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Abstract 

[BOROVKOV, K. & PFEIFER, D. & BAUMER, H.-P. (1996): Modeling dynamics and spatial aggre
gation of biological populations by stochastic networks. - Senckenbergiana marit., 27: (3/6): 
129-136, 2 figs.; Frankfurt a. M.l 

A mathematical model of an open stochastic network is presented which can be used to describe 
dynamics of a biological population, consisting of individuals of several species. The variables in 
the model are the numbers of individuals within disjoint observation windows, so that in a sense 
the model describes a 'macroscopic' behaviour of the population instead of dealing with individual 
behaviour of its members (i.e. their exact locations, what is the case when one exploits e.g. a point 
process model). Our approach allows to model quantitatively both immigration-emigration and (for 
some species and to some extent) reproduction processes, and also the simplest forms of interaction 
between individuals. 

The model can easily be implemented as a computer program for simulation studies. Moreover, 
its remarkable feature is that (under natural conditions) there exists an equilibrium distribution 
of the process in the model, which is given by a simple explicit formula. Varying parameters of 
the model, one gets the whole spectrum of different equilibrium distributions, which provide 
rather good possibilities for fitting experimental data. In particular, the model (under a natural 
choice of parameters) exhibits the same peculiar variance-to-expectation relationships, as is usually 
discovered in experimental data sets. 

Kurzfassung 

[BOROVKOV, K. & PFEIFER, D. & BAUMER, H.-P. (1996): Dynamik und raumliche Aggregation 
biologischer Populationen als Modell eines stochastischen Netzwerks. - Senckenbergiana marit., 
27: (3/6): 129-136,2 Abb.; Frankfurt a. M.l 

Ein mathematisches Modell eines offenen stochastischen Netzwerks wird vorgestellt, das sich 
dazu eignet, die Dynamik und raumliche Aggregation einer biologischen Population zu beschrei
ben, die sich aus Individuen verschiedener koexistierender Arten zusammensetzt. Variablen im 
Modell sind die Abundanzen dieser Arten in disjunkten Beobachtungsgebieten. Die Kenntnis der 
exakten Aufenthaltsorte der Individuen in einem solchen Beobachtungsgebiet zu einem Beobach
tungszeitpunkt ist nicht erforderlich, wie dies im Fall einer Modellierung als stochastischer Punkt
prozeG vorauszusetzen ware. Das Modell gestattet, Immigration sowie Emigration, aber auch 
einfachste Formen der Interaktion von Organismen in einem Beobachtungsgebiet quantitativ zu 
beschreiben. Eine wichtige Eigenschaft des Modells besteht darin, daG (unter naheliegenden 
Bedingungen) die Verteilungsfunktion im stochastischen Gleichgewicht des Prozesses existiert 
und sich explizit angeben laGt. Bemerkenswert ist ferner, daG unter sehr einfachen Annahmen das 
Modell Varianz-Erwartungswert-Relationen liefert, wie sie haufig in biologischen und 6kologischen 
Fallstudien beobachtet werden. Der Transfer des mathematischen Modells in den Quellcode eines 
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Programms und damit auf diskrete Strukturen wirft keine grundlegenden Probleme auf. Daten und 
substanzwissenschaftliche Informationen, die erforderlich sind, urn Simulationsstudien auf Rech
nern durchzufuhren, werden in anderem Kontext spezifiziert und am Beispiel der Priidation von 
Watvogeln erlautert werden. 

Introduction 

The motivation of the present paper was to find an 
appropriate mathematical model, suitable for describing 
the dynamics of some open biological populations, whose 
members exhibit rather simple forms of behaviour. More 
exactly, one of the problems was to model spatial patterns 
of benthic micro- and macrofauna and their mutual depen
dence, especially with respect to aggregation effects (see 
EKSCHMITT (1993) for a general discussion or REISE (1985) 
for a more specific treatment), including the time-space 
patterns in the behaviour of certain bird species (wader 
predators). Therefore, desirable features of the model one 
should look for are as follows. 

