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Abstract. A statistical model to analyse stochastically increasing claims arising out of natural catastrophes is

presented. Based on record values, the exponential trends over time can be identified. A more specific three-

parameter model involving such a trend is also proposed. Observed claims are modeled as a stochastically

increasing sequence of Fréchet distributed random variables. Consistency and asymptotic normality of the joint

maximum likelihood estimator are shown. Possible applications in forecasting of claims are indicated. In

particular claims data from U.S. hurricanes and Japanese taifuns are discussed.
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1. Introduction

It is evident that insurance claims due to the occurrence of natural catastrophes have

raised enormously over the past decades all over the world, in particular w.r.t. wind

storm losses. We present a particular approach to the investigation of catastrophe claims

in the presence of a trend, which is based on a combinations of parametric and semi-

parametric methods. In the first step, the type of trend is analyzed using the number of

record values in the times series of claims data, and in the second step, a maximum-

likelihood estimator (MLE) is constructed from the data taking into account what type of

trend has been detected before. In order to check the validity of the model assumptions,

the estimates for the trend parameter obtained from both steps can be compared.
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The proposed combination of semi-parametric and parametric models is due to Pfeifer

(1997). In the present paper the asymptotic properties of the estimators are presented.

They are important in forecasting of claims.

In some articles issued during last time there were some attempts to investigate this

area. However no author succeeded in proving consistency in non-i.i.d case. Thus in

Smith and Goodman (2000) insurance data claims obtained from a large company are

analyzed to determine the distribution of tail values. The effect of possible trends in the

observed data is considered. In McNeil and Saladin (2000) the peaks-over-threshold

method is used to derive a natural model for the point process of large losses exceeding a

high threshold. This model is used to obtain a joint description of the frequency and the

severity with which large losses occur. In Coles (2001) the model diagnostics for a non-

homogeneous in time model is considered. In Rootzén and Tajvidi (1997) the statistical

extreme value theory is reviewed and some examples are given which show how to use it

in large claims insurance.

A weaker version of the asymptotic results was announced in Kukush (1999). We

mention that a goodness-of-fit test for both semi-parametric and three-parametric models

was constructed in Kukush and Chernikov (2001), and in Kukush and Chernikov (2002)

it is shown that in both models the MLE are asymptotically efficient in the sense of

Hajék bound.

The present paper is organized as follows. In Section 2 Nevzorov’s record model is

introduced. In Section 3 the consistency and asymptotic normality results of the semi-

parametric MLE are formulated. Section 4 contains the three-parametric model and the

corresponding consistency and asymptotic normality results. In Section 5 the semi-

parametric and the three-parametric approaches in data analysis are compared, Section 6

contains simulations. Implications for insurance applications are considered in Section 7,

Section 8 concludes, and the proofs are given is Section 9.

2. Nevzorov’s record model

A record model has been studied by Nevzorov (1988) and Borovkov and Pfeifer (1995).

Assume that the yearly catastrophe claims considered here are realizations of an

independent sequence {Xn, n � 1} of random variables (r.v.) with support R+ :¼ [0,1)

and continuous cumulative d.f. {Fn, n � 1}, s.t.

Fn ¼ F�n ; with �n :¼ �n�1; � � 1: ð2:1Þ

Here F is a fixed cumulative d.f. with F(0) = 0. Define record indicators by

I1 :¼ 1; In :¼
1; if Xn > max X1; : : : ;Xn� 1f g
0; otherwise

(
for n � 2;
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i.e., In = 1 iff observation Xn is a record value in the sequence. Under the above

assumptions, the record indicators are independent r.v. with

Pn �ð Þ :¼ P� In ¼ 1ð Þ ¼ �n
�1 þ :::þ �n

¼ 1
1þ ��1 þ :::þ ��nþ1

:

Consider also the number Sn of record values in a finite number of observations,

Sn :¼
Xn

i¼ 1

Ii; n � 1:

The record times T1; : : :TSn
denote the observation times at which record values occur:

T1 :¼ 1; Tkþ1 :¼ min i � n Xi > XTk
jf g; 1 � k < Sn:

The unknown parameter �, see (2.1), is called trend parameter. If � = 1, then we have the

i.i.d. situation (no trend), while for � > 1, the r.v. {Xn} are stochastically increasing

(positive trend). Given the observations I1, . . . , In, n � 2, of record indicators in a

sequence of data, the log-likelihood function L(�) for � � 1 is given by

L �ð Þ ¼ ln
Yn

i¼2

pi �ð ÞIi 1� pi �ð Þð Þ1�Ii

 !

¼
Xn

i¼2

Ii ln pi �ð Þð Þ þ
Xn

i¼2

1� Iið Þ ln 1� pi �ð Þð Þ: ð2:2Þ

For � > 1 it is possible to rewrite it in a way, which is more comfortable for numerical

optimization:

L �ð Þ ¼ Sn ln � � 1ð Þ � ln �n � 1ð Þ �
XSn

k¼ 2

ln 1� �1�Tk
� �

: ð2:3Þ

The semi-parametric MLE �̂� ¼ �̂�n is defined as a measurable function of I1, . . . , In, for

which

�̂� 2 arg max
�� 1

L �ð Þ: ð2:4Þ

If I1, . . . , In m (1, 1, . . . , 1), then maximum in (2.4) is attained. Otherwise the maximum in

(2.4) is not attained, and in that case we set �̂� :¼ þ1. It happens with probability

tending to zero as n Y +1.

3. Asymptotic properties of semi-parametric MLE

Theorem 1: The MLE �̂� is strongly consistent, namely �̂�n ! � , as Y 1, a.s.

Theorem 2: Let � > 1. Then the MLE �̂� is asymptotically normal, namely the nor-

malized estimator
ffiffiffi
n
p

�̂n�n � �ð Þ converges in distribution to a normal law with mean 0

and variance �1
2 = �2(� j 1).
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In Borovkov and Pfeifer (1995) the following result was obtained for the efficiency in

the semi-parametric model. We shall understand efficiency here in the sense of Hajék

bound, see Ibragimov and Has’minskii (1981).

Introduce the class We,2 bell-shaped loss functions. These functions w(u), u 2 R,

satisfy the following conditions:

a) w(u) � 0, u 2 R; w(0) = 0, w is continuous at u = 0 and is not identically 0.

b) w is even function.

c) w is non-decreasing for u � 0.

d) The growth of w as u Y +1 is slower than any one of the functions exp("u2), " > 0.

Denote by d a standard Gaussian r.v.

Theorem 3: Let �0 > 1, and the function w: R Y R be bounded, Borel measurable and

continuous a.e. with respect to Lebesgue measure. Then

1. lim
�!0

lim inf
n!1

sup
�: �� �0j <�j

E�w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

�0 � 1

r
� �̂�n � �

�0

� �
¼ Ew �ð Þ: ð3:1Þ

2. For any family �n* of estimators of �, based on the observations I1, . . . , In, and for any

loss function w 2 We,2, the inequality holds:

lim
�!0

lim inf
n!1

sup
�: �� �0j <�j

E�w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

�0 � 1

r
� �̂�n � �

�0

� �
� Ew �ð Þ: ð3:2Þ

The inequality gives a lower bound for the loss of arbitrary normalized estimator.

