

Analysis of modulated photoluminescence for lifetime determination in silicon

<u>Florian Effenberg</u>, Rudolf Brüggemann, Gottfried H. Bauer

Institute of Physics, Division Semiconductor Physics, Carl von Ossietzky University Oldenburg, Germany

Overview

- Introduction
- Lifetime determination
- Concept of Modulated Photoluminescence (MPL)

RECO

- Linear models and experimental results
 - simple model
 - exact solution of diffusion equation
- Nonlinear models and experimental results
 - dispersive model
 - bimolecular approach
- MPL and open circuit voltage
- Summary

(n) a-Si:H

interface

(p) c-Si

rear contact

Introduction

- Open-circuit voltage V_{oc} of a-Si:H/c-Si heterodiode solar cells depends to large degree on interface defect density
- Efficient passivation of surfaces is required
- Effective lifetime = indicator for interface quality
- Modulated photoluminescence (MPL): efficient and simple method for lifetime measurement allows investigation of influence of interface defects on minority carrier lifetime and estimation for $V_{\rm oc}$ in c-Si

Lifetime measurement

Established methods:

- Microwave photoconductance decay (µ-PCD)
- Quasi-steady-state photoconductance (QSSPC)

<u>Problem</u>: high concentration of free carriers (metallic defects, metallic rear contacts, high doped layers)

 \rightarrow conductive methods fail because of shielding effects

 \rightarrow alternative method: MPL

Concept: MPL

Considering high quality wafers with high bulk lifetime, the effective lifetime is determined by the contribution of surface/passivation layers (recombination velocities):

$$\frac{1}{\tau_{eff}} = \frac{1}{\tau_{bulk}} + \frac{S_1}{W} + \frac{S_2}{W}$$

D: diffusion coefficient S_1, S_2 : recombination velocities W: wafer thickness n_0, p_0 : carrier concentration Florian Effenberg et al | Seminar Talk 2012

RECO

Concept: MPL

Considering high quality wafers with high bulk lifetime, the effective lifetime is determined by the contribution of surface/passivation layers (recombination velocities):

Concept: MPL

Optical excitation with modulation frequency ω

Response with modulation frequency ω and delay time = effective lifetime τ_{eff}

Amplitude and phase of response depend on effective lifetime $\tau_{\rm eff}$

With <u>Lock-In</u> technique get amplitude and phase spectra

Lock-in: phase-sensitive detection

In-phase/ out-of-phase components:

GRECO

CNO UNI OL

$$S_{IP}(\omega) = \frac{2}{T} \int_0^T S(t) \cos(\omega t) dt \qquad U(\omega) = \sqrt{S_{IP}(\omega)^2 + S_{OP}(\omega)^2}$$

$$S_{OP}(\omega) = \frac{2}{T} \int_0^T S(t) \sin(\omega t) dt \qquad \phi(\omega) = \tan^{-1} \left(\frac{S_{OP}(\omega)}{S_{IP}(\omega)} \right)$$

Experimental setup

GRECO GOUNT OL

rear contact

.

Semiconductor Physics and Quantum Solar Energy Conversion

Simple model [1]

Rateequation with sinusoidal modulation:

GRECO

CNO UNI OL

$$\frac{d\Delta n(t)}{dt} = G(t) - R(t) = G_0 + G_1 \sin(\omega t) - \frac{\Delta n(t)}{\tau}$$

$$\Delta n(t) = G_0 \tau + G_1 \tau \frac{\sin(\omega t + \arctan(\omega \tau))}{\sqrt{1 + (\omega \tau)^2}}$$

spectral amplitude:
$$\Delta n_1(\omega) = \frac{\Delta G_1 \tau}{\sqrt{1 + (\omega \tau)^2}}$$

spectral phase:

$$\varphi(\omega) = -\arctan(\omega\tau) \Leftrightarrow \tan(\varphi) = -\omega\tau$$

[1] R. Brüggemann, S. Reynolds, J. Non-Cryst. Solids 352 (2006) 1888 Florian Effenberg et al | Seminar Talk 2012