(i) Relative simplicity of the model. We mean by this not 
only that the mathematical relations defining the model 
should not be too complicated. Another important aspect 
is that the model must admit of a reasonable implemen
tation as a computer program to be used in simulation 
studies. 

(ii) Existence of exact results and explicit formulae. This 
does not follow automatically from (i), of course. A limit 
theorem, showing the existence of, say, limiting probability 
distributions of the process, and especially explicit expres
sions for these distributions are of great importance both 
for theoretical and practical inference from the model. 

(iii) However, the most crucial property is certainly 
the fitting of data. This is the most serious criterion for 
choosing a model. The availability of the equilibrium 
distribution of the process (d. (ii) above) plays an impor
tant role here, too. 

A straightforward approach to modeling dynamics of a 
population of the sort we are interested in could look as 
follows. Suppose that the observed area is represented by 
a bounded region n c IR2, and the position of the n-th 
individual (particle) from our (homogeneous for a while) 
population P at time t? 0 is given by a point Xn(t) E n. 
The total number of particles (the size of P) is given by 
an integer-valued random variable N(t). Thus our popula
tion P can be represented as a random vector ~(t) with 
a random number of components: 

~ (t) = (Xl (t), ... , XN(t) (t)), t ? 0, 

each component Xi (t) being itself two-dimensional. The 
particles are moving, they are leaving the region n (emi
gration), and other ones are coming in from outside of n 
(immigration), thus changing the total number N(t) of 
particles. To describe the movement, which is supposed to 
be 'chaotic', one usually assumes that Xn(t) is a Brownian 
motion process, that is a continuous process with indepen
dent increments: 

are independent for t1 5; t2 5; t3 5; t4, such that Xn (t) -
Xn (s) has a bivariate normal distribution with probability 
density function 

1 [(x-a(t-s)fJ 
27fu2 exp - 2u2 ' XE~, 

a E IR2 being the drift and <i > 0 the dispersion coeffi
cient of the process. The drift a is a measure for the local 
average rate of displacement (which is zero, if there is 
no systematic trend in location of particles). The second 
coefficient reflects the intensity of the 'chaotic' component 
of the movement (the 'temperature' of the system). 

Further, the birth-and-death phenomena are described 
usually by assuming that in fact Xn(t) is a branching 
Brownian motion process. That is, after some random time 
" the n-th particle disappears at the position X n(,) 

(death) or there appear instead of it k > 1 new particles, 
evolving then independently of each other (their trajec
tories after the time of birth are independent Brownian 
motion processes with common initial value X n(,)), and 
so on. The emigration and immigration processes can also 
be described in frames of this model. An attempt to 
describe an interaction between particles introduces further 
serious complications. Even in a simple situation the 
mathematical theory of such processes is rather complex, 
and the simulation of them is not a simple task. 

A somewhat more suitable version of such a 'detailed' 
description is possible in the form of the so-called point 
processes. That is, a population P is represented by a time
depending point process 

~t = E EXn(t), t? 0, 
n 

where Ex is the Dirac-measure concentrated in x E n. A 
discussion of such models can be found e.g. in PFEIFER 
et al. (1992). 

However, in practice we are not so much interested in a 
detailed description of the population, giving exact loca
tions of the individuals. Often one deals only with a 
number of disjoint observation windows WI> ... ,WJ and 
the counts of 'particles' observed in these windows: 

nj = number of individuals from P in Wi, 

and the data consist only of these window counts. Firstly, 
there is usually no need in knowing the detailed position 
of each member of the population. The most important 
aspects of the modeling are the trends in dynamics, allo
cations of the individuals at different sites etc. Secondly, 
both collecting and processing such detailed data is much 



more expensive. Thus the variables of interest are the 
'macroscopic' characteristics nj, describing a subdivision 
of Pinto subpopulations at sites Wi, 

In the present paper, we consider a relatively simple 
stochastic network model, which can be employed in de-
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scribing dynamics of a population in terms of the variables 
nj. This model has (under an easily verifiable condition) 
an equilibrium distribution, admitting simple explicit ex
pressions. Implementing the model as a computer program 
for simulation studies also creates no serious difficulties. 