Theorem 3 shows that the MLE has asymptotically the smallest possible averaged loss.

The proof of the theorem is given in Kukush and Chernikov (2002).

4. The three-parametric model

Since by economic arguments it is reasonable to assume that a possible trend in the data

is of exponential type, we shall base the parametric model on a combination of

Nevzorov’s record model and the parametric class of Fréchet distributions (one of the

extreme-value distribution classes). Thus we assume now that the cumulative d.f. Fn for

the yearly claims are of the form

Fn xð Þ ¼ exp �� n� 1 Axð Þ��
� �

; n ¼ 1; 2; : : : ; x > 0:

Here A > 0, � > 0 and � � 1 are parameters of interest. In order to avoid economically

meaningless parameter constellation we restrict our considerations only to a scale family

with a scale parameter A rather than to a combined scale and location family.
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For the above parametric family, the log-likelihood function L(A, �, �) for the

observed data set X1, . . . , Xn is given by

L A; �; �ð Þ ¼ n n�1ð Þ
2

ln � � �þ 1ð Þ
Xn

i¼ 1

ln Xi �
Xn

i¼ 1

� i� 1 AXið Þ��

þ n ln �A��ð Þ: ð4:1Þ

Choose a parameter set

� ¼ 0;þ1ð Þ � 0;þ1ð Þ � 1;þ1½ Þ

and define the joint MLE of the parameters of interest as a measurable vector function

ÂA; �̂�; �̂�
� �

of X1, . . . , Xn, for which

ÂA; �̂�; �̂�
� �

2 arg max
A;�;�ð Þ2�

L A; �; �ð Þ:

Further it will be shown that the maximum here is attained with probability tending to 1

as n Y 1. Denote � := (A, �, �).

Theorem 4: The joint MLE is strongly consistent, moreover

ÂA! A; �̂�! �; n �̂� � �ð Þ ! 0; as n!1; a:s:

Thus if the model of observations is valid, the MLE approximates the true values of

parameters as the sample size grows. The trend parameter � is better estimable than the

other parameters.

Theorem 5: If � > 1, then the joint MLE is asymptotically normal, namely the nor-

malized estimator

ffiffiffi
n
p

RnTR
0

n

� �1=2 ÂA� A

�̂�� �
n ln �̂� � ln �ð Þ

0
B@

1
CA

converges in distribution to a normal law with mean 0 and a unit covariance matrix,

where

Rn :¼
�
A

0 0

0 � 1
� n� ln �

�
0 0 �1

0
@

1
A;

T ¼
1 1� �e

1
2

1� �e
1
6
�2 þ �2

e � 2�e þ 1 1
2

1� �eð Þ
1
2

1
2

1� �eð Þ 1
3

0
@

1
A; ð4:2Þ

Rn
0 is Rn transposed, and �e is Euler’s constant, �e * 0.5772.
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This result can be applied to forecast claims. Introduce the transformed observations

Zi :¼ AXið Þ�
�
��

1
�

�i�1

; i ¼ 1; 2; : : :

It is an i.i.d. sequence with standard Fréchet distribution F(x) = exp(jxj1), x > 0. The

observations are represented as

Xi ¼ A�1
�
�

1
�

�i� 1

Z
1
�
i :

We interpret the trend as a trend in the median of Xi. The forecast of claims for the year

k > n will be

X̂Xk ¼ ÂA�1 �̂�
1
�

� �k� 1

�med Z
1
t

1

� �����
t¼ �̂�

ð4:3Þ

Theorem 5 makes it possible to construct a confidence interval for the forecast via the

confidence region for the true value of � = (A, �, �).

In Kukush and Chernikov (2002) the theorem analogous to the theorem 3 for the three-

parameter model is proved.

5. Comparison of semi-parametric and parametric approaches in data analysis

Two sets of data were analyzed in Pfeifer (1997) by above mentioned methods:

a) yearly claims in Million U.S. $ from U.S. hurricane events from 1949 to 1992

(source: Catastrophe Reinsurance Newsletter (1993)),

b) yearly claims in 1000 JYen from Japanese taifun events from 1977 to 1991 (source:

personal communication, the data set is presented in Pfeifer (1997)).

Since in general the functions (2.3) and (4.1) cannot be maximized by elementary

calculations, a particular stochastic search procedure was performed for the explicit data

analysis. The graphical data displayed in logarithmic scale show that the assumption of

an exponential trend in the data was reasonable, see Figures 1 and 2. The Tables 1 and 2,

which we take from Pfeifer (1997), present the estimated trend parameters �̂� from the

three approaches:

a) semi-parametric (s.-par.)Vvia record values,

b) joint maximum likelihood ( jML),

c) least squares (l.-sq.)Vfrom the graphical analysis; here �̂� :¼ exp �̂�m̂mð Þwhere m̂m is the

estimated slope for the regression line in logarithmic scale and �̂� is the estimator of �
from the joint MLE.
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While for the U.S. data, all the approaches give nearly the same estimator for �,

the situation is not so clear for the Japan data. For the U.S., we have �̂� � 1:06. For

Japan, we have �̂� � 0:91: The prediction line (4.3) in logarithmic scale is shown in the

Figures 1 and 2. For Japan, the prediction looks unreasonable because of poor fitting of

the three-parametric model.

Figure 2. Prediction line for the Japan data in logarithmic scale.

Figure 1. Prediction line for the U.S. data in logarithmic scale.
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6. Asymptotic confidence regions and simulations

In this section we check the efficacy of the proposed model.

We estimate parameters of the distribution and construct the asymptotic confidence

region basing on data of yearly claims from U.S. hurricane events (1949Y1992) and

Japan taifun events (1977Y1991) mentioned above. The confidence interval and region

are constructed in a standard way based on Theorems 2 and 4, respectively. One can see

that for U.S. data the confidence region is quite small, i.e., Breal^ value of the parame-

ter varies in quite small interval (ellipsoid). For Japan data, the confidence region is

larger.

6.1. U.S. hurricane events

Semi-parametric case: The estimated value is �̂� ¼ 1:1499: The confidence interval is

�0 2 (1.0184, 1.2814).

The three-parametric case: The estimated vector is ÂA; �̂�; �̂�
� �

¼ 0:1204; 1:0675;ð
1:1023Þ. The projections of the confidence ellipsoid are:

A0 2 0:0729; 0:1679ð Þ;
�0 2 0:8858; 1:2492ð Þ;

�0 2 1:0857; 1:1188ð Þ:

6.2. Japan taifun events

Semi-parametric case: The estimated value is �̂� ¼ 1:8099. The confidence interval is �0

2 (0.9856, 2.6341).

Table 2. Japan data.

Method s.-par jML l.-sq.

�̂� 1.81 1.30 1.34

Table 1. U.S data.

Method s.-par jML l.-sq.