Results: SiC-passivation (1 Ω cm)

two procedures for lifetime extraction from experimental measurement

GRECO

Results: SiN passivation (1 Ω cm)

RECO

Results: SiN passivation (1 Ω cm)

RECO

Results: (n)a-Si-H/(i)a-Si:H pass. (1 Ωcm)

RECO

CAO UNE OL

Florian Effenberg et al | Seminar Talk 2012

Results: (n)a-Si-H/(i)a-Si:H pass. (1 Ω cm)

RECO

Florian Effenberg et al | Seminar Talk 2012

Results: (n)a-Si-H/(i)a-Si:H pass. (1 Ω cm)

RECO

Florian Effenberg et al | Seminar Talk 2012

Results: (i)a-Si:H pass. (1 Ω cm)

RECO

Results: (i)a-Si:H pass. (1 Ω cm)

RECO

Results: (i)a-Si:H pass. (1 Ω cm)

RECO

Better approach: solving diffusion equation [2]

$$\frac{\partial \Delta n(x,t)}{\partial t} = D\nabla^2 \Delta n(x,t) - \frac{\Delta n(x,t)}{\tau_{bulk}} + G(x,t)$$

GRECO

CNO UNI OL

∆n: excess carrier density

- D: diffusion coefficient
- G: generation rate

[2] M. Orgeret, J. Boucher, Rev. de Phys. Apl. 13(1), 29-37 (1987)

Better approach: solving diffusion equation [2]

Semiconductor Physics and Quantum Solar Energy Conversion

$$\frac{\partial \Delta n(x,t)}{\partial t} = D\nabla^2 \Delta n(x,t) - \frac{\Delta n(x,t)}{\tau_{bulk}} + G(x,t)$$

GRECO

$$G(x,t) = \sum_{m=-\infty}^{\infty} G_m e^{im\omega t} e^{-\alpha x} \qquad D \frac{\partial \Delta n(x,t)}{\partial x} \Big|_{x=0} = S_1 \Delta n(0,t) - D \frac{\partial \Delta n(x,t)}{\partial x} \Big|_{x=W} = S_2 \Delta n(W,t)$$

 Δn : excess carrier density

D: diffusion coefficient

G: generation rate

 α : apsorption coefficient

S₁, S₂ surface recombination velocity [2] M. Orgeret, J. Boucher, Rev. de Phys. Apl. 13(1), 29-37 (1987)

Complex solution: local excess carrier concentration

$$\Delta n(x,t) = \sum_{m=-\infty}^{\infty} \Delta n_m^*(x,\omega) e^{im\omega t}$$

GRECO

Solution: complex excess carrier concentration

$$\Delta n(x,t) = \sum_{m=-\infty}^{\infty} \Delta n_m^*(x,\omega) e^{im\omega t}$$

GRECO

CNO UNI OL

$$\sum_{m=-\infty}^{\infty} \int_{0}^{W} \Delta n_{m}^{*}(x,\omega) e^{im\omega t} dx = \sum_{m=-\infty}^{\infty} \Delta N_{m}^{*}(\omega) e^{im\omega t}$$

W: wafer thickness

Lock-In detection: only fundamental component (ω)

GRECO

OND UNIT OL

$$\Delta n_1^*(x,\omega) = \frac{G_1 \left(C_1 e^{(x-W)/L_1} + C_2 e^{-(x-W)/L_1} - e^{\alpha x} \right)}{D \left(\alpha^2 - \frac{1}{L_1^2} \right)}$$

 L_1 : diffusion length

Extended model

 more precise model including independent values for front and back surface recombination velocities, wavelength dependent absorption, sample thickness and dopant type

$$U_{ampl} \sim \| \int_0^W \Delta n_1^*(x,\omega) dx \| = \| \Delta N_1^*(\omega) \|$$
$$\phi(\omega) = \tan^{-1} \left(\frac{\Im(\Delta N_1^*(\omega))}{\Re(\Delta N_1^*(\omega))} \right)$$