The Network Model 

We now start with a formal description of the network 
model N. It includes a finite set f = [1, 2, ... , fl, whose 
elements are called nodes, and a finite set of particle classes 
C = leI> C2, .•• , CN]' There are moving 'units' in the net
work N, which are called particles (these represent indi
viduals in modeling biological populations). Each particle 
in the network belongs to one class c in C and is, at each 
given time t, at one of the nodes from J. The total number 
of all particles of class c at node j at time t we denote by 
n/) ~ n/)(t), t ;? 0, and the total number of all particles 
at node j is denoted by 

nj = nj (t) = ~>~" 
eEl! 

Moreover, the particles are allowed to enter and leave the 
network, the latter is said in such case to be open. The 
arrival streams of particles of different classes c from out
side the network at nodes j E f are described by indepen
dent Poisson processes '11/) (t), t ;? 0. That is, all the pro
cesses 7r/), j E f, C E C, are mutually independent, and, 
for fixed j and c, the integer-valued process 7r/)(t) has 
independent increments and 

(a(e)tr 
P(n(e) (t)=k)=exp(-a(C)t)-J_-, k= 0,1,2, ... , t ~ 0, 

J J k! 

the parameter a/,) ;? ° is called the intensity of the process 
~(e) 
"J • 

The assumption on the Poisson nature of arrival 
streams is a usual one reflecting the fact that the sum of a 
large number of weakly dependent integer-valued inputs 
that are zeros with high probabilities is 'almost Poissonian' 
in distribution. Suppose for a moment that our nodes 
(observation windows) are only few from a larger 'closed' 
set fo of such nodes, and the particles can move via all 
these nodes, too (not leaving this large set fo). Then, pro
vided the 'departure streams' are more or less steady and 
are 'evenly' distributed between all the nodes (this cor
responds to the condition that the entries of the routing 
matrix A(e) to be defined below are uniformly small), the 
arrival streams from the 'unobserved' nodes j E f 0 \ f at 
the 'observed' ones (from J) will be approximately Pois
sonian and independent (for more details see e.g. POLLETT 
(1986)). 

The ratio 

a (c) 
J J 

~ a ,(c) 
i.J J ' 

j ~ 1 

is the conditional probability that a particle of class c 
arnvmg at the network arrives in fact at the node j. 
Clearly, 

J 

E A~~ 1. 
j ~ I 

A particle, arriving at node j E f from outside the net
work, spends there a random time (which depends in 
general on how many other particles are at the node during 
its stay and is to be defined later on), and then moves to 
some other node and so on, or leaves the network (in the 
latter case we consider the particle to be 'lost' and it never 
comes back to the network). These movements are de
scribed by the routing matrices: 

with non-negative entries Aff;? 0, which are the probabi
lities for a particle of class c to arrive at node k immediately 
after it leaves node j (thus measuring the 'intrinsic' ten
dency for a particle of class c to move from node j to node 
k), so that for the row sums 

J 

LA~2 :s;1. 
k=1 

Thus the matrix A(e) is substochastic. The defect m the 
j-th row of the matrix A(e), that is the difference 

J 
1(C) =1-~ 1(C) >0 

IL}O' £...JA jlc - , 

k=1 

is the probability that, after leaving node j, a particle of 
class c leaves the network N itself. Our network N is 
supposed to be open, so that 

Moreover, we suppose that, for any class c and any node j, 
there exists a sequence of nodes il' = j, iz, ... , ib ... , im_1> 
im = 0, ik E f, 2 ~ k ~ m-l, such that 

( 1) 

This means, that it is possible for a particle of any class c 
eventually to leave the network N either directly or in-
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directly (via a sequence of nodes), at whatever node j it is 
now. 

