several areas in biology and e.cology, e.g. in 
connection with the spreading of insect larvae (Richter & Sondgerath 1990, Exam
ple 3.1), the distribution of trees in woodlands (Cressie 1991, Chapter 8.2: Spatial 
Data Analysis of Longleaf Pines; Mecke, Schneider, Stoyan & Weil 1990, p. 136 ff.; 
Ripley 1981, Chapter 8.6: Examples), the distribution of bird's nests (Stoyan, 
Kendall & Mecke 1989, Example 5.1; Ripley 1981, p. 180 ff.), or experiments with 
revitalization of erosed areas in the wadden sea (Pfeifer, Baumer & Albrecht 1992)' 
to mention some typical examples. 

Although the mathematical theory of random point patterns and pattern pro
cesses derived from such models is quite well developed and also a sufficiently 
application-oriented literature is available, the general importance of the field for 
mathematical modeling in the applied sciences has seemingly not yet been fully 
recognized. 

Therefore, some of the most important features of stochastic point process theory 
and some further generalizations thereof like Boolean models and mosaics will be 
presented in the sequel, with particular emphasis on possible applications in biology 
and ecology. 

1 What is a point process? 

Intuitively a random point process is a spatial point pattern in which in general 
the location of points in 2- or 3-dimensional space as well as the total number 
of points are random. A first simple mathematical approach to describe such an 
object, say ~, could be a representation as a random vector with a random number 
of components, i.e. 

(1) 

where Xl, X 2 , ••. are random vectors with values in R2 or in R 3 , resp., describing 
the position of points, and N is an integer-valued random variable, giving the 
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146 Pfeifer, Baumer & Albrecht 

total number of points in the pattern. In this setup, however, it is quite difficult 
to describe the distribution of points in subsets A c R2 or A C R3, resp., 
since we would have to choose those components X i1 , Xi" ... of e which have 
values just in the set A. But since the corresponding subscripts iI, i 2, ... now 
are themselves random variables, depending also on A, a formally well-structured 
description becomes almost impossible. 

For this reason it has turned out that a measure-theoretic approach is much 
better suited, i.e. a representation of point patterns by random measures 

(2) 

where ex is the Dirac-measure concentrated in x E R2 or x E R 3 , resp., i.e. 

x E A 
otherwise. 

Here the random variable 

N 

e(A) = L eXk (A) 
k=l 

(3) 

(4) 

describes the random number of points in the set A C R2 or A C R 3, resp., 
while again X I ,X2 , ... are the (random) locations of individual points. 

A proof of existence and well-definedness of such objects usually requires highly 
advanced mathematics such as topological measure theory (cf. Daley & Vere
Jones 1988 or Stoyan, Kenall & Mecke 1989). In particular, the set of locally finite 
measures on the collection of Borel sets 82 or 83 in 2- or 3-space, resp., has to be 
endowed with a suitable u-field to make the mapping e measureable. 

More elementary treatments can be found e.g. in Cox & Isham (1980), Mathar 
& Pfeifer (1990), Chapter 3.4 or Tops~e (1990). 

2 Spatial Poisson processes 

One of the most important basic models in point process theory is perhaps the 
spatial Poisson process. It is obtained from (1) if the random vectors Xl, X 2 , ... are 
independent and identically distributed with distribution Q, say, and the number N 
of points in the pattern is independent thereof with a Poisson-distribution P(J.L), J.L > 
O. The random variables e(A) then are again Poisson-distributed with parameter 
(=mean) E[e(A)] = J.LQ(A) since for all n E Z+, 
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p(e(A) = n) tn P(N = m) . P (~ eXk (A) = n) (5) 

f= e-Jl ':: (:) Q(At((l- Q)(A))m-n 
m=n 

e- Jl (J.LQ (A)) n eJl(l-Q(A)) = e-JlQ(A) (J.LQ(A))n 
n! n! 

(A good impression of realisations of such point processes can perhaps be obtained 
by considering raindrops scattered on a walkway.) 