RECO

→ model allows <u>depth profile</u> of amplitude and phase spectra

Space depending amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>symmetrical sample</u>: S₁ = S₂= 20, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹

GRECO

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>symmetrical sample</u>: S₁ = S₂= 20, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹

RECO

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>symmetrical sample</u>: S₁ = S₂= 20, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹

RECO

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>symmetrical sample</u>: S₁ = S₂= 20, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹

RECO

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>symmetrical sample</u>: S₁ = S₂= 20, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹

RECO

Integrated amplitude and phase spectra

overestimation of real lifetime for high surface recombination rates

RECO

Florian Effenberg et al | Seminar Talk 2012

Space depending amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ asymmetrical sample: S₁ = 20 cm s⁻¹; S₂ = 50, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹

GRECO

GRECO GO UNE OL

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>asymmetrical sample</u>: S₁= 20 cm s⁻¹; S₂= 50, 100, 500, 10³, 10⁴, 10⁶ cm

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>asymmetrical sample</u>: S₁= 20 cm s⁻¹; S₂= 50, 100, 500, 10³, 10⁴, 10⁶ cm

Space depending amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}; \ \tau_{bulk} = 20 \text{ ms}; W=0.025 \text{ cm}; \ \alpha = 1010 \text{ cm}^{-1};$ <u>asymmetrical sample</u>: S₁= 50, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹; S₂= 20 cm s⁻¹

GRECO

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}$; $\tau_{bulk} = 20 \text{ ms}$; W=0.025 cm; $\alpha = 1010 \text{ cm}^{-1}$;

RECO

<u>asymmetrical sample</u>: S₁= 50, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹; S₂= 20 cm s⁻¹

Integrated amplitude and phase spectra $D = 12 \text{ cm}^2 \text{ s}^{-1}$; $\tau_{bulk} = 20 \text{ ms}$; W=0.025 cm; $\alpha = 1010 \text{ cm}^{-1}$;

<u>asymmetrical sample</u>: $S_1 = 50$, 100, 500, 10³, 10⁴, 10⁶ cm s⁻¹; $S_2 = 20$ cm s⁻¹

RECO

Integrated amplitude and phase spectra

RECO

Simple model vs. exact solution of diffusion equation

- good agreement of spectra for low frequencies
- good agreement of lifetimes for $S_i < 200 \text{ cm s}^{-1}$
- simple model overestimates the effective lifetime for high surface recombination velocities
- exact solution of the diffusion equation does not explain nonlinear deviations in the spectra in low frequency range

Dispersive model [3]

Approach: effective lifetime depends on frequency \rightarrow <u>lifetime distribution</u>

CARECO

$$\Delta n_1^*(\omega) = \frac{G_1 \tau_0}{1 + (i\omega\tau_0)^{\delta_{disp}}}$$

Stieltjes transformation:

$$G(\ln(\tau)) = \frac{1}{2\pi i G_1 \tau_0} \left(\Delta n \left(\frac{e^{-i\pi}}{\tau} \right) - \Delta n \left(\frac{e^{i\pi}}{\tau} \right) \right)$$

$$\Rightarrow$$

$$G(\ln(\tau)) = \frac{1}{2\pi} \frac{\sin(\delta_{disp}\pi)}{\cosh\left(\delta_{disp}\ln\left(\frac{\tau}{\tau_0}\right)\right) + \cos\left(\pi\delta_{disp}\right)}$$

[3] D. W. Davidson, R. H. Cole, J. Chem. Phys 19(12), 1484-1490 (1951)
[4] R. Fuoss, J.G. Kirkwood, J. Am- Chem. Soc. 63(2), 385-394 (1941)

U(ω)

 $\|\Delta n_1^*(\omega)\|$

 $\phi(\omega) = -\tan^{-1}\left(\frac{\Im(\Delta n_1^*(\omega))}{\Re(\Delta n_1^*(\omega))}\right)$

Dispersive model (i)pm-Si:H/(n)a-Si:H (14 Ωcm)

