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CHARACTERIZATIONS OF EXPONENTIAL DISTRIBUTIONS BY
INDEPENDENT NON.STATIONARY RECORD INCREMENTS

DIETMAR PFEIFER.* Technical Uniuersitv Aachen

Abstract

A non-homogeneous version of the classical record process is presented

which allows two different characterizations of exponential distributions by

independent non-stationary record increments. A connection with the interarri-

val times of the corresponding record counting process (which is pure birth) is

also pointed out.

RECORD VALUES; MARKOV ADDITIVE CHAIN; EXPONENTIAL DISTRIBUTION; INDE.

PENDENT NON-STATIONARY INCREMENTS; COUNTING PROCESS; PURE BIRTH PROCESS

l. Introduction

In recent years a fruitful theory has been developed concerning record values

from i. i.d. random variables (see Glick (1978) for a l ist of references), but only a

relatively small number of authors investigated more general record models

(Biondini and Siddiqui (1975), Guthrie and Holmes (1975), Yang (1975), Gaver

(L976), Westcott (1977), Deken (1978)). Unlike these we consider a non-

homogeneous version of the classical record model which arises from possible

changes of the underlying distributions after every record event. To be more

precise, let {Xm, X^* i n, k 21} be a family of independent random variables on a

probability space ({t,.il, P) with P, being the distribution of the X,u and F"

being the corresponding cumulative distribution function (c.d.t.), n >0. The

sequence {L";n >0} of interrecord times is recursively defined by

( 1 . 1 )

To be well-defined, let min(O) : Xnn: oo. The sequence lU"; n > 0) of. record

times is defined by

( J n : 1 +  >  A k .
k : o
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(r .2)
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The sequence {R"; n > 0} of record ualues is defined by

(1.3) R, : Xn.t^.
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Let rr(X) denote the a-algebra generated by the random variable X. As can

easily be seen by induction, A, and U^, n 2 7, are stopping times with respect to

{ , i l * , , 1 = k  s r c }  w h e r e

d n t  :  a ( X r n ,  X r r '  '  ' ,  X n - r ,  X n r r '  '  ' ,  X ^ u )

and
X ^  - -  ( X ^ r ,  X ^ 4 '  '  ' ) ,  m  >  l ;

also, R" is measurable with respect to .i l^*.

To give an example, suppose the {X^u; k > 1} correspond to random shocks

attacking a component which works without failure unless a shock greater than

R^-r occurs. Let for safety reasons a modified component then be used which

endures shocks up to a magnitude of the last shock, R^ ; also, let safety factors be

built in which influence the distribution of the subsequent shocks, {Xn+t,t,; k =

1). Then U" denotes the time of the n th accident, and obviously time periods A"

between successive accidents wil l be stochastically increasing, if the underlying

distributions P" are stochastically decreasing. Hence the.latter case corresponds

to a shock model with increasing safety. (A similar shock model in reliabil i ty

theory has been described by Gaver (1976).)

2. Non-homogeneous records and Markov additive chains

Throughout this paper, we shall only be concerned with the non-degenerate

case, i .e.  A" <co a.s.  for  a l l  n.Let f "  denote the r ight  end of  F, .  The fol lowing

proposition gives necessary and sufficient conditions for the record process to be

non-degenerate.

Proposition 2.1. For all n 21, A" < oo a.s. iff A^-1 < tc a.s. and

€^-�rs €^ wi th f"- t  (  4,  i f  { " - r  is  an atom of F"-r .(2.r)

Proof. Let A" < o ä.S.r then A,-r < m a.s. by definit ion. Since R"-r 4 Xn-r'

(let Xor : X*) we have

0 :  P ( 4 "

= P(X"  , , ,ä  €" )

from which (2.1) immediately follows.

For the converse part note that by the independence assumption

:  - )  -  "  (  
! ,  

{x^o <*"- ,})  > P(R^-,  = €^)
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hence

p ( a " - * ) :  p ( U  { a " - , : k } n  Ä  { X ^ ,  = x " - , . - } )'  
\ u l r  r : r  /

r / - \

= >  P(  n  {x " ,  =  Xn- , ,u } ) :0 .
t = r  \ i = ,  

- /

In the i. i.d. case Proposition 2.1 reduces to a result of Shorrock (1972).
In what follows we shall always assume that (2.1) is valid for all n > l.

Theorem 2.2.  { (A",R");n >0} is a Markov chain wi th t ransi t ion prob-
abil it ies

( 2 . 2 )  P n , r . n ( k , * l A x  B ) :  p ^ ( ( x , o ) o B )  
)  f ' ' " ' ( x ) ,
j e A

k  € N ,  x 1 ( ^ ,  A C N ,  B €  ß , f t 2 1 ,  w h e r e  Q )  d e n o t e s t h e c o l l e c t i o n o f  a l l B o r e l
sets B e R. This can be proved by methods similar to those of the homogeneous
case.