The mapping Ee : A -> E[ e(A)] is also called the intensity measure of the Pois
son process; it describes the mean number of points in a (Borel) set A, generated 
by a Poisson point pattern. Hence if Ee(A) is large for a set A, then most proba
bly "many" points will be generated inside A, wheras if Ee( A) is small, then only 
"few" points will be generated inside A. (In our example, A might be a particular 
square on the walkway.) 

The intensity measure Ee is the characteristic quantity of a Poisson point pat
tern: its knowledge determines completely the distribution of e as a random mea
sure and hence the distribution of all possible point patterns generated bye. 
This is mainly due to that fact that Poisson processes have independent incre
ments, i.e. if the (Borel) sets A, B, C, ... are pairwise disjoint, then the random 
variables e(A), e( B), e( c), ... are independent. This can be seen as follows: let 
h = eXk (A), k = 1,2, ... , then h = 1 if the point X k lies inside A. Correspond
ingly, 1 - h = eXk (AC), where AC denotes the complement of A. Obviously, we 
have 

N N 

e(A) = L h, e(AC ) = L (1 - h). (6) 
k=l k=l 

But for all n, m E z+ , 

p(e(A) = n, N - e(A) = m) (7) 
p(e(A) = n IN = n + m) . P(N = n + m) 

P C~ h = n) P(N = n + m) 

( n + m) Q(At(1- Q(A))me-'" J.Ln+m 

n (n+m)! 

-Jl(Q(A)) (J.LQ(A))n -",(I-Q(A)) [J.L(1 - Q(A))]m 
e I' e I n. m. 

e-Jl(Q(A)) (J.LQ(A))n . e-Jl(Q(AC)) [J.L(Q(Ac))]m 
n! m! 
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such that indeed e(A) and e(AC) are independent. Since the sets B, C, ... are 
subsets of AC, one sees that e(A) and e(B), e( c), ... are independent, and so on. 

If, in particular, X C R2 or X C R 3, resp., is a closed and bounded set -
typically a rectangle, a disc, a cube or a ball - and P is the uniform distribution 
over X, then e is also called a homogeneous Poisson process over X. I.e., Q(A) = 
m(A n X)/m(X) for any Borel set A C R2 or A C R 3, resp., where m denotes 
the Lebesgue-measure, which corresponds to area in R2 or volume in R3, resp. 
Hence the intensity measure Ee(A) = JJ- . m(A n X)/m(X) is invariant against 
shifts and rotations of the sets A within X. (Point processes with the property of 
being rotation invariant about the origin are also called isotropic.) For instance, 
the distributional patterns created by Arenicola marina (beneath their excrements 
on the surface) or Littorina littorea in the wadden sea resembles very much the 
realisations of homogenous Poisson point processes over bounded regions of R2. 

Photo 1: Distribution of Arenicola marina and Littorina littorea. 

It is also possible to extend the construction of homogeneous Poisson processes 
to the whole space R2 or R3. Namely, if Xl c X2 C X3 C ... are increasing closed 
and bounded sets with union R2 orR3, resp., then by a suitable limiting procedure, 
a point process (random measure) e can be constructed such that the restriction 
en of e to subsets of Xn is a homogeneous Poisson process over Xn, for all n. For 
such a homogeneous Poisson process, the intensity measure Ee always is a positive 
multiple .A of Lebesgue-measure, i.e. Ee(A) = .A . m(A) for all Borel sets A C R2 
or A C R3, resp. Such a process will henceforth be called homogeneous Poisson 
process with parameter.A. The relation of the parameters JJ-n of the restricted 
Poisson processes en over Xn and .A is here given by 
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Note that in such models, the t.otal number of points in R2 or R3 is always infinite, 
with probability one. 