Denote by ric) the Perron root of the matrix A(c) (this is 
a positive eigenvalue of A(c), such that all other eigenvalues 
of A(c) do not exceed ric) in absolute value, see e.g. GANT

MACHER (1977), Ch.XIII). The last assumption ensures that 

ric) < 1, C E C, 

and therefore the matrix 

I - A(c), I is the unit J X J-matrix, 

has an inverse one given by 

where the series of non-negative matrices on the right hand 
side converges (since the maximal entry of the k-th power 
of A(c) does not exceed (r(c))k). Hence, for each C E C, 
there exists a uniquely determined non-negative vector 
Q(c) = (qj(c), ... , qJcl) that satisfies 

(3) 

where A(c) (aj(c), ... , ajc)) is the vector of arrival rates. 
In fact, this vector Q(c) is given by the convergent series 

( 4) Q(C) =A(c) i:(A(C»), 
k==O 

(see (2)). The entry q/c) of Q(c) can be interpreted as the 
equilibrium arrival rate for particles of class c at node j. 
In equilibrium (if it exists) the departure rate from node j 
should coincide with the arrival rate at this node, and 
equation (3) is easily seen to be just the balance equation. 
The entry q/c) is positive, if and only if it is possible for a 
particle of class c to visit node j. If q/c) = 0, then, what
ever the initial number ni = ni(O) and classes of particles at 
node j are, all the particles of class c will soon leave the 
node due to (1), and after some time t/c) the node will 
be forever free of particles of this class. 

It only remains to describe how long a particle stays at 
node j upon its arrival. We suppose that a probability 
distribution F/') of a positive random variable - called 
'resource' henceforth - with expectation m/c) is ascribed 
to each pair j, c. This distribution characterizes the 'ten
dency' of a particle of class c arriving at node j to stay there 
for a more or less long time. We suppose that to each such 
arrival there corresponds a realization of a random variable 
1:/') distributed according to F/') , and that all these variables 
(for all arrival epochs, all particles, and all nodes) are inde
pendent. If the value of expectation m/c) is large, a particle 
of class c would 'prefer' typically to remain longer at node 
j, for the 'conditions' there are, say, rather favorable for 
particles of this class. However, the presence of other par
ticles at the same node influents the sojourn time of any 
particle at this node. We specify this as follows. 

A particle stays at the node j as long as its current 
'remaining resource' pt)(t) is positive. This 'resource' is 
given by the abovementioned random variable just upon 

A 
tl(t) 

t 

B 
tl(t) 

t 

Fig. 1. A, B. Decay of 'resource' when v/n) is decreasing with n. 

the arrival of the particle at this node (at time to), and is 
spent with the rate proportional to some given function 
vi (ni) of the current total number ni = n/t) of particles 
at the node: 

(Of course, all the variables here should be marked in fact 
by the index of our fixed particle, but we do not want to 
overload the notation.) As soon as one has pP)(t) = 0, 
the particle immediately leaves the current node j and 
changes for another one according to the probabilities from 
the routing matrix A(c). Note that since [ni (t) I t 2 toJ 
is a stochastic process the slope of p/,)(t) in (5) is a ran
dom variable. Fig. 1 shows two typical decay curves of the 
'resource' p/c)(t) depending on v)' It must be pointed out 
that our notion of a 'resource' is not necessarily meant in 
a strongly physical sense. Rather, the 'resource' to be 
consumed by a particle is a general variable which depends 
in a complicated way on several biological and ecological 
quantities such as nutrient availability, population density, 
age structure of species etc. 



In queueing theory a node as descibed above is consi
dered to be a special case of the so-called symmetric queue. 
In queueing terminology, a total service effort is offered 
at the queue j at the rate njvin), when there are nj 
customers at the queue, and all the customers at the queue 
obtain an equal part of this effort (the so-called egalitarian 
processor sharing rule). A network consisting of symmetric 
queues possesses the following remarkable property: under 
a natural assumption it has an equilibrium distribution, 
and what is more, this distribution does not depend on the 
laws 0(c) except for the value of their expectations m/c). 