As can easily be seen from (2.2), {(u", R" ); n > 0} also is a Markov chain with
transition probabil it ies

( 2 . 3 )  Q n - r . n ( k , * l A  x  B ) :  P ^ ( ( x , o o ) n  B )

k € N, x I (^,A E N, B e g),which are rransl",,"; ,";;;r, with respect to k.
As immediate consequences from (2.2) and (2.3)we have the following results,

paralleling those known from the i. i.d. case.

Corollary 2.3.
(a) {( Un, Rn); n = 0} is a Markov additive chain (cf. Qinlar (1972)), and

{R" ; ,4 > 0} is a Markov chain with transition probabil it ies

( 2 . 4 )  P n - t , n ( r l g ) : P ^ ( B l ( r , * ) ) ,  x 1 { ^ , B e q ) .

(b) At, . . ., A, are conditionally independent given Ro, . . ., R"_, with
/ nt  -  - r  \  ' 4" (  
I  { 4 ,  :  k , } l R u , . . . , R . - , ) : I  P ( a ,  :  k ,  l R , - , ;

(2 .5)  n
:  

[  {1 -  n (R,- ,)}F: ' - ' (R,- , )

a . s . ,  k , , ' '  ' ,  k "  €  N .

Note that unlike the i. i.d. case the sequence { IJ^ i n> 0} of record times wil l not

" ( Ä {X^, s Xn-r,xr I x-,,,.) : [ l  
F^(X^-,.u) :0 ä.S.,

\  i : r



130

(2.6)
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be a Markov chain in general. Let for instance F" : F'" where F is a continuous
c.d.f. and c,, > 0. Then

P(u^ -  k ,  |  (Jr :  kr , .  .  . ,  LJn- t :  k" - , )

n - l

)  ( t ,  -  c , - r ) k , - r *  cn - t kn - t

: c n

tä,''
l < k r < . . . < k ^ .

3. Characterizations of exponential distributions by independent record
increments

In this section we shall for simplicity assume that all P" are concentrated on
the non-negative real axis R* with right end m and F, (0):0; this implies that all
record distributions are also concentrated on that set.

Theorem 3.1. Let n > 1. If P" is an exponential distribution, then R"-r and
R, - R,-r är€ independent, and the distribution of R" - R,-r is the same as P".
Conversely, if R,,-1 and R, - R,,-r are independent and F"-r is strictly increasing
on lR*, then P" is an exponential distribution.

Proof. We first prove the converse part. From relation (2.4) we see that

( 3 .1 )  p (R" -R^ - r=s lR , - ,  - t ) :H  a . s .  p^^ - ,

for s > 0, the exceptional set possibly depending on s. Also,

(3 .2 )  B^ (x r : l - - . , ,11 f51Pn^- ' (dy ) ,  x€R,m>r

is a P--density of R-, non-decreasing with x, hence by our assumptions G"-r, the
c.d.f. of R"-1, must be strictly increasing on R*. This implies that for every s 3 0
the set of points r > 0 for which equality holds in (3.1) is a dense subset of R*. By
the right continuity of c.d.f.'s and the independence assumption we then have

( 3 . 3 )  
r t ( s + t ) - ^ E " ( t ) - 1 - H , ( s )  

f o r s , r z 0 ,
1 -  E ,  ( r )

where | - H^ is the c.d.f. of R" - R,-r. This implies

-  c , - ' )k , - r*  cn(k^ -  t r ) {  
ä  

(c ,  -  c , - , )  k , - ,  *  ,^o^}

(3.4) : Hn(s)H" (t) for s, t > 0 with H, (0) : 1.
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The only (bounded) solution of (3.4) is thus given by

H" (t) : e-A^' for some real l" > 0,

i.e. P^ is an exponential distribution.
Conversely, if P" is an exponential distribution, the right-hand side of (3.1) is

a.s. P^"-' independent of r, hence R"-r and R. - R,-r äre independent with the
distribution of Rn - R,-r being the same as P".

Note that the assumption of the strict increasingness of F^-, in Theorem 3.1 is
not redundant as can be seen by the following counterexample: let [x] denote
the greatest integer not exceeding x, x e. R and take

- e x p { - ( r n + x ) } ,  x > 0

x  ( 0 .