To avoid difficulties with edge effects for bounded sets X it is in general advanta
geous to deal with such more general homogeneous Poisson processes from the very 
start. This is actually no restriction since the former case can be reobtained in the 
way outlined above. Likewise, it is possible to construct Poisson point processes 
e with essentially arbitrary (locally finite) intensity measures Ee over R2 or R 3 , 

resp. 
Due to the importance of homogensous Poisson processes in modeling "com

pletely random" phenomena it is in general necessary to have statistical tools 
available for testing the hypothesis of homogeneity, and/or for the estimation of the 
intensity parameter .A if such a model is assumed to be valid. A classical testing 
procedure uses the so-called index of dispersion (see e.g. Richter & Sondgerath 
1990, Chapter 3.1.5.). The idea here is to compare the empirical mean en and 
variance O"~ obtained from the independent Poisson-distributed numbers of points 
e(A;), 1 ~ i ~ n, within equally large (in area or volume) and pairwise disjoint 
observation windows AI, ... , An, i.e. 

O"~ = n ~ 1 t (e(A;) - en)2 
i=1 

(9) 

Since under the hypothesis of homogeneity, O"~/en behaves like E(O"~) / E(en) = 1 
almost surely for large values of n by the law of large numbers, it seems reasonable 
to use the index of dispersion Dn = (n - 1 )O"~/en as a test statistic, which under 
the hypothesis of homogeneity is asymptotically X2-distributed (with n - 1 degrees 
of freedom)' for large values of n. This is due to the fact that by the independent 
increments property of Poisson processes, Dn behaves asymptotically like a sum 
of squares of independent, identically normally distributed random variables with 
zero mean and variance 1. 

Unfortunately, by its asymptotic nature, the index of dispersion-test is only 
applicable for a sufficiently large number of observation windows together with a 
sufficiently large average number of points within each window. For instance, if 
the observation windows cover a set X but are so small that each of them contains 
only very few points (typically at most one), then 

en en (10) 

n - t e(Ad = n - e C01 Ai) = n - e(X) 

which means that in this case, n - Dn is approximately Poisson-distributed with 
mean Ee(X) = .A. m(X)! Using the quantiles from a X2-distribution with n - 1 
degrees of freedom here would thus result in less frequent rejections of the null hy
pothesis for large n and hence produce erroneous results. This shows that the index 
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of dispersion-test in general is not very powerful since deviations from homogeneity 
in "small" areas of the point pattern cannot be properly detected. 

'. . \: .... 

. . . . 
Fig. 1 

Left picture: Realization of a spatially homogeneous Poisson proceSSj 
Right picture: Realization of an inhomogeneous unimodal Poisson process. 

Indeed it has turned out that test procedures based on distances between neigh
boured points in the pattern are much more powerful here (see e.g. Ripley 1981, 
1988, or Stoyan, Kendall & Mecke 1989). Let Sr(x) denote the disc with radius r 

in R2 or the ball with radius r in R 3 , resp., with center x E R2 or x E R 3 , resp. 
If x is a "typical" point of a homogeneous Poisson point process with parameter .A 
and ~x denotes the distance of the point x to its nearest neighbour in the point 
pattern, then the cumulative distribution function of ~x in terms of r > 0 is given 
by 

(11) 

since the area of the disc Sr (0) is n 2 in R 2 and the volume of the ball Sr (0) is 
47r /3r3 in R3. To get dimension-free results, it seems reasonable to represent the 
mean number Ee(Sr(x)) of points in a typical disc or ball as 

(12) 

where Vd = m(SI(O)) is the volume (area) of the d-dimensional unit ball (disc)' or 
equivalently, 

(13) 

(called Ripley's L-function). Inserting suitable statitical estimates for the quanti
ties Ee(Sr(x)) and .A here one obtains an empirical L-function, L(r), for which it 
is possible to develop simple confidence strips (see Ripley 1981, 1988, or Mecke, 
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Schneider, Stoyan & Weil 1990, Chapter 4.4 for a detailed discussion of this and 
related problems). Thus the hypothesis of a homogeneous Poisson process will be 
rejected if the empirical L-function leaves the confidence strip at least once. Rip
ley (1981), Capter 8.6, gives examples for point patterns of trees in New Zealand, 
Swedish pines, and bird's nests (eagles and peregrins). 