Before passing to the explicit expressions for the equi
librium distribution, we make one more remark on the 
nature of the process describing our stochastic network N. 
A convenient choice for such a procces is 

with 

where Y/) = Yj{l)(t) = (C/), til}, s/)) describes the loth 
particle at node j (which are numbered according to their 
arrival times; when the loth particle leaves the node, the 
(l+k)-th one becomes the (l+k-1)-st, k>O). Here 

- c/l} is the class of the loth particle, 
- t/) is its total 'resource' upon the arrival (these random 
variables have been 'obtained' as independent realizations 
of a random variable r/) distributed according to 0(c), and 
- sF) is the amount of the 'resource' spent so far by the 
particle. 

The process X(t) has an important property which is 
that of a Markov process. The future evolution of the pro
cess given the present thus does not depend on its past 
history. This allows not only using the well-developed 
theory of such processes, but is also a desirable and impor
tant property for simulation studies. 
Put now 

bj') = qj')mj') , j EP, C Ee, bj = ~)j') . 
,ee 

The value b/c) can be interpreted as the average amount of 
the 'resource' carried to node j by particles of class c, 
and bj is just the total amount of the 'resource' coming to 
the node. Set further 

(6) u/n)=n!ITv/r), j=I, ... ,J, n~l, uj(O)=l. 
r:::l 

The following assertion (see POLLETT 1986) summarizes the 
most important equilibrium properties of the network N. 
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Proposition. An equilibrium distribution exists for X(t) if 
and only if 

(7) 
~ b~ 

B;l = L-J- < 00, j = 1, .. ,J. 
"=0 u/n) 

In this case the counts nj of particles of all classes at diffe
rent nodes j are independent under the equilibrium distri
bution, and the probability that there are n particles at node 
j is 

(8) 
b" 

P(n. =n)=Bj - J-, n=O,I,2, .... 
J uj(n) 

Further, the other components of the process X(t) have the 
following properties under the equilibrium distribution. 

1. Given the total number nj of particles of all classes at 
node j, the classes of particles are independent and the 
conditional probability that the loth particle at the node is 
of class c is 

2. Given the numbers of particles at each node and the 
classes of each of them, the total amounts of their 'resources' 
upon arrival at the node are independent1) and, if the loth 
particle at node J~ l=1, ... , nj' is of class c, the conditional 
probability that tj(l) does not exceed x is given by 

1 fX dF(')(y) w- Y J -
mj 0 

3. Given the numbers of particles at each node and the 
classes of each of them, the amounts of 'resources' already 
spent are independent and, if the loth particle at node j is 
of class c, the conditional probability that Sj(l) does not 
exceed x is given by 

_1_fX (1- F(')(y»)dy 
mW J • 

j 0 

4. Given the numbers of particles at each node and the 
classes of each of them together with their initial 'resources; 
the amounts of 'resources' already spent are independent and 
the variable Sj(l) is uniformly distributed on (0, til)). 

Remark. Of course, it is also important to know whether 
the Markov process X(t) is ergodic. That is the question 
whether the distribution of X(t) converges to the equili-

I) Although all these initial 'resources' are given by independent random vectors, the conditions that these particles are present 
at the node now could in general destroy the independence. 
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brium distribution as t -+ 00 whatever the initial value 
X(O) is. The method employed in BOROVKOV (1986) can be 
extended to the networks of the type considered above to 
get similar ergodicity theorems. Sufficient conditions for 
ergodicity of X(t) could be formulated as follows. 
(a) The series (7) converges. 
(b) The boundedness of initial 'resources', i.e. that F/c) (X'f) 
= 1 for all C E C and j E ] and for some X'f<oo (in fact 
this can be weakened to a less restrictive condition on the 
tails of these distribution, see Condition I in BOROVKOV 

(1986)). 