Let Po be any distribution concentrated on the integers N. Then Ro and R, - Ro
are independent although Fris not an exponential distribution. This is true since
for  a l l  s  20,  f t  €N we have [s  +kn: [ rn*  k ,  hence by (3.1) ,

P(R,  -  Ro=,  I  Ro :  k)  -  Fr(s-+ k) : f ' (k)  :  F, (s) ,1 - F , ' ^ ,

independent of k.
Proceeding inductively, Theorem 3.1 leads to the following generalization of

Tata's (1969) characterization theorem.

Corollary 3.2. If all Pn, n 2 1 are exponential distributions, {R" ; n > 0} is an
independent increments process, the distribution of Rn - R"-r being the same as
P". Conversely, if {R';n>-0} is an independent increments process and Fo is
strictly increasing on R*, then all P^, n 2l, are exponential distributions.

Another explanation of the first part of Corollary 3.2 could be given as
follows:

Suppose all Ii, possess right-continuous densities /, with respect to Lebesgue
measure. Define a counting process {N(r); r > 0} for record values by N(r) :
# ln ;R"  <  r ) .

Then {N(t); t = 0} is a (Markovian) pure birth process with intensies Ä" (r)
given by the hazard rates

(3.s)

(3.6)

F , ( x ) :  
{ :

l " ( t ) : f f i ,y ,  n, t>0.

This is true since for 0 ( fr (

we have (R-t : 0)

,  N( r *  ) :  n* ) :  P(  
Ö 

{R" , - ,  =  t i  <^ ,  } )(3 .7 )  P(N( t ' )  :  n t , .
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By the Markov chain property of {R" ; n = 0} and repeated integration we thus
get

P ( N ( r -  ) :  n u  l r u ( r , )  :  n l t .  .  . , N ( r u - , ) :  n u - , )

{1  
-  F" -  ( , r " , - t ) } '  '  ' { l  -  Pn*  , * r (u"*  , ) }

(3.8) : t u - t 1  l l n r  , 1

i f .  n1,2  nu- t

i f  nx  l  nx- r

which says that {N(r); t > 0} is a (Markovian) pure birth process with standard
transition matrix and intensities

Ä, ( r ) :  l im ,+.  4  (s)  -  F^ ( r ) :  ,  tg) ,  .  .' ' \ /  " r r l - F " ( t )  s - /  1 - n ( r ) '

But in the exponential case, ̂ " (t) = ,\n, independent of r, hence {N(r); t ä 0} is
time-homogeneous. Also, the waiting time for the n th jump , ft ? 1, is exactly the
nth record R,-,, hence the interarrival t imes for the counting process are just the
successive record increments. From the general theory we thus can conclude that

{R" ; n > 0} is an independent increments process, the increments R, - R^-r,
n > | being exponentially distributed with parameter Ä" (see Breiman (1968),
Chapter 15.6).

In the remainder of this section we want to investigate the question whether
the characterization of exponential distributions given by Corollary 3.2 also
holds under the weaker condition that only successiue record increments are
independent. The answer is positive if we additionally assume that Pu is an
exponential distribution; otherwise a counterexample can be constructed which
shows that a corresponding characterization of exponential distributions does
not necessarily hold, not even if Fo is strictly increasing on R*. For the proof of
the main theorem the following two lemmas are needed.

Lemma 3.3. Let { Yu i k > 0} be independent exponentially distributed ran-

dom variables with mean llÄx > 0 and let f^, n > 0 denote the density of 2i:o Yu,,

continuous on R*. Then f.*, is differentiable with

f  l*r(x) :  Ä"* '( /" (*) -  /"* '(x)),  x > 0.(3.e)

Proof. By the convolutionformula we have

f i  (y)4"*r  exp( -  Ä"*r(r  -  y))dy.f ^ * r (x ) :  / '
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The desired result now follows by differentiation.

Lemma 3.4. Let '6:(R-) denote the set of all real-valued measurable
functions defined on R* which are right continuous and bounded and let f^, n =- 0
be as in Lemma3.3. Define a l inear operator g^ f.rom,€?(R-)into % l(R-) by

f '
9" (g ;  r )  :  

J "  
g (x  +  y ) f " ( y )dy ,  g  e '6 : (R- ) .

Then 9"(il = 0 only if I :0, i.e. the transformation given by 9^ is unique.

Proof. For x )0 we have

g ^ * { g ;  x ) :  [ -  s 0 ) f ^ * , ( y  -  x ) d y ,
J ,

hence

sl* , (s ;  x) :  -  
I , -  

g(y) f ] . , (y  -  x)dv -g(x) / " . , (0)

:  -  Ä , * r ( ,9 " (g ;  r )  -  ,9 " * ' (g ;  x ) )  a .e .  by  (3 .9 )

since t-r(0) :0. Therefore, by the right continuity,

. 9 " * ' ( g )  = 0  i m p l i e s  9 " ( g ) : ' ' '  = , 9 o ( g ) = 0

w i t h  0 :  g t ( g : x ) :  - A o ( g ( r ) -  9 n ( g ; x ) )  a . e . ,  h e n c e  g  = 0  a . e .  B u t  g  i s  r i g h t
continuous, hence g =0 everywhere.