When applying distance methods to point patterns observed only in windows 
A C R2 or A C R 3 , resp., edge effects have to be taken into consideration for 
those points in the pattern that are close to the boundary of A. It will therefore be 
necessary to use edge corrections in a statistical analysis based on nearest neighbour 
methods. Chapter 3 in Ripley (1988) is devoted solely to the discussion of such 
problems (see also Stoyan, Kendall & Mecke 1989, Chapter 4.6 and Cressie 1991). 

The question of good estimates for the parameters of a point process is not only 
interesting for testing purposes alone. For instance, if an estimation of biomass is 
required for a species like Arenicola marina within a large area X ~ R2, based on 
observations of a small window B ~ X, say, then the expected total number of 
individuals, Ee(X) = ). . m(X), would be the typical value of interest here. But 
since Ee(B) = ). . m(B), we have). = Ee(B)jm(B), such that for a homogeneous 
Poisson process with parameter )., 

with E(~) =). V (~) = Var(e(B)) = 
,ar m 2 (B) 

). 

m(B) 
(14) 

(i.e. the number of points observed in B relative to its area or volume) is a rea
sonable estimate for).. Indeed, by the independent increments property, it can be 
shown that ~ is not only unbiased, but also sufficient - in the sense of mathemat
ical statistics - and consistent (for large values of m( B)). Or, if we have again a 
division of a set X into pairwise disjoint observation windows AI, ... , An of equal 
size in area or volume as in the index of dispersion-test, and 

1 n 

Sn = - I: h with 
n 

k=I 

Jk = { 0, 
1, 

if e(Ak) ~ 1 

if e(Ak) = ° 
denotes the relative total number of empty windows, then 

1 = _log(Sn) with 
Cn 

(15) 

(16) 

is another consistent estimate of ). since by the law of large numbers, for any 
window Ak , 

or 1 = _log(Sn) R::!). 

Cn 
(17) 

as requested; the (conditional) mean square error of ~ here is of the same order as 
the variance of 5. when n is large, given that at least one empty window exists. 
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3 General point processes 

In nature point patterns will seldom occur III a purely homogeneous form but 
frequently more clumpsy or more regular. In the first case we speak of point 
processes with attraction, in the second case of point processes with repulsion. 
Examples for such types of point patterns are: the spreading of insect larvae on 
leafs or the distribution of trees in young forests for attractive point patterns, 
and the occurence of bird's nests or the distribution of trees in older forests for 
repulsive point patterns. For instance, in young forests, the occurence of new trees 
is governed by a local spreading of seeds by existing trees, whereas elder trees 
prohibit the existence of close neighbours e.g. due to the extension of their crowns. 
Although point process theory is rich enough to allow modeling of practically all 
kinds of point patterns it is often justifiable to use two-stage models, due to the 
physical background of their emergence. Such a class of point patterns is the 
class of cluster processes which arise from some underlying point process - which 
is frequently homogeneous Poisson - by scattering daughter points around the 
parent points in a certain way. Usually the parent points themselves do not occur 
in the observed point pattern. Neyman-Scott processes are constructed right in 
this way; the daughter points may be distributed uniformly within discs or balls 
of random diameter (d. Mecke, Schneider, Stoyan & Weil 1990, Chapter 4.5.d), 
or with a random number, independently and with identical distribution, before 
being shifted to a parent point as cluster center (d. Stoyan, Kendall & Mecke 
1989, Chapter 5.3, Ripley 1981, Chapter 8.4 or Cressie 1991, Chapter 8.5.3.). The 
case when the daughter points are shifted Poisson processes themselves has found 
particular interest in biology, for instance for modeling the spreading of larvae 
on leafs or in fields (see e.g. Stoyan, Kendall & Mecke 1989, p. 145, or Richter 
& Sondgerath 1990, Chapters 3.1.3 and 3.1.4). Here the parent points can be 
considered as the positions of egg masses (ovipositions) while the daughter points 
correspond to the positions of the larvae. Special subclasses of Neyman-Scott 
processes are the so-called Thomas processes in which the daughter points follow 
two- or three-dimensional normal distributions (see Richter & Sondgerath 1990, 
Chapter 3.1.2, Ripley 1981, Chapter 6.2, or Stoyan, Kendall & Mecke 1989, Chapter 
5.3), and GauE-Poisson processes, where each cluster consists of either zero, one, 
or two points only (d. Stoyan, Kendall & Mecke 1989, p. 144 f.). In general, a 
statistical analysis of such models is less easy to perform than in the case of Poisson 
processes - see e.g. the discussions of these questions in Richter & Sondgerath 
(1990) or Cressie (1991, p. 666 ff.), where a model fitting to longleaf-pine data is 
performed. An example of a cluster process for the position of pines in a young 
forest is given in Mecke, Schneider, Stoyan & Weil (1990, p. 136). 