(c) The initial 'resources' can assume arbitrarily small 
values with positive probabilities, that is F/c) (x) > 0 for 
all C E C and j E ], and for all x>o. 
(d) The interaction functions vj(n) are bounded away 
from zero: vj(n»vo>O for all j E ] and all n = 0, 1, 2, .... 

An interesting discussion of the 'travel times' in such 
a network, that is the times spent by a particle when it 
makes a specified 'path' via the nodes of the network, 
including an expression for the expectation of a general 
travel time, can be found in a recent paper by KOOK & 
SERFOZO (1993). 

Discussion of the Model 

In this section we discuss the use of the model pre
sented in the preceding section for describing space-time 
population patterns of benthic fauna. The classes C = C 
could be either different species or different size (or age) 
groups of individuals. The data are given in the form of 
counts of individuals in disjoint observation windows Wj, 
j = 1, ... , J at successive times t 1> t2> t3, etc. We identify 
these windows with the nodes of our stochastic network 
N. The form of the routing matrix A(c) is defined by both 
configuration of the windows and their mutual positions 
and also by the presence of streams or other factors which 
influence the movement of the individuals from the popu
lation. Typically Wj, j = 1, 2, ... , J = K X L, are rectangles, 
forming a K X L-partition of the whole observation area 
which is also a rectangle. Then "'jk(c) are positive for all 
j, k E ] such that Wj and Wk have a common side, and 
zero otherwise. In the symmetric homogeneous case, when 
Wj are all equal squares and there are no interfering fac
tors, we take all these entries equal to a common value 
",(c). In what follows, this simplest case, when all the para
meters are supposed to be independent of j, will be re
ferred to as the case (S). 

The arrival rates a/c) describe (for the 'internal' win
dows Wj) e.g. the influx of larvae from both neighbouring 
and distant sites. For the 'boundary' windows, these should 
also include the moving adult individuals from the neigh
bouring sites outside the observation area. A simple pos
sible solution here is to suppose that the neighbouring 
'external' sites have the same parameters as the observed 
boundary windows having common sides with them. This 
reduces just to changing somewhat the system of balance 
equations (3) which remains nevertheless linear. All the 
assertions of the proposition in the preceding section re
main of course valid for the parameters defined by this mo
dified balance equation. In the abovementioned symmetric 
case (S), the latter look as follows: 

(9) 

with qP) q(c) and ap) = a(c) for all j E J. Equation (9) 
refers to a 'typical' window w;. It has 4 neighbouring si
tes, from which a leaving individual decides to go to this 
typical window with probability ",(c). The 'defect' of the 
row in the routing matrix, that is the probability for an 
individual to leave the network when it is leaving a typical 
site, is supposed to be positive: 

"'o(C) = 1 - 4 ",(c) > o. 
Clearly (9) means that 

and the equilibrium distribution (8) now has the form 

(10) 

where 

(11) 

bn 

P(nj=n)=B-, n=0,1,2, ... , 
u(n) 

n 

u(n) = n!I1 v(r), B-l=f~· 
n=O u(n) r=l 

Now we shall discuss some possible forms of the equi
librium distribution (10) in case (S), corresponding to 
different 'interaction functions' v. If this function is con
stant, then there is no influence of individuals on each 
other. If v is decreasing as n grows, then the individuals 
stay readily longer at the site, when there are other 'com
panions'. If v is increasing with n, then the presence of 
other individuals forces one to leave the site sooner than it 
could happen otherwise (overpopulation). The simplest 
special cases are as follows. 

(i) No interaction. This means that v(n) = w = const, so 
that the 'resource' of an individual is spent with a constant 
rate independently of how many other individuals visit 
this site, see (5). In this case 

u(n) = wun!, n = 0,1,2, ... , 

and hence the series in (11) is always convergent with 

The equilibrium distribution (10) is Poissonian: 

(12) P(n. = n) = e-b/w (b/w)" 
J n! ' 

n = 0,1,2, .... 