�̂� 1.15 1.10 1.11
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The three-parametric case: The estimated vector is ÂA; �̂�; �̂�Þ ¼ 0:0016; 0:9095;ð
�

1:2981Þ: The projections of the confidence ellipsoid are:

A0 2 0:0003; 0:0029ð Þ;
�0 2 0:6236; 1:1953ð Þ;

�0 2 1:2147; 1:3814ð Þ:

The following simulation shows the efficacy from another point of view. We simulate

1000 series of n random Fréchet distributed values with parameters (A, �, �) similar to

one estimated basing on real data. We use four sets of parameters: (0.1204, 1.0675,

1.1023), (0.14, 1.02, 1.12), (0.0016, 0.9095, 1.2981), (0.0116, 0.9295, 1.3). For these

parameters we compute the statistics corresponding the Theorems 2 and 5, and check

how many simulated data fall into the 95% confidence region. The Tables 3Y6 show the

percentage of the data having hit into the confidence region for both models.

The simulations above show that the proposed methods can be applied even for small

data samples, that insurance companies deal with, though the empirical coverage prob-

ability seems often to be a bit less than 0.95 for 95% regions.

7. Implications for insurance applications

An important approach to the mathematical analysis of losses caused by climatic events

is the modelling of the corresponding physical forces and their impact on the insurance

Table 3. Percentage of data having hit into the 95 percent confidence region.

(A, �, �) = (0.1204, 1.0675, 1.1023).

n Semi-parametric model The 3-parametric model

20 92.9 84.3

44 88.5 89.8

100 88.9 92.2

500 93.9 93.4

1000 94.5 95.2

Table 4. Percentage of data having hit into the 95 percent confidence region.

(A, �, �) = (0.14, 1.02, 1.12).

n Semi-parametric model The 3-parametric model

20 95 85.4

44 97.7 90

100 97 94.4

500 94.4 93.8

1000 95.3 94.8
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industry. One of the first companies to develop such models was Applied Insurance

Research (AIR) who have in particular concentrated on claims caused by hurricanes in

the south-east of the U.S. For a survey, see e.g., Clark (1997). Besides a detailed study of

relevant physical parameters such as air pressure, wind speed and direction, geographical

locations of storm centers etc. the model also relies on a large data base with

informations on the location, type and content of insured buildings. With the aid of high-

speed computers the model simulates storm events on the basis of weather records dating

back until the early 1900’s; a typical study comprises about 1000 simulations which are

considered to be representative for future occurrences of such events. By means of

suitable mathematical functions the simulated meteorological and physical parameters

are then linked to the possible damages at or in the buildings under consideration. This

results in the generation of loss potentials which are considered to be representative for

today’s and future claim scenarios, and allow for an empirical estimate for some PML

(Probable Maximum Loss), which mathematically corresponds to a (in general high)

quantile of the overall loss distribution. For practical purposes this quantile is usually

expressed in terms of the so-called return period T, which denotes the time interval

within which on average one exceedance of the PML is expected; i.e. we have T = 1/

(1 j q) where q denotes the exceedance probability of the PML. Clark (1997) provides

the table (see Table 7) for the overall loss potential due to hurricanes (insured claims,

basis 1993) per one yearly hurricane event.

From a statistical point of view, however, the empirical PML’s particularly for large

return periods (above 200 years) are critical, since they rely only on 5 simulated

Table 5. Percentage of data having hit into the 95 percent confidence region.

(A, �, �) = (0.0016, 0.9095, 1.2981).

n Semi-parametric model The 3-parametric model

20 86 82.6

44 91.7 85.2

100 92.6 91.4

500 95.8 93.7

1000 95.3 95.1

Table 6. Percentage of data having hit into the 95 percent confidence region.

(A, �, �) = (0.03, 0.9, 1.35).

n Semi-parametric model The 3-parametric model

20 85.3 80.6

44 90.5 89.2

100 93.6 93

500 94.2 91.5

1000 94.7 94.2
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(observed) values. Also, the knowledge of only a few such PML estimations does not

provide sufficient information about the underlying loss distribution as a whole, which

however would be possible if all of the simulated values were taken into account. In

contrast to the meteorological and geophysical models the statistical approach to the

problem of forecasting potential future losses and PML’s is to analyze past or historic

data. There is some criticism by the physical modellers and in part also by the insurance

industry in particular w.r.t. PML estimates for return periods of 200 years and above

since no or only sparse loss observations are available here. In principle, however, this

objection also applies to the physical models since they base on comparable historic

storm events which are likewise extrapolated into the future. Interestingly, due to the

historical hurricane loss data set used above, ending with the 15 billion U.S.$ record loss

caused by hurricane Andrew, it is in some sense possible to compare both approaches.

Since the data are strongly affected by an exponential trend with a rate of about 10%

yearly average increase (as seen by the analysis above) the data have to be detrended and

adjusted to the year 1993 before they can be compared to the AIR study. In this context it

is worth while to think a moment about possible candidates for fitting distributional

models. Since most commercial statistical software packages offer a great variety of

alternatives here, one should take some theoretical results into account which have been

derived for large claims, e.g., in the framework of statistics of extremes (see e.g., Reiss

and Thomas (2001)). Here, the Fréchet distribution has turned out to be extremely

efficient, in particular when fitting losses from windstorm events; cf. Pfeifer (2001) and

Rootzén and Tajvidi (1997). However, it makes sense to include also other distributional

classes into the analysis, in particular those which exhibit a tail behaviour similar to that

of the Fréchet or other extreme value distributions. Such classes include for instance the

Table 7. Overall loss potential due to hurricanes per one yearly hurricane event.

Return period T (years) q PML (in Mio. U.S. $)

10 0.90 7800

20 0.95 13200

50 0.98 23600

100 0.99 30700

200 0.995 34500

500 0.998 50900

1000 0.999 51500

Table 8. The estimated parameters for the detrended hurricane data set.

Model Fréchet distribution Pearson type V Loglogistic Lognormal

Scale parameter 506,8325 566,37823 802,31944 6,77273

Shape parameter 1,05681 1,09325 1,50267 1,17497
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Pearson type V (inverse Gamma) or the loglogistic distribution, which are available in

some professional fitting packages (see Law and Kelton (1991)). The Table 8 contains

the estimated parameters (scale and shape parameter) for some of these distribution

classes, for the detrended hurricane data set. The ordering of the models is according to

the goodness-of-fit, i.e., the Fréchet distribution provides the best result here.

Once an appropriate model fitting has been done it is possible to obtain corresponding

PML estimates from that. In the case of a Fréchet distribution model, it is even possible

to express the PML in terms of the return period T explicitly:

PML Tð Þ ¼ � �ln 1� 1=Tð Þf g�1=� � �T 1=�;

where � denotes the scale parameter, and � denotes the shape parameter. The above

approximation is sufficiently precise for return periods above 20 years already. The

obtained results for the four distribution classes are put into Table 9.

Seemingly there is a qualitatively good coincidence between the PML estimates of

AIR and those from the Fréchet or Pearson type V model in the range of up to 100 years

for the return period T. For larger values of T, however, there are substantial differences

in the estimates; one possible aspect is here that the PML estimates of AIR are for a

single storm event per year only while the statistical analysis considers the aggregate

claims over the whole year. This might explain for a PML estimate which is roughly

twice as high in the Fréchet and Pearson type V model compared with the AIR value for

a return period of 200 years since the average frequency of hurricanes is definitely more

than one per year.

8. Conclusions

The Nevzorov’s record model was considered, which includes the existence of trend.