Regular point patterns can, among others, be modelled by so-called simple se
quential inhibition processes (SSI-Processes). For instance, in Matern's model I, a 
homogeneous Poisson process e with parameter). is thinned in such a way that all 
pairs of points which are closer in distance than a fixed value 8 > 0 are deleted. 
The probability p(x) that a point x in the original pattern is retained is hence given 
by 
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(18) 

(i.e. the probability that there is no point in a disc or ball of radius 6) where again 
d = 2,3 is the dimension of the space and Vd denotes the Lebesgue measure of the 
unit circle or unit ball, resp. Thus the intensity measure Eeo of eo is given by 

(19) 

for all Borel sets A ; note, however, that eo itself is not a Poisson process. Likewise, 
the probability p(x, y) that points located at x and y are both retained in eo is 

( ) _ { exp(->.· m(So(x) u So (y))) 
p x,y - 0 

if II x - YII '2 6 
otherwise 

(20) 

(see Cressie 1991, Chapter 8.5.4) where Ilx - YII is the Euklidean distance between 
x and y. A simple BASIC-program to simulate some SSI-process is given in Richter 
& Sondgerath (1990, Table 3.2). 

SSI-processes describe quite well the spatial distribution 0f species whose individ
uals claim certain minimal areas for their existence. By numerical differentiation 
of Ripley's empirical L-function, considering the so-called pair correlation function 
L1(L/r)d-l, it is possible to determine approximately the tpyical values of 6 (see 
e.g. Mecke, Schneider, Stoyan & Weil 1990, pp. 128 and 137, or Stoyan, Kendall 
& Mecke 1989, p. 120 ff). 

For a survey over the many models which exist in this field we refer to Cressie 
(1991), Chapter 8.5.4 or Mecke, Schneider, Stoyan & Weil (1990), Chapter 4.5. 
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" 

',' 

" 
" 

," 

" ", 

,I, 

,', 

: 

Fig. 2 
Left picture: Realization of a cluster proceSSj 
Right picture: Realization of a SSI-process. 

There is seemingly a basic difficulty for applied scientists how to choose an ap
propriate model when being faced with non-homogeneous phenomena, in particular 
in the fields of biology and ecology. Unfortunately, it is possible in most cases to 
specify different mathematical setups which produce very similar pictures in sim
ulation studies - for instance, the left picture in fig. 2 could as well be generated 
by a multimodal non-homogeneous Poisson process. Mathematics alone cannot 

Modeling of Geo-Biosphere Processes 



154 Pfeifer, Baumer & Albrecht 

provide the right answer here; instead, some knowledge about the mechanism how 
the point patterns under consideration emerge is necessary. Therefore, selecting 
statistical as well as deterministic models in biology and ecology has to be done in 
a very careful way; especially, if the models are used for forecasting purposes. 

4 Boolean models 

Besides mere (idealized) point patterns often random patchy spots can be observed 
in nature, for instance in the distribution of plants on the surface, or in mussel banks 
as of Mytilus edulis. 

Photo 2: Mussel bank of Mytilus edulis. 