This case corresponds in fact to 'rare' populations (which 
is confirmed by empirical data), when the number of 
individuals is relatively small and there is no interaction 
between them. 

(ii) Aggregation. This means that an individual 'prefers' to 
stay at the site for a longer time, if there are other indi
viduals. The simplest choice of the 'interaction function' 
here is 

w 
v(n) = -, n = 1,2, ... , w = const, 

n 

that is, the 'resource' is spent with a rate being inverse 
proportional to the number of individuals at the site. In 
this case 

u(n) 0, 1, 2 ... , 

so that 

B-! = (l-b/w)-! if b<w 

(otherwise the series in (11 ) diverges), and then the equili
brium distribution is geometric: 

(13) P(nj = n) = (l-b/w)(b/w)n, n = 0, 1, 2, 

A slight generalization hereof is the choice 

w 
v(n) = , n = 1,2, ... , w = const, ME IN. 

M+n-l 

The equilibrium distribution is negative binomial: 

(14) ( M+n-l) P(nj = n) = n (l-b/w)M (b/w)" , n = 1,2, .... 

(iii) Repulsion. Here v(n) increases with n. Let us put 

w 
v(n) = , n = 1,2, ... ,M; v(n) = 00, n> M, 

M-n+l 

M is a natural number (the upper boundary for the size of a 
'colony' at a site: the latter cannot just bear more than M 
individuals). With this particular choice one has according 
to (11) that 

() n!(M -n)! n 
un = w 

M! ' 
n = 0,1,2, ... ,M; u(n) = 00, n> M, 

and the series in (11) is always convergent, giving 

Therefore the equilibrium distribution (10) is binomial: 
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(15) (M)( b )n( W )M-n P(n =n)= ----
j n b+w b+w ' 

n = 0,1,2, ... ,M. 

A more realistic model combines seemingly all these three 
types of behaviour. For small n, there is usually almost no 
interaction between individuals (case (i)). For moderate n, 
many species exhibit the typical aggregation-type beha
viour (case (ii)): they 'notice' the presence of each other 
and try to 'keep together'. For large n, the nutrition pro
blems could cause all the individuals to leave the site soon 
(case (iii)). So to fit the model, one should look for an 
interaction function v(n) having the following properties: 

(1) v(n) is almost constant for small n, 
(2) v(n) decreases for moderate values of n, and 
(3) v(n) increases for large n. 

Remark. Note that in fact any probability distribution 
[p(n), n = 0, 1, 2, ... J on the set of non-negative integers 
with p(n»O, n>O, can be represented in the form (3.2). 
Indeed, if we put 

(16) v(n) = bp(n-l) 12 B (0) 
np(n) , n= " ... , =p, 

then clearly u(n) = bn p(O)/p(n), n = 1,2, ... , and hence 
the assertion follows directly from (10). Thus one can 
choose an appropriate interaction function using empirical 
data and substituting, say, some estimates ft(n) for p(n) into 
(16) to get an estimate v(n) for v(n). 
A simple variant combining the first two properties (1) and 
(2) above is 

(17) v(n) = { 
w forn~no, 

w(n - no r1/2 for n > no 

for some 'change-point' no>O. 

The equilibrium distribution (10) has now the form 

(18) 
forn~no' 

forn>no' 

It is remarkable that already this simple construction 
allows to model an experimentally observed effect, namely 
a special 'functional' dependence between sample means 
and variances of counts of individuals. For small values of 
the expectation, this dependence proves to be almost linear; 
for moderate values the variance increases much faster, and 
then suddenly slows down and even decreases. An example 
related to the equilibrium distribution (18) with no= 6 
shows that our model exhibits the same 'phase transition' 
property when the ratio r=b/w is varied. For small values 
of r this distribution is 'almost Poissonian' and thus its 
expectation and variance are close to each other; for larger 
r the form of the distribution is changing, and after this it 
becomes rather 'close' to another (non-Poissonian) parame-
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