
pde2path 3.0 – Quickstart guide and reference card

Hannes de Witt∗,1, Tomas Dohnal2, Jens D.M. Rademacher3, Hannes Uecker∗,4, Daniel Wetzel∗,5

∗,1 Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.de.witt@uni-oldenburg.de,
2 Fakultät II, Martin–Luther–Unversität Halle–Wittenberg, tomas.dohnal@mathematik.uni-halle.de

3 Fachbereich Mathematik, Universität Bremen, D28359 Bremen, jdmr@uni-bremen.de
4 hannes.uecker@uni-oldenburg.de, 5 daniel.wetzel@uni-oldenburg.de

Last updated: September 13, 2021, HU

Abstract

We describe version 3.0 of the PDE continuation/bifurcation package pde2path. After brief

remarks on download and installation, we give an overview of the included demo directories,

for which detailed tutorials are available on the pde2path homepage, and a data structure and

function overview for quick reference.

Contents

1 Introduction 2

2 Demo overview 5

2.1 Scalar steady state and traveling wave demos . 5

2.2 System steady state and traveling wave demos . 7

2.3 Hopf demos . 9

2.4 OC demos . 11

2.5 FEM–free demos . 11

2.6 Higher order FEM demos . 11

3 Data structure overview 12

3.1 Standard fields . 12

3.2 OOPDE data . 16

3.3 The Hopf data . 18

3.4 Global variables . 19

4 Function overview 19

4.1 The stan* functions . 20

4.2 Main functions for steady state problems . 20

4.3 linalg and fem . 21

4.4 Hopf . 22

4.5 Time integration . 23

4.6 Plotting . 23

4.7 Convenience functions . 26

4.8 OC functions . 26

1

1 Introduction

The MATLAB1 continuation and bifurcation package pde2path [24, 27] treats PDE systems of type

Md∂tu = −G(u, λ) := ∇ · (c∇u)− au+ b⊗∇u+ f, (1)

where u = u(x, t) ∈ RN (N components), t ≥ 0, x ∈ Ω ⊂ Rd, d = 1, 2, 3, Md ∈ RN×N is the

(dynamical) mass matrix which may be singular, λ ∈ Rp is a parameter vector, and where the

coefficients c, a, b and the ’nonlinearity’ f may depend on x, u, λ. The boundary conditions (BCs) are

of the form

n · (c∇u) + qu = g, (2)

where n is the outer normal. Additionally there may be nQ ≥ 1 constraints, here written as

Qj(u, λ) = 0, j = 1, . . . , nQ. (3)

In the following, when we refer to (1) this always includes the BC (2) and (if applicable) the constraints

(3). Often, the focus is on the steady case

G(u, λ) = 0 (and possibly Q(u, λ) = 0). (4)

The goal of pde2path is to be a general and easy to use (and modify and extend) toolbox to inves-

tigate bifurcations in PDEs of the (rather large) class given by (1). For detailed tutorials explaining

the pde2path demos directories we refer to [27], and for mathematical background to [24,] and the

references therein. The purpose of this document is to

� describe the basic installation of pde2path,

� give an overview of the pde2path demo directories,

� summarize the pde2path data structures and functions for easy reference.

As pde2path evolves there will be additional features and demo directories, and there may be slight

changes in file organization and data structures, which may not always be immediately updated in this

guide. Thus, for the latest documentation of pde2path we always refer to the electronic help included

in the software download. Besides OOPDE [16], we use four other third party softwares, namely:

� For assembling the systems for periodic orbit continuation we use (modifications of routines

from) the two–point BVP package TOM [13].

� For mesh adaptation in 2D and 3D we use the package trullekrul.

� To compute Floquet multipliers we use pqzschur [12], a MATLAB driver for a fortran routine

which computes a periodic Schur decomposition of a set of matrices.

� To solve linear systems with preconditioned iterative methods we use ilupack [2].