The construction of cluster processes in the preceding section allows a statistical 
modeling of such phenomena in a very simple way in that instead of daughter points 
other suitable geometric objects (called grains) such as discs, rectangles, balls etc. 
are scattered around the parent points of the underlying point pattern. Objects 
created in this way are usually called Boolean models or Poisson grain models, if 
the underlying point process is homogeneous Poisson; the "random sets" B which 
occur in this setup are, in particular, investigated in mathematical morphology 
(for a survey of this field, see e.g. Ripley 1981, Chapter 9, Ripley 1988, Chapter 
6, Stoyan, Kendall & Mecke 1989, Chapters 1.4, 3 and 6, or Cressie 1991, Chapter 
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9). Statistical parameters which are of interest here are, among others, the area or 
volume fraction p which is given by 

p = 1- exp(-AE(m(50 )) (21) 

where again A is the parameter of the Poisson process and 50 is the "typical" 
random set (grain) which serves as a sample for the daughter objects. In the case 
of discs with random radius R, we have, for instance, E(m(50 )) = 7l" • E(R2) as 
the average area covered by a grain. Similarly, the probability Pc that a typical 
grain of such a Boolean model is isolated (i.e., not covered by any other grain of 
the pattern) is given by 

Pc = 1- exp(-AE(m(50 EEl (-50))) (22) 

where A EEl (-B) = {x - y I x E A, y E B} is the so-called dilatation operation 
for subsets A, B of R2 or R3, resp. (see Stoyan, Kendall & Mecke 1989 for a 
detailed discussion of these and related questions from morphology and stereology, 
or Mecke, Schneider, Stoyan & WeiI1990). 

Another important quantity for Boolean models is the so-called spherical contact 
distribution function H(r) which is given by 

H(r) = 1- P(5 n Sr(x) = 0) = 1- P(5 n Sr(O) = 0), r 2: 0 
1-p 1-p 

(23) 

where again p is the area or volume fraction. It is essentially the distribution 
function of the distance from a point x chosen "randomly" outside 5, measured to 
the nearest point of 5. The spherical contact distribution function can be used for 
testing the model assumptions. For instance, in a Boolean model with discs in the 
plane, the logarithm of 1 - H(r) has the form 

-In(1 - H(r)) = a . r + b . r2, (24) 

with parameters a E R, b 2: 0 such that quadratic regression methods become 
applicable. Stoyan, Kendall & Mecke (1989) discuss such an example for lichen on 
a stone (p. 86 ff.). 

\ 
I .. ... 

Fig. 3: Realization of a Boolean model with discs of random radius. 

For practical applications such as the estimation of area covered by mussel banks 
in the wadden sea or an estimation of their total biomass, it is necessary to estimate 
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the area or volume fraction P from the data given through 6. At least three 
different techniques have been developed for this purpose over time. In the point
count method, a grid of distinct deterministic points Xl .•. ,Xn is selected from the 
image, and P is estimated by 

Pc = .!:. t e:xk (6) = .!:.#{k I Xk E 6} = fraction of grid points in 6. (25) 
n n 

k=l 

In the lineal method, which applies to planar models only an array of n parallel 
line segments of fixed length l is laid over the image, and p is estimated by 

L 
PL = nl (26) 

where L is the random total length of line segments intersecting 6. The latter 
method is of particular interest in marine ecology due to its technical simplicity. 
Both estimators Pc and PL are unbiased for stationary (i.e. distribution ally shift
invariant) and isotropic random sets 6 as it is the case for Poisson grain models 
with discs of random radius as grains. In the area method the area fraction P is 
measured directly by image-analyzers. For a more detailed discussion, see Stoyan, 
Kendall & Mecke (1989), Chapter 6.3. 

Similarly, estimations of the spherical contact distribution function are possible 
by point-count methods via 

(27) 

I.e. the fraction of points outside the grid which are closer to 6 than r. 

5 Mosaics 

Another possibility to create random planar or spatial geometric objects by point 
processes is given by tesselations or mosaics. Here R2 or R 3 , resp. is subdivided 
into polygons or polyhedra in an appropriate way. For instance, cell structures 
or cracks in dried surfaces can be modeled by means of mosaics; more references 
to applications in biology and ecology can be found in Stoyan, Kendall & Macke 
(1989, p.260 f.). 

Planar Poisson- Voronoi-mosaics are obtained from homogeneous Poisson pro
cesses in the following way: each point X of the pattern is related to a polygon 
which consists of those points y in R2 that have a distance IIY - xII to x which is 
not larger than the distance Ily- zll for any other point z of the pattern (see Mecke, 
Schneider, Stoyan & Weil 1990, Chapter 3); spatial Poisson-Voronoi mosaics are 
constructed in a similar way. 