RECO

Nonlinear approach

linear-to-quadratic recombination regime [5]: bimolecular model

 $\Delta n(r,t) = \frac{G_0 e^{-Lr}}{8\pi Dr} + \frac{G_1 \cos(r \sin(\frac{1}{2}\theta) L \Lambda^{\frac{1}{4}} - \omega t) e^{-L\Lambda^{\frac{1}{4}} \cos(\frac{1}{2}\theta)r}}{8\pi Dr}$ solve spherical diffusion equation: $\frac{1}{\tau_{eff}} = \frac{1}{\tau_{B}} + \frac{1}{\tau_{NB}}$ $\Lambda(\omega) := (1 + (\omega \tau_{eff})^2)$ $L := \sqrt{D\tau_{eff}}$ calculate total recombination rate: $\theta(\omega) := \arctan(\omega \tau_{eff})$ $R(t) = \int_{0}^{\infty} \left(\frac{\Delta n(r,t)}{\tau_{\rm P}} + B\Delta n(r,t)^2 \right) 4\pi r^2 dr$ $S_{IP} = \frac{2}{T} \int_0^T R(t) \cos(\omega t) dt$ $S_{OP} = \frac{2}{T} \int_0^T R(t) \sin(\omega t) dt$ $S_{OP} = \frac{2}{T} \int_0^T R(t) \sin(\omega t) dt$ $Matrix S_{OP} = \frac{2}{T} \int_0^T R(t) \sin(\omega t) dt$ $Matrix S_{OP} = \frac{2}{T} \int_0^T R(t) \sin(\omega t) dt$ $Matrix S_{OP} = \frac{2}{T} \int_0^T R(t) \sin(\omega t) dt$ [5] D. Guidotti, J. S. Batchelder, A. Finkel, Phys. Rev. B, 38(2), 1569-1572 (1988) Florian Effenberg et al | Seminar Talk 2012

Influence of first-overtone (2 ω) $\Delta n >> N_A$

GRECO GO UNE OL

Bimolecular model SiN passivation (1 Ωcm)

<u>high injection regime</u>: $\Delta n > N_A$

Bimolecular model SiN passivation (1 Ωcm)

<u>high injection regime: $\Delta n > N_{A}$ </u>

RECO

Bimolecular model SiN passivation (1 Ωcm)

<u>low injection</u>: $\Delta n \ll N_{A}$

GRECO

Florian Effenberg et al | Seminar Talk 2012

Linear and nonlinear models SiN passivation (1 Ωcm)

<u>**low injection**</u>: $\Delta n \ll N_{\Delta}$

RECO

high injection: $\Delta n >> N_A$

Florian Effenberg et al | Seminar Talk 2012

MPL and measurement of V_{oc}

RECO

CHO UNE OL

MPL and measurement of V_{oc}

GRECO

CHO UNI OL

Florian Effenberg et al | Seminar Talk 2012

Results: Cell

a-Si passivated p-type wafer (1 Ω cm, $N_A = 10^{16}$ cm⁻³) with TCO

MPL allows measurement on bare wafer and TCO-texture (via small excitation spot)

N_A -0.1 lifetime τ/s ,¿.0-, -0.3TCO-area untreated -0.4 10⁻⁵ 10¹⁶ 10¹⁷ 10¹⁵ 2000 4000 0 carrier density Δ n / cm $^{-3}$ frequency ω / s

Florian Effenberg et al | Seminar Talk 2012

Summary

- Modulated photoluminescence promises an efficient method for effective lifetime measurement

- Simple model allows approximation of effective lifetime for low surface recombination and symmetrical samples in low frequency range

- In the case of asymmetrical samples and high surface recombination the exact solution of the diffusion equation leeds to a more detailed model

- In case of high excitation (quadratic recombination) modified nonlinear approaches offer a qualitatively better description of spectra

- MPL determinated lifetime allows a reliable approximation of V_{oc}

- Advantage of MPL to other lifetime measurements: local investigation of wafers and cells with high doping and backcontacts