OOPDE, in a version with no abstract classes for compatibility with older matlab versions, (our modifica-

tions of) TOM, trullekrul, and pqzschur are included in the pde2path download (with permission),

while ilupack should be downloaded at [2].2 OOPDE, TOM and trullekrul are pure MATLAB, while

pqzschur and ilupack require some mexing, see below. We have tested pde2path on a variety of

standard PCs (linux, MacOS and Windows) and under various MATLAB versions.

1Most of pde2path’s functionality is now also available in gnu-octave, www.gnu.org/software/octave/
2Additionally, there are a few “public domain” (GPL) functions downloaded from the web and collected in libs/misc,

e.g., cheb (from [19], used in [26]), and BAgraphA (modified from a function by T. Patel), keep (by M. Hrovat and
X. Yang), and similar.

2

www.gnu.org/software/octave/

(a) Directory tree (c) demo overview (start)

(b) root help menu

Figure 1: Directory tree, Root help menu, and starting part of html demo overview.

The package download pde2path.tar.gz (or pde2path.zip) unpacks to the directory pde2path,

which contains the directory tree shown in Fig. 1(a). In this tree, demos and hopfdemos contain a

number of stationary and Hopf pde2path demos, respectively, html contains help, libs contains the

pde2path libraries, ocdemos contains the optimal control demos described in [3]. octave contains

a README file explaining how to set up pde2path for octave, an octave–version of OOPDE (which

features some adaptions from the MATLAB version), a folder overload, which contains modification

and extensions of pde2path to octave, and a folder octavedemos, which shows how to adapt typical

pde2path demos to octave. Further, OOPDElightNA is our “light” version of OOPDE [16], pqzschur

contains the periodic Schur decomposition [12], which has to be mexed (see README in pqzschur for

further instructions), and trullekrul [11, 10] is a powerful package for anisotropic mesh adaptation

in 2D and 3D, which, besides classical error estimators is our main mesh adaptation tool.

To get started, in MATLAB change into the pde2path directory and run setpde2path, which also

makes available the help system. Calling p2phelp yields the main help menu shown in Fig. 1(b). The

first two topics are short thematic overviews of the data structures and main functions in pde2path,

while clicking p2p, . . . , ampsys yields complete alphabetic function overviews of these pde2path li-

braries, with a short description of each function, which can then be clicked for further documentation.3

Similarly, clicking on demos opens the demo overview in (c), with brief descriptions of and pertinent

links to the demo directories and the basic script files.

3Help on any pde2path function foo is also given by typing help foo or doc foo, but in practice we find the
alphabetic library overviews such as in Fig. 1(c) most convenient. To keep the help system functional, clear all

should be avoided, i.e., replaced by keep pphome.

3

.............................
..................
...............
..............
.................
...
............
...............
...............
......................

................................�

?

�

- -

-
-

- -

--

predict

plot/save/call user function
new tangent

correct (Newton-loop)

stepsize/error control

cont

check for bifurcation (bifdetec)

swibra:switch to new branch

spcontini/spcontexit:
start/stop special contin.

(e.g., fold or branch points)

initialization
define domain, rhs, and initial
values for parameters and solution

in a different parameter

swipar: switch to contin.

(plotbra)

postprocessing:
plot branches

(plotsol)and solutions

Figure 2: Basic flow diagram of using pde2path. The initialization block is typically put into a function

*init, where * is the name of the problem, and it usually starts with a call of p=stanparam(p), setting

all pde2path parameters to standard values, after which the user should redefine the pertinent problem

parameters. The cont block gives a schematic overview of the main steps in the function cont, where the

loop is executed for a number of steps, or until some other criterion is fulfilled, for instance if a parameter

leaves a predefined range. To the right there are four typical next steps after an initial (or subsequent) run

of cont (where (a), (b) naturally assume that in some run of cont a branch point (BP) or fold point (FP)

has been found): (a) branch switching to a bifurcating branch; (b) fold– or branch point continuation; (c)

switching to continuation in a different parameter; (d) post-processing, i.e., mostly plotting. (a), (b) make

sense if during cont a bifurcation or fold point was found. After each of these commands, cont can be called

again to continue new branches (or further extend those already given). For convenience, all these commands

are typically put into a script file cmds.m in “cell mode”, i.e., where (groups of) commands are executed

individually. This scheme basically applies to all demo directories, with some modifications, e.g.: for BPs of

higher multiplicity we use qswibra or cswibra for branch switching, in the Hopf demos swibra and plotsol

are replaced by the Hopf versions hoswibra and hoplot, and in some demos we use the alternative version

pmcont instead of cont.