A large amount of formulae for characteristic quantities of a "typical" cell in a 
mosaic is available meanwhile by stereological considerations (see Stoyan, Kendall 
& Mecke 1989, or Mecke, Schneider, Stoyan & Wei11990); some of them are given 
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Photo 3: Crack pattern of dried soil tn the wadden sea. 

Modeling of GeowBiosphere Processes 

Fig. 4: Realization of a Poisson
Voronoi-mosaic. 



158 Pfeifer, Baumer & Albrecht 

below: 

planar Poisson- Voronoi tesselations: 

mean area 

mean circumference 

mean side length 

1 
,). 

4 

.;>. 
2 1 . f 

3';>' = 6" . mean CIrcum erence 

spatial Poisson- Voronoi tesselations: 

mean volume = 

mean surface 

mean average breadth 

1 
,). 

V 25367r r (~) r 2 / 3 = 5.821.A -2/3 

~V16 7r5r (~) ,).-1/3 = 1.458,).-1/3 
15 9 3 

where r denotes the Euler Gamma-function. 

(28) 

(29) 

The distribution of the number K of sides of a typical planar Poisson-Voronoi 
cell is given below. Note that the average value E(K) is exactly 6. 

n 

P(K = n) 

from Stoyan, Kendall & Mecke (1989), Table 10.4 

6 Dynamic point patterns 

So far only static point patterns have been considered in the preceding sections, 
without taking into consideration the possibility of changes in the image over time. 
The study of time-dependent point patterns, however, is of great importance espe
cially in the fields of biology and ecology, in particular if forecasting of processes is 
desired. First approaches in theory are spatial birth-death processes (see Stoyan, 
Kendall & Mecke 1989, Chapter 5.5.5, Mecke, Schneider, Stoyan & Weil 1990, 
Chapter 4.5 c) or Cressie (1991, p. 678f.) which for instance have been used in 
modeling earthquake epicentres and sink-holes. Jetsche (1991) consideres high
dimensional Markovian birth-death processes for modeling biological populations 
with the additional possibility of migration, however not in the setup of point 
processes as such. 
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Fig. 5: Simulation of equilibrium after erosion. 
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A simple approach to a simultaneous study of birth, death and migration of 
points (individuals of a species) within the framework of Poisson processes has 
been given in Pfeifer, Baumer & Albrecht (1992), motivated by revitalization ex
periments for erosed areas in the wadden sea. The approach is formally similar to 
(2), i.e. point processes e(t) are considered, which now depend on the time t: 

N(t) 

et = L l{Tk>t}eXdtj, 
k=l 

t 2: 0, (30) 

where {N(t) h~o is a one-dimensional Poisson process which governes the occurence 
of new points, and {TdkEN is a family of random variables, statistically indepen
dent thereof, which correspond to the life-times of the individual particles. Here 
lA denotes the indicator random variable of the event A, given formally by the 
relation lA(x) = ex(A). Finally, the random variables Xdt), X2 (t), ... denote the 
position of points at time t, as before. 

In this model it is possible to study the long-time behaviour of the system with 
very little effort since all the point patterns e(t) are Poisson point patterns. For 
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instance, it is possible to simulate extinction, asymptotic equilibrium or explosion 
of populations, according to the choice of the model parameters. In particular, the 
total number Mt = €t(R2) or Mt = €t(R3 ), resp., of particles at time t forms a (in 
general non-homogeneous) birth-death process with birth-death rates given by 

.Bn(t) = >.(t)(1 - F(t)), 
nf(t) 

Dn(t) = 1-F(t)' t~O,nEZ+, (31) 

where >.(t) =1tE[N(t)] as usual denotes the intensity ofthe Poisson process {N(t)} 
and f(t) = 1tF(t), t ~ 0, denotes the density of the life-time distribution (see 
Pfeifer, Baumer & Albrecht 1992, section 3). 
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