Theorem 3.5. Suppose that Po is an exponential distribution. Then if for the
record sequence {R" ; n > 0} successive increments are independent all P^, n 2 7
are necessarily exponential distributions.

Proof. From Theorem 3.1 we see that Pr rnuSt be an exponential distribution.
Suppose now the theorem is proved for Pr,. . ., Pn with n > L Then
Ro, R,-  Ro, '  '  ' ,  Rn -  R,-r  are independent exponent ia l ly  d istr ibuted random
variables. Hence by the Markov chain property of {R^ ; n = 0} given by (2.4) we
have f.or n 2 L, u, u 2 0, using the notation of Lemma 3.3,

(3.10)

(3 .11)

P(R"* r  -  Rn )  u ,  Rn -  R, - r  >  u )

:  P(R" - ,  *  u  *  u  (  R^  *  u  <-R"* r )

f  f  f  p ^ * ( d w ) p ^ ( d t \:  
l lJ  { l -n- , ( t ) } { l  - fu i  ' (s)ds

' * "*" ' r*) ' ' rn 

-:s-An'J,-ff i f^e)dt.



t34

(3.14)

DIETMAR PFEIFER

Let
r _ 4 * , ( r * u )

g" (t) :  a- F,*,(r) ,  u, t  > o.

Then by the independence assumption, 9"(9"): const., hence g, : const.
(depending on a) by Lemma 3.4.  Now f .or  H(u):9,(0) we have

(3.r2) H(u + u) :  H(u)H(u)  wi th F/ (0)  :  1 ,

hence H(u): s-^n+ru for some real ,1,"*r > 0 which implies that P"*r also is an
exponential distribution.

For the counterexample indicated above let Fo have the density fu:
Zi=o a^lrn,+r) where {a^; n > 0} is a sequence of positive reals with )I:o an : I
and let

4 F " ( r ) : l -  e - ' ,  f r  : 1 , , 3 , 4 , " '

Fr(x)- | - exp{ - (Zrx * sin 2nx)1.

Then Ro and Rr - Ro are independent as well as R,*, - R, and R^ - R,-, for

n>3 by Theorem 3.1.  Simi lar  to (3.11),  we further have

(3 .13 )  p (R3-  Ru  )  u ,R2-  R '  )  u ) :  e - "  [ -  
1 ;  E$ r . "  p * , (ds )

r o  t - F r ( s )  \ '

and

p(Rr-R,)u,R,*Ro)u):  , - ' Io-  Io"  r - ' f f i  foß)dsdt

: e - '  f  
' 1 ; E f  

, * . ' )  a ,
Jo  t -F r (s )  

- - -

s ince (1 -Fr( .+ u)) l ( l -  Fr( . ) ) :  exp{  -2(nu *s in(zru\ ,os(2n.+ nu)) }  is
periodic with period 1. But (3.13) and (3.14) immediately imply that R"*' - R,
and R^ - R,-r are also independent for n : I,2. Hence successive record
increments are independent although F, is not an exponential distribution.
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CORRECTIOI\IS

PrEIrrR, D. (1982) Characterizations of exponential distributions by inde-
pendent non-stationary record increments. L Appl. Prob. lg, 127-13s.

(1) Relation (2.6) should be corrected as follows:

P(LI^  = k"  I  IJr :  k , , .  .  . ,  Un-r  = k"- , )

^ - l

)  (c , - ,  -  c , )k , - ,  *  cn- tkn- r
i - l
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(2.6)

- a)k,- '  * c" (k. - 1) t - c,)k,.., + c^kn

l : k , , < k t < . ' . < k " .

(2) Theorem 3.1 should read as follows:

Theorem 3.1. Let n > 1. If P" is an exponential distribution, then R"-1 and
R^ - R"-r är€ independent, and the distribution of R" - R.-r is the same as P,.
Conversely, let the origin be the left  end of f i , , . . . ,Fn-2, i f  n 32. Then i f  R"-,
and R, - R,,-r are independent and 4-, is strictly increasing on R*, p" is an
exponential distribution.

Without the additional assumption in the converse part of the theoreffi, Gn-r
might be 0 in some neighbourhood of the origin; in this case, the conditional
distribution P" (' | ((, oo)) could be characterized as being exponential only where
( : the largest of the left ends of Fu, . . ., Fn_2.

(3) In the second line of (3.14), the term /"(s) should be deleted.
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