The basic flow of running a model with pde2path is sketched in Fig. 2. For new users, we believe

that the best way to understand this scheme is to work through a number of demo problems, where

demos/acsuite with the tutorial [18] is the easiest place to start.4 To set up your own problem, copy

the demo directory which seems closest to your problem to a new directory, then modify the functions

and scripts in it. To use ilupack, which is useful when going to larger scale problems, mex its MATLAB

interface, and add the ilupack mex directory to the MATLAB path.

Acknowledgment. Many thanks to Francesca Mazzia for providing TOM [13], to Uwe Prüfert for

providing OOPDE, to Daniel Kressner for pqzschur, and to Kristian Ejlebjerg Jensen for trullekrul.

4We also provide testing scripts, e.g., testp2p, which calls teststat, ..., testoc, where each of these scripts
calls some exemplary command files from the various demos, e.g., teststat starts with testdemo(’/demos/acsuite/

ac1D simple’,’cmds’). Reports on these tests (success or failure) are then written to a file log.txt in the root
directory. This is mainly for internal use, i.e., to check that everything still runs smoothly after updates, but it can also
be used to check if a new installation works, and to run the demos in ’batch’ mode. The data produced in the respective
demo-dirs can then later be revisited for, e.g., plotting, and hence comparison with the plots in the tutorials. However,
be aware that even though testall does not test all the demos, the execution may still take about 1h or more.

4

2 Demo overview

The following overview is intended for orientation, in particular for finding a demo similar to one’s

own problem, which can thus be used as a template. We group the demos into five classes: steady

states for scalar PDE (N = 1 in (4)), steady states for PDE systems (N > 1 in (4)), Hopf problems,

optimal control problems, and FEM–free demos. We only give brief comments, i.e., essentially:

� the equation/system studied, with hints specific features;

� hints to previous pde2path-manuals or newer tutorials, where applicable.

2.1 Scalar steady state and traveling wave demos

A tutorial on scalar systems is [18], see also [24, Chapter 6], dealing with (variants of) stationary

Allen-Cahn (AC) problems of the form

G(u) := −c∆u− λu− u3 + γu5 !
= 0, (5)

with u = u(x) ∈ R, x ∈ Ω ⊂ Rd, d = 1, 2, 3, Ω an interval, a rectangle or cuboid, respectively, and with

various boundary conditions (BCs). The associated demo directories are in demos/acsuite, namely:

1. ac1D simple: (5) with x ∈ (−π, π) and Neumann BCs. Minimal example demo.

2. ac1D: extension of ac1D simple. Contains slightly advanced feature such as Dirichlet BCs,

mesh-adaption, fold– and branch point continuation, and restarts and deflation for imperfect

bifurcations.

3. ac1Dnlbc: (5), 1D with nonlinear BCs

4. ac1Dxa(b): a variant of (5), 1D with x-dependent coefficients, in two implementations, (a) in

divergence form and (b) in non-divergence form.

5. ac2D: similar to ac1D, but in 2D.

6. ac2Dwspot: (5) with BCs that correspond to a (wandering, upon variation of some parameter)

spot on the boundary. Mainly used as tutorial example for trullekrul, see [21].

7. ac3D: similar to ac1D, ac2D, but in 3D.

8. ac3Dwspot: similar to ac2Dwspot, but in 3D, see [21].

9. ac2Dsq: (5) on a square domain, hence discrete symmetry group D4 and bifurcation points are

generically double.

10. actriangle: (5) on an equilateral triangle (generated by tripdeo, hence symmetry group D3.