Two approaches were used. In the semi-parametric case the cumulant distribution

function was not specified, while in the three-parametric case the cumulant distribution

function was chosen to be the Frechét distribution, and the trend, shape and scale

Table 9. Approximation results.

Return period T q

Distribution class PML (Mio. U.S. $)

Fréchet Pearson type V Loglogistic Lognormal AIR

10 0.90 4262 4201 3462 3938 7800

20 0.95 8422 8167 5692 6035 13200

50 0.98 20340 19244 10694 9757 23600

100 0.99 39381 36520 17076 13441 30700

200 0.995 76063 69088 27176 18020 34500

500 0.998 181276 160091 50105 25706 50900

1000 0.999 349459 302041 79525 32980 51500
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parameters were estimated simultaneously. Theorems about the consistency of the

MLE’s are the central results of the paper. They do not follow directly from well-known

general properties of MLE, because the considered model is non-regular and contains

non-identically distributed observations. The asymptotic normality results are proven as

well, and the results about the asymptotic efficiency of the estimators are stated.

It would be interesting to expand the results in parametric setting to other cumulant

distribution functions. The model based on Fréchet distribution fits the losses from the

U.S. hurricanes, but it is not the case for Japanese taifuns. It would be interesting to adapt

the Nevzorov’s model for Japanese events.

9. Proofs

The following simple lemma gives the way to prove the asymptotic normality. The proof

of the lemma is standard and uses Taylor expansion, compare Cramér (1999). One can

find it, for example, in Kukush and Chernikov (2001).

Lemma 1: Let Q Î Rd, q0 be an interior point of Q, {Qn(q), q 2 Q, n � 1} be a

sequence of random fields, which are twice differentiable in the neighborhood of q0. Let

qn be a random vector defined by

qn ¼ arg max
q2�

Qn qð Þ;

and suppose that qn Y q0 in probability. Assume also that:

a)
ffiffiffi
n
p

Q 0n q0ð Þ converges in law to a random vector �,

b) Qn
00(q0) Y S in probability, where S is nonsingular matrix,

c) For each d > 0

lim
�!0

lim sup
n!1

P

�
sup

q�q0k k��
Q00n qð Þ � Q00n q0ð Þk k > �

�
¼ 0:

Then dn :¼ ffiffiffi
n
p

qn � q0ð Þ ! �S�1� in law.

9.1. Proof of Theorem 1

(i) Limit functionalR Introduce the normalized log-likelihood function Q,

Q ¼ Qn �ð Þ :¼ 1

n
L �ð Þ ¼ Q n;1ð Þ þ Q n;2ð Þ; ð9:1:1Þ

with

Q n;1ð Þ :¼ 1

n

Xn

i¼ 2

Ii � p0
i

� �
ln

pi

1� pi

ð9:1:2Þ
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and

Q n;2ð Þ :¼ 1

n

Xn

i¼ 2

p0
i ln

pi

1� pi

þ ln 1� pið Þ
	 


: ð9:1:3Þ

Then functional Q(n, 1)(�) Y 0, n Y 1 a.s., for each � � 1. Indeed, by the Rosenthal

inequality for independent random variables (see Rosenthal (1970)) we have

E�0
Q4

n;1ð Þ � const
n4

Xn

i¼ 2

ln2 pi

1� pi

 !2

max
2� i� n

E�0
Ii � p0

i

� �4

� const
n4

Xn

i¼ 2

ln2 pi

1� pi

 !2

: ð9:1:4Þ

If � > 1 then the sequence ln2 pi

1� pi
, i � 2 is bounded, therefore

E�0
Q4

n;1ð Þ � const
n2 : ð9:1:5Þ

If � = 1 then ln2 pi

1�pi
¼ ln2 i� 1ð Þ , and

E�0
Q4

n;1ð Þ � const ln4n
n2 : ð9:1:6Þ

By the Chebyshev inequality we have P�0
Q n;1ð Þ
�� �� > �
� �

� E�0
Q4

n;1ð Þ
�4 ; hence in both cases

(9.1.5) or (9.1.6)X1
n¼ 2

E�0
Q4

n;1ð Þ < 1;

and by the BorelYCantelli lemma Q(n, 1) Y 0, n Y 1 a.s.

The deterministic part Q(n, 2) converges to the limit

Q1 �; �0ð Þ ¼

(
p0

i ln
pi

1� pi
þ ln 1� pið Þ; if � > 1; �0 � 1

0; if � ¼ �0 ¼ 1 or

�1; if � ¼ 1; �0 > 1:

Q1 �; �0ð Þ ¼

(
1� ��1

0

� �
ln � � 1ð Þ � ln �; if � > 1; �0 � 1

0; if � ¼ �0 ¼ 1

�1; if � ¼ 1; �0 > 1

ð9:1:7Þ

Therefore, for each � � 1

Qn �ð Þ ! Q1 �; �0ð Þ; n!1 a:s: ð9:1:8Þ
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(ii) Uniform convergence of QnR Fix � > 0 and C > 1 + �. For fixed !, the functional

sequence

Q n;1ð Þ �ð Þ :¼ 1

n

Xn

i¼ 2

Ii � p0
i

� �
ln

pi

1� pi

; � 2 1þ �;C½ �; n � 1;

is equicontinuous, therefore

P�0
sup

1þ �� ��C

Q n;1ð Þ �ð Þ
�� ��! 0; n!1

 !
¼ 1:

Then, Q(n,2)(�) Y Q1(�, �0), n Y 1 uniformly for � 2 [1 + �, C]. Therefore

P�0
sup

1þ �� ��C

Qn �ð Þ � Q1 �; �0ð Þj j ! 0; n!1
 !

¼ 1; ð9:1:9Þ

i.e., we obtain uniform convergence a.s. for � belonging to a bounded interval,

separated from 1.

(iii) Maximum point of Q1R Formula (9.1.7) implies directly the contrast inequality:

Q1 �; �0ð Þ < Q1 �0; �0ð Þ; for � 6¼ �0: ð9:1:10Þ

(iv) Behavior of Qn for large and small �R Let � � C > 1. From (2.2) we obtain

Qn �ð Þ � 1
n

Xn

i¼ 2

1� Iið Þ ln 1� pi Cð Þð Þ ! ���1
0 ln C; n!1 a:s:

Therefore a.s.

lim
C!þ1

lim sup
n!1

sup
��C

Qn �ð Þ ¼ �1: ð9:1:11Þ

Now, let �0 > 1 and � e 1 + �, with fixed � > 0. Again use (2.2):

Qn �ð Þ � 1
n

Xn

i¼ 2

Ii ln pi 1þ �ð Þ ! 1� ��1
0

� �
ln 1� 1þ �ð Þ�1
� �

; n!1 a:s:

Therefore, if �0 > 1 then

lim
�!0

lim sup
n!1

sup
�� 1þ�

Qn �ð Þ ¼ �1: ð9:1:12Þ

(v) Strong consistency for �0 > 1R Choose n0(!), s.t. �̂� < 1 for n � n0(!). Then for

n � n0(!) we have

Qn �̂�nð Þ � Qn �0ð Þ ¼ Q1 �0; �0ð Þ þ o 1ð Þ; n!1:
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From (9.1.11), (9.1.12) we get that for some � > 0, C > 0, n1(!)

�̂�n 2 1þ �;C½ �; for n � n1 !ð Þ: ð9:1:13Þ

If �̂�n !ð Þ � �0j j � � > 0 and n � n1(!), then

Qn �̂�nð Þ � sup
���0j j � �; � 2 1þ �;C½ �

Qn �ð Þ ¼ sup
�� �0j j � �; � 2 1þ �;C½ �

Q1 �; �0ð Þþo 1ð Þ;n!1:

Hence

Q1 �0; �0ð Þ � sup
�� �0j j � �; � 2 1þ �;C½ �

Q1 �; �0ð Þ þ o 1ð Þ:

But because of (9.1.10) this can hold only for a finite set of numbers n. Therefore

there exists n2 = n2(!), s.t. for all n � n2 !ð Þ; �̂�n !ð Þ � �0j j < �. Hence �̂�n ! �0 a:s:

(vi) Consistency for �0 = 1R Similarly in the case �0 = 1 we have

�̂�n 2 1;C½ �; for n � n1 !ð Þ:

If �̂�n !ð Þ � 1j j � � and n � n1(!), then

Qn �̂�nð Þ � sup
�2 1þ�;C½ �

Qn �ð Þ ¼ sup
�2 1þ�;C½ �

Q1 �; 1ð Þ þ o 1ð Þ; n!1;

and

Q1 1; 1ð Þ � sup
�2 1þ �;C½ �

Q1 �; 1ð Þ þ o 1ð Þ:

From (9.1.10) we obtain again that for n � n2 !ð Þ; �̂�n !ð Þ � 1j j < �R

9.2. Proof of Theorem 2

Here we have �0 > 1. We apply Lemma 1.

(i) Convergence of the first derivativeR From (9.1.2) we have

ffiffiffi
n
p

Q 0n;1ð Þ �0ð Þ ¼ 1ffiffiffi
n
p
Xn

i¼ 2

Ii � p0
i

� � p0i �0ð Þ
p0

i 1� p0
i

� �:
But limi Y 1 pi

0(�0) = �0
j2, therefore

Var
ffiffiffi
n
p

Q 0n;1ð Þ �0ð Þ
� �
¼ 1

n

Xn

i¼ 2

p0i �0ð Þð Þ2
p0

i 1� p0
i

� � ! ��4
0

��1
0 1 � ��1

0

� � ¼ 1
�2

0 �0 � 1ð Þ; n!1: ð9:2:1Þ
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By the CLT in Lyapunov form we get

ffiffiffi
n
p

Q0 n;1ð Þ �0ð Þ ! N 0; 1
�2

0 �0 � 1ð Þ

� �
in distribution: ð9:2:2Þ

Now, the function

	 pið Þ :¼ p0
i ln

pi

1� pið Þ þ ln 1� pið Þ

has a minimum point pi = pi
0, therefore

d
d�
	 pið Þ

���
�¼�0

¼ d	 p0
i

� �
dpi

dpi �0ð Þ
d�

¼ 0

and

Q 0n;2ð Þ �0ð Þ ¼ 0: ð9:2:3Þ

Now, (9.2.2) and (9.2.3) imply

ffiffiffi
n
p

Q 0n �0ð Þ !
d

N 0; 1
�0

2 �0 � 1ð Þ

� �
: ð9:2:4Þ

(ii) Convergence of the second derivativeR We have

Q 00n;1ð Þ �0ð Þ ¼ 1
n

Xn

i¼2

Ii � p0
i

� � d
d�

p0i
pi 1� pið Þ �¼�0

���� �
ð9:2:5Þ

The derivatives in (9.2.5) form a bounded sequence, and using the second moment one

can easily show that

Q 00n;1ð Þ �0ð Þ ! 0 in probability P�0
: ð9:2:6Þ

Now,

d2	 pið Þ
d�2 �¼ �0

��� ¼ 	00 p0
i

� �
p0i �0ð Þð Þ2 þ 	0 p0

i

� �
p00i �0ð Þ ¼ 	00 p0

i

� �
p0i �0ð Þ
� �2

;

and 	00 p0
i

� �
¼ � 1

p0
i 1� p0

i

� �: Then

lim
i!1

d2	 pið Þ
d�2

�¼�0

¼ � lim
i!1

p0i �0ð Þð Þ2
p0

i 1� p0
i

� � ¼ � 1
�0

2 �0 � 1ð Þ:
����
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Therefore

lim
n!1

Q 00n; 2ð Þ �0ð Þ ¼ � 1
�0

2 �0 � 1ð Þ: ð9:2:7Þ

Finally, (9.2.6) and (9.2.7) imply the convergence

Q 00nð Þ �0ð Þ ! � 1
�0

2 �0 � 1ð Þ in probability P�0
: ð9:2:8Þ

(iii) Oscillations of Qn
00. Fix � > 0, C > 1 + �. From (2.2) we get for � 2 [1 + �, C]

Q000n �ð Þ ¼ 1
n

Xn

i¼ 2

Ii ln pið Þ000 þ 1
n

Xn

i¼ 2

ln 1� pið Þð Þ000 1� Iið Þ;

and there exists a constant M, s.t. for all n � 1, all � 2 [1 + �, C]

Q 000n �ð Þj j � M : ð9:2:9Þ

Now we are able to apply the above mentioned Lemma 1.

ffiffiffi
n
p

�̂� � �0ð Þ ! �2
0 �0 � 1ð ÞN 0; 1

�2
0 �0 � 1ð Þ

� �

¼ N 0; �2
0 �0 � 1ð Þ

� �
in distribution: ð9:2:10Þ

9.3. Proof of Theorem 4

(i) ReparametrizationR We prove the statement of the theorem using the notation � = �0

= (A0, �0, �0). Let B0 ¼ A
��0

0 , B ¼ A��; 
0 = ln �0 � 0, 
 = ln �. Rewrite the function

(4.1) using the i.i.d. sequence zi ¼ A0Xið Þ�0 ��1
0

� �i�1
, i = 1, 2, . . . , and cancelling sum-

mands which do not depend upon B, �, 
. We get

L1 B; �; 
ð Þ ¼ n n� 1ð Þ
2


� �
0
�0

� �
þ n ln B� � ln B0

�0

� �
þ n ln�

� �
�0

Xn
i¼1

ln zi � BB
� �
�0

0

Xn
i¼1

e
i�1ð Þ 
�
0

�
�0

� �
z
� �
�0

i :

Now, let c ¼ BB
� �
�0

0 ¼ A0

A

� ��
, � ¼ �

�0
, � ¼ 
� �

�0

0: Rewrite L1 and cancel the sum-

mands which do not depend upon the new arguments:

L2 c; �; �ð Þ ¼ n n� 1ð Þ
2

� þ n ln cþ n ln � � �
Xn

i¼1

ln zi � c
Xn

i¼1

e i�1ð Þ�z��i :
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Now, E ln z1 = jG0(1) = �e, see Kukush and Chernikov (2001), Ez��1 ¼ � 1þ �ð ÞR Then

1
nL2 c; �; �ð Þ ¼ n� 1

2
� þ ln cþ ln � � � �eð Þ � c

n� 1þ �ð Þ
Xn

i¼1

e i�1ð Þ� þ R1 þ R2;

where

R1 ¼ ��n
Xn
i¼ 1

ln zi � E ln zið Þ; ð9:3:1Þ

R2 ¼ �c
n

Xn

i¼ 1

e i�1ð Þ� z��i � Ez��i

� �
: ð9:3:2Þ

Finally, let 	 = n�. Rewrite L2:

L3 c; �; 	ð Þ ¼ 1
nL2 c; �;

	
n

� �
¼ n� 1

2n
	þ ln cþ ln � � � �eð Þ

� c
n� 1þ �ð Þe

	 � 1

e
	
n � 1

þ R1 þ R2: ð9:3:3Þ

For 	 = 0 we assume here and further formally that 1
n

e	�1

e

	
n�1

¼ 1. A new parameter set is

� ¼ c; �; 	ð Þ : 0 < c < 1; 0 < � < 1; 	 2 Rf g:

Denote ĉc; �̂� ; 	̂	
� �

¼ arg max c;�;	ð Þ2�L3 c; �; 	ð Þ: Obviously, if 	̂	 � �n �̂�
�0

ln �0 then

ĉc ¼ A0

ÂA

� ��̂�
; �̂� ¼ �̂�

�0
; 	̂	 ¼ n ln �̂� � �̂�

�0
ln �0

� �
: ð9:3:4Þ

The true value �0 corresponds to the values c0 = �0 = 1, 	0 = 0. We must prove, that a.s.

in P�0

ĉc; �̂� ; 	̂	
� �

! c0; �0; 	0ð Þ; as n!1:

(ii) Limit functionR Consider (c, � , 	) 2 QR, where QR is a compact subset of Q. Uni-

formly in QR we have

L3 c; �; 	ð Þ ¼ L1 c; �; 	ð Þ þ R1 þ R2 þ o 1ð Þ;

with the limit function

L1 c; �; 	ð Þ ¼ 	
2
þ ln cþ ln � � ��e � c� 1þ �ð Þe

	 � 1
	

:
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Here for 	 = 0 we assume that e	�1
	 ¼ 1. The function L3(c, � , 	) converges to L1(c, � , 	)

uniformly a.s., when (c, � , 	) 2 QR. Looking at (9.3.3), it is enough to prove that with

probability 1 R1 and R2 converge to 0 uniformly, n Y 1, when (c, � , 	) 2 QR.

R1 converges to 0 uniformly a.s., because 1
n

P
n
i¼1 ln zi � E ln zið Þ ! 0 a.s. by SLLN.

To prove that R2 converges to 0 uniformly a.s., it is enough to prove that

Sn 	; �ð Þ
n ¼ 1

n

Xn

i¼1

e
i�1ð Þ	

n z��i � Ez��i

� �
converges to 0 uniformly a.s. One can use the 4-th moment and the Rosenthal inequality

(Rosenthal, 1970), the Chebyshev inequality and the BorelYCantelli lemma to obtain that
Sn 	;�ð Þ

n
! 0, n Y 1 a.s., for all 	, � . Uniform convergence a.s. follows from the relations:

1
n
@Sn 	; �ð Þ

@	
¼ 1

n

Xn
i¼1

i� 1
n e

i�1ð Þ	
n z��i � Ez��i

� �
; and

sup
n�1

sup
	;�2compact

1
n
@Sn 	; �ð Þ

@	

����
���� � C !ð Þ;

the same for

1
n
@Sn 	; �ð Þ

@�
¼ 1

n

Xn
i¼1

e
i�1ð Þ	

n �ln zið Þz��i þ E ln zið Þz��i

� �
:

(iii) L1 attains its maximum at the unique point (c0, �0, 	0) = (1, 1, 0)R Find the maxi-

mum point of L1. We have

@L1
@c
¼ 1

c � � 1þ �ð Þe
	 � 1
	

:

If the maximum of L1 exists then it is attained on the curve
@L1
@c
¼ 0, or

c ¼ � 1þ �ð Þe
	 � 1
	

� ��1

:

Consider L1 on this curve,

~LL1 �; 	ð Þ ¼ L1 c �; 	ð Þ; �; 	ð Þ ¼ �ln � 1þ �ð Þ � ln e	 � 1
	
þ ln � � � �e þ 	2 � 1:

Prove that g 	ð Þ :¼ 	
2
� ln e	 � 1

	
attains the maximum at the unique point 	 = 0: g(0) = 0.

Indeed,

g 	ð Þ :¼ 	
2
� ln e	 � 1

	
� 0, e	 � 1

	
� e

	
2 ,

,
h ¼ e	 � 	e

	
2 � 1 � 0; 	 � 0

h ¼ e	 � 	e
	
2 � 1 � 0; 	 < 0

;

2
64 ð9:3:5Þ
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g(0) = 0. We have

h0 ¼ e	 � e
	
2 � 	

2
e
	
2 � 0; as e

	
2 � 1þ 	

2
; for all 	 2 R:

Equality holds here only for 	 = 0. Therefore, the only maximum point of g is zero.

We have to prove that the function f (�) := ln� j lnG(1 + �) j ��e, � > 0 has the

unique maximum point � = 1. Consider the inequality

ln � � ln � 1þ �ð Þ � ��e � ��e , ln � �ð Þ � 1� �ð Þ�e:

But the function ln G(�) is strictly convex, and y = (� j 1)G0(1) is a tangent line to the

graph y = ln G(�) at the point � = 1. Therefore, for � m 1 lnG(�) > (1 j �)�e, and the

only maximum point of f is � = 1. So, we proved that the only maximum point of L1 is

(1, 1, 0).

(iv) q̂q is stochastically boundedR Consider the transformed function given in (9.3.3)

L3 c; �; 	ð Þ ¼ 	
2

1� 1
n

� �
þ ln cþ ln � � � �eð Þ þ R1 � c

n

Xn

1

e
i�1ð Þ	

n z��i ;

c > 0, � > 0, 	 2 R, and find the curve on which it attains its maximum upon c:

@L3

@c
¼ 1

c � 1
n

Xn

1

e
i�1ð Þ	

n z��i ¼ 0;

and c ¼ nP
n
1
e

i�1ð Þ
	
n z��

i

. Consider first the case 	 � 0. On this curve the function equals

~LL3 �; 	ð Þ ¼ L3 c �; 	ð Þ; �; 	ð Þ ¼ 	
2

1� 1
n

� �
� ln

 
1
n

Xn

1

e
i�1ð Þ	

n z��i

!
þ ln � � � �e

þ R1 � 1 <
	
2

1� 1
n

� �
� ln

 
1
ne

2	
3

Xn

2n
3

 �
þ2

z��i

!
þ ln � � � �eþR1;

~LL3 �; 	ð Þ < � 	
2n
� 	

6
� ln

 
1
n

X
zi < e�e�2; 2n

3½ �þ2�i�n

z��i

!
þ ln � � ��eþ R1

< ln � � � �e þ R1 � 	6 � ln

 
1
n

X
zi < e�e�2;

2n
3

 �
þ2�i�n

z��i

!
: ð9:3:6Þ

Remind that {zi} are i.i.d. realizations of a Fréchet distribution with

F xð Þ ¼ exp �x�1ð Þ; x > 0; P zi < e�e�2
� �

¼ exp �exp ��e þ 2ð Þð Þ :¼ p:

ð9:3:7Þ
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Denote by �n/3 the number of zi such that zi < e�e�2 , 2n
3

 �
þ 2 � i � n:

Then by SLLN �n=3

n=3
! p, as n Y 1, a.s.

So, we obtain that for any 0 < �1 < p there exists n0 = n0(�1, !) such that for

any n> n0j�n=3

n=3
� pj< �1; a.s., therefore �n=3>

n
3
ð��1 þ pÞ a.s. Also we have that a.s. for

n > n0

~LL3 �; 	ð Þ< ln � � � �e � 	6 þ R1 � 2� þ � �e � ln 1
3
��1 þ pð Þ

¼ ln � � 2� � 	
6
� C1 þ R1:

R1 ¼ ��n
Xn

i¼1

ln zi � Eln zið Þ

� �1
n

Xn

i�1

ln zi � Eln zið Þ
�����

����� :
There exists a number n2 = n2(!) such that 1

n

P
n
i�1 ln zi � Eln zið Þ

�� �� < 1 a.s., as soon as

n > n2(!).

Therefore for any n > n0 = max(n1, n2)

~LL3 �; 	ð Þ < ln � � � � 	
6
� C1

Also we have

sup
n>n0

sup
�>C

0
sup
	�0

~LL3 �; 	ð Þ ! �1 a:s: when C0 ! þ1;

sup
n>n0

sup
� < �

sup
	�0

~LL3 �; 	ð Þ ! �1 a:s: when �! 0;

sup
n>n0

sup
�>0

sup
	>C0

~LL3 �; 	ð Þ ! �1 a:s: when C0 ! þ1: ð9:3:8Þ

Similarly consider the function ~LL3 �; 	ð Þ when 	 < 0:

~LL3 �; 	ð Þ ¼ L3 c �; 	ð Þ; �; 	ð Þ ¼ 	
2

1� 1
n

� �
� ln

 
1
n

Xn

1

e
i�1ð Þ	

n z��i

!
þ ln � � � �e

þ R1 � 1 <
	
2

1� 1
n

� �
� ln

 
1
ne

	
3
Pn3½ �þ1

1

z��i

!
þ ln � � � �e þ R1;

~LL3 �; 	ð Þ< � 	
2n
� 	

6
� ln

 
1
n

X
zi < e�e�2; 1�i�n

3½ �þ1

z��i

!
þ ln � � � �e þ R1

< ln � � � �e þ R1 � 	6 �
	
2n
� ln

 
1
n

X
zi < e�e�2; 1�i� n

3½ �þ1

z��i

!
: ð9:3:9Þ
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Denote by �n/3
0 the number of zi such that zi < e�e�2, 1 � i � n

3

 �
þ 1 .

Then by SLLN �0n=3

n/3
! p, as n Y 1, a.s., where p is given in (9.3.7).

For any 0 < �1 < p there exists n0 = n0(�1, !) such that for any n > n0
� 0n=3

n=3
� p

��� ��� < �1, a.s.,

therefore � 0n=3 >
n
3
��1 þ pð Þ a.s. And we have that a.s. for n > n0

~LL3 �; 	ð Þ < ln � � � �e þ 	6 �
	
2n
þ R1 � 2� þ � �e � ln 2

3
��1 þ pð Þ

¼ ln � � 2� þ 	
6
� 	

2n
� C1 þ R1:

R1 ¼ ��n
Pn
i�1

ln zi � Eln zið Þ� �1
n

Xn

i�1

ln zi � Eln zið Þ
�����

�����:
For any �2 > 0 there exists n2(�2, !) such that for any n > n2
1
n

P
n
i�1 ln zi � Eln zið Þ

�� �� < �2 a.s. Let �2 = 1. There exists a number n2 = n2(!) such that
1
n

P
n
i�1

�� ln zi � Eln zið Þj < 1 a.s., as soon as n > n2(!). Therefore for any n > n0 =

max(n1, n2, 6)

~LL3 �; 	ð Þ < ln � � � þ 	
12
� C1:

Also we have

sup
n>n0

sup
�>C

0
sup
	 < 0

~LL3 �; 	ð Þ ! �1 a:s: when C0 ! þ1;

sup
n>n0

sup
�>�

sup
	 < 0

~LL3 �; 	ð Þ ! �1 a:s: when �! 0;

sup
n>n0

sup
�>0

sup
	 <�C0

~LL3 �; 	ð Þ ! �1 a:s: when C0 ! þ1:

ð9:3:10Þ

Since Lnðq̂qnÞ � Ln q0ð Þ ¼ L1 q0; q0ð Þ þ o 1ð Þ, n Y1, from (9.3.8) and (9.3.10) we can

conclude that for some random bounds d, C > 0 and some number n0(!) for each n �
n0(!)

q̂qn 2 �;C½ � � �;C½ � � �C;C½ �; a:s: ð9:3:11Þ

(v) Convergence of ĉc; �̂� ; 	̂	
� �

R

L3ðĉc; �̂� ; 	̂	Þ � L3 c0; �0; 	0ð Þ ¼ L1 c0; �0; 	0ð Þ þ o 1ð Þ:

From (9.3.11) we get that kq̂qk � a , with a = a(!) for n � n0(!). Then for n � n0(!)

L3ðq̂qÞ � sup
qk k�a

L3 qð Þ ¼ sup
qk k�a

L1 qð Þ þ o 1ð Þ:
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If ĉc� c0ð Þ2 þ �̂� � �0ð Þ2 þ 	̂	� 	0

� �2

� �2, then

sup
c�c0ð Þ2þ ���0ð Þ2þ 	�	0ð Þ2��2; qk k�a

L1 qð Þ � L1 q0ð Þ þ o 1ð Þ;

and for n � n1(!) this is impossible, because of (iii).

Hence ĉc� c0ð Þ2 þ �̂� � �0ð Þ2 þ
�
	̂	� 	0

�2 � �2; n � n1(!) and therefore
�
ĉc; �̂� ; 	̂	Þ !

c0; �0; 	0

��
a.s., n Y 1. Now from (9.3.4) the statement of Theorem 3 follows.

9.4. Proof of Theorem 5

We apply Lemma 1 to Qn = L3 given in (9.3.3), (9.3.1) and (9.3.2) with q = (c, � , 	),

Q = (0, 1) � (0, 1) � R and q0 = (c0, �0, 	0) = (1, 1, 0). Rewrite

L3 c; �; 	ð Þ ¼ L1 c; �; 	ð Þ þ An c; �; 	ð Þ þ R1 þ R2 � 	
2n
; ð9:4:1Þ

where An(c, � , 0) = 0 and in the case 	 m 0

An c; �; 	ð Þ ¼ c� 1þ �ð Þ e	 � 1
� � 1

	
� 1

n
�
e
	
n � 1

�
!
:

By Theorem 1 the maximum point ðĉc; �̂� ; 	̂	Þ of L3 converges to q0 = (c0, �0, 	0) a.s. We

check the conditions of Lemma 1.

(i) Convergence of
ffiffiffi
n
p

Q 0n 0ð Þ . We have L1
0 (q0) = 0. Consider An with t :¼ 	

n
,

An c; �; 	ð Þ ¼ c� 1þ �ð Þ e	 � 1
� �

	
1� t

et � 1

� �
:

Let h tð Þ ¼ 1� t
et�1

if t m 0, and h(0) = 0. Then

@An 0ð Þ
@	

¼ c0� 1þ �0ð Þ @@	h tð Þ t¼0j ¼ 1
nh

0
0ð Þ ¼ 1

2n
:

Therefore
ffiffiffi
n
p @An 0ð Þ

@	 ! 0: The other partial derivatives of An equal zero at q0. Thusffiffiffi
n
p

Q 0n 0ð Þ ¼ o 1ð Þ þ ffiffiffi
n
p

R1 þ R2ð Þ0 0ð Þ;

ffiffiffi
n
p

Qn
0 0ð Þ ¼ o 1ð Þ � 1ffiffiffi

n
p

Xn

i¼1

z�1
i � Ez�1

i

1� z�1
i

� �
ln zi � E 1� z�1

i

� �
ln zi

i�1
n

z�1
i � Ez�1

i

� �
0
B@

1
CA: ð9:4:2Þ

Now by the multivariate CLT in Lyapunov formffiffiffi
n
p

Q
0

n 0ð Þ ! N 0;Tð Þ ð9:4:3Þ
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in distribution, where T is 3 � 3 matrix. Check the Lyapunov condition for the third

component (9.4.2). For the sum

Sn ¼
Xn

i¼1

�ni ¼
Xn

i¼1

i� 1
n
ffiffiffi
n
p z�1

i � Ez�1
i

� �

we have

Var Sn ¼ 1
n

Xn

i¼1

i� 1ð Þ2
n2 ! 1

3
; n!1;

and

1

Var Snð Þ3=2

Xn

i¼1

E �nij j3 ¼ Const
n4

ffiffiffi
n
p

Xn

i¼1

i� 1ð Þ3 ! 0; n!1:

To calculate the varianceYcovariance matrix T, introduce the i.i.d. random vectors

�����i :¼

z�1
i � Ez�1

i

1� z�1
i

� �
ln zi � E 1� z�1

i

� �
ln zi

i� 1

n
z�1

i � Ez�1
i

� �

0
BBB@

1
CCCA

and weighting matrices

����i :¼ diag
�

1; 1; i� 1
n

�
: ð9:4:3Þ

Then
ffiffiffi
n
p

Q 0n 0ð Þ ¼ o 1ð Þ � 1ffiffi
n
p
Pn

i¼1 Lizi;

Var zi ¼ � ¼

1 1� �e 1

1� �e

�2

6
þ 1� �eð Þ2 1� �e

1 1� �e 1

0
BB@

1
CCA;

Var 1ffiffiffi
n
p
Xn

i¼1

Lizi

 !
¼ 1

n

Xn

i¼1

LiGLT
i ! T ¼

1 1� �e

1

2

1� �e

�2

6
þ 1� �eð Þ2 1� �e

2

1

2

1� �e

2

1

3

0
BBBBBB@

1
CCCCCCA
:

This T is the covariance matrix of the normal law in (9.4.3).

(ii) Convergence of Qn
00(q0)R Direct calculations show that L1= jT. This matrix is non-

singular because det T ¼ 1
12
þ 1

12

�
�00 2ð Þ � �0 2ð Þ

� �2�
> 0: Here �0 2ð Þ ¼ 1� �e, �00 2ð Þ ¼

�2

6
þ �2

e � 2�e; see, e.g., Abramowitz and Stegun (1992). The second derivatives of the
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other summands in (9.4.1) tend to zero in probability, hence Qn
00(q0) Y S = jT in

probability.

(iii) Increments of the second derivative. For the limit function we have L1(c, � , 	) 2
C2(Q), therefore condition c) of Lemma 1 holds if we substitute L1 for Qn. For the other

summands of (9.4.1) it is also simple to check this condition. Consider for instance the

increments with respect to 	 of

@2R2

@	2 ¼ �c
n

Xn

i¼1

i� 1ð Þ2

n2 e
ði� 1Þ	

n z��i � Ez��i

� �
:

We have to check that for each d > 0,

lim
�!0

lim sup
n!1

P sup
q2�;

q�q0k k��

c
n

Xn

i¼1

ði� 1Þ2

n2 e
ði� 1Þ	

n � 1

 !
z��i � Ez��i

� ������
����� > �

0
BB@

1
CCA ¼ 0:

ð9:4:4Þ
The following inequalities hold:

e
ði� 1Þ	

n � 1

�����
����� � i� 1

n � � const; when 	� 	0j j ¼ 	j j � �;

z��i

�� �� � zi* ¼
z
�1=2
i ; if zi > 1

z
�3=2
i ; if 0 < zi � 1 ;

when � � �0j j ¼ � � 1j j� 1
2
:

8<
:

Hence the supremum in (9.4.4) is less or equal to � I Op(1), and

lim
�!0

lim sup
n!1

P � � Op 1ð Þ > �
� �

¼ 0;

which induces (9.4.4). Condition c) of Lemma 1 holds.

(iv) Change of variables. By Lemma 1

ffiffiffi
n
p ĉc� 1

�̂� � 1

	̂	

0
B@

1
CA! T�1� ¼ �1

in law, with � õ N(0, T), and z1 õ N(0, Tj1). Return to the variables (A, �, �). We

have

A

�
n ln �

0
@

1
A ¼ A0c� 1

�0�

�0�
	þ � ln �0

0
@

1
A :¼ g c; �; 	ð Þ;
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and

A0

�0

n ln �0

0
@

1
A ¼ g 1; 1; 0ð Þ:

The normalized estimators equal

ffiffiffi
n
p ÂA� A0

�̂�� �0

n ln �̂� � ln �0ð Þ

0
@

1
A ¼ ffiffiffi

n
p

g ĉc; �̂� ; 	̂	
� �

� g 1; 1; 0ð Þ
� �

¼
ffiffiffi
n
p

g0 1; 1; 0ð Þ
ĉc� 1

�̂� � 1

	̂	

0
@

1
Aþ op 1ð Þ ! g0 1; 1; 0ð Þz1 ð9:4:5Þ

in law. But

�
g0 1; 1; 0ð Þ

��1

¼ h0 A0; �0; n ln �0ð Þ; ð9:4:6Þ

where the inverse transformation h equals

h A; �; 	ð Þ ¼
A=A0ð Þ��
�=�0

 � �n ln �0=�0

0
@

1
A:

Then

h
0

A0; �0; n ln �0ð Þ ¼
� �0

A0
0 0

0 1
�0

0

0 � nln �0

�0
1

0
B@

1
CA ¼ �R0n A0; �0; �0ð Þ; ð9:4:7Þ

with Rn given in Theorem 2, Rn
0 is Rn transposed. Finally, from (9.4.5)Y(9.4.7) we obtain

that the sequence

ffiffiffi
n
p

RnTR0n
� �1=2

ÂA� A0

�̂� � �0

n ln �̂� � ln �0ð Þ

0
@

1
A

converges in law to standard normal distribution.
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