11. acdisk: (5) on a disk domain with homogeneous Neumann BCs. Symmetry group O(2), and

hence many branches need phase conditions for their computation.

12. acgc: (5) augmented by a global coupling, i.e., G(u) = −c∆u− λu− u3 + γu5 + fgc(u), where

fgc(u) = δ 〈uj〉u, and 〈v〉 = 1
|Ω|

∫
v(x) dx denotes a (normalized) global average. The efficient

implementation relies on Sherman-Morrison formulas for linear system solvers, described in [22].

13. acql: a quasilinear modification of (5), i.e., of the form −∇ · [c(u)∇u]− f(u) = 0; here we treat

the 1D,2D and 3D case jointly in one directory; somewhat advanced.

Periodic boundary conditions (pBCs), and in particular modifications of the acsuite demos to

pBCs in 1D, 2D and 3D, are discussed in the tutorial [8], and

14. ac1Dpbc, ac2Dpbc, ac3Dpbc and acqlpbc under demos/acpbc are the associated demo

directories.

The older (somewhat obsolete) pde2path demos for AC type models are now collected under

demos/misc, namely acfront (traveling wave continuation in AC, sfem=0), and achex (AC on a

nonstandard 2D domain, legacy setup for c, a, b, f , with x–dependent BCs, [30, §3.3]).

5

The next 10 demos are sub-directories of demos/pftut, and are described in detail in [22], see also

[24, Chapters 8,10].

15. sh: The (quadratic-cubic) Swift–Hohenberg (SH) equation ∂tu = −(1 + ∆)2u + λu + νu2 − u3

on 1D, 2D and 3D boxes with Neumann BCs. We rewrite this scalar fourth-order equation as

the two-component second order system

∂tu = −∆v − 2∆u− (1− λ)u+ νu2 − u3,

0 = −∂2
xu+ v.

, i.e. Md =

(
1 0

0 0

)
. (6)

Thus we have an evolution equation for u coupled to an elliptic constraint, which in the FEM

formulation can conveniently implemented using a singular mass matrix. For (6) we first compute

a number of branches of periodic and localized patterns in 1D, and then in 2D and 3D, illustrating

issues of multiple bifurcation points, domain and mesh symmetries, and of general rich pattern

formation in higher space dimensions.

16. shpbc: The SH equation with periodic BCs on squares and rectangles; illustrates how to deal

with the interplay of discrete and continuous symmetries, including branch–switching at BPs of

higher multiplicity.

17. shEck: Uses branch point continuation to approximate the Eckhaus line for (6) (1D).

18. shgc: (6) with global coupling, i.e., ∂tu = −(1+∆)2u+λu+νu2−u3−γ‖u‖2u.

19. CH: The Cahn–Hilliard problem, i.e., stationary points (in particular minimizers) of the energy

Eε(u) =

∫
Ω

1

2
ε2‖∇u‖2 +W (u) dx, under the mass constraint

1

|Ω|

∫
Ω

u dx = m, (7)

and with zero flux–BCs. Here Ω ⊂ Rd is a bounded domain, ε > 0 is a parameter for the

so–called interface energy, and W is a double well potential, e.g., W (u) = −1
2
u2 + 1

4
u4. See [22,

§5.2].

20. fCH: The functionalized Cahn–Hilliard equation from [5] describes meandering and pearling

instabilities of bilayer interfaces (’channels’) in a functionalized fluids. The evolution reads

∂tu = −G[(ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW
′(u)], where the operator G with Gf =

Πf := f − 1
|Ω|

∫
Ω
f(x) dx ensures mass conservation. Setting v = ε2∆u −W ′(u), steady states

fulfill
−ε2∆u+W ′(u) + v = 0,

−ε2∆v +W ′′(u)v − εη1v − εηdW ′(u) + εγ = 0,

where γ is a Lagrange-multiplier for mass-conservation. We take γ as an additional unknown,

and add the equation q(u) :=
∫

Ω
u dx−m = 0, and, for numerical reasons a phase condition to

keep the channels from drifting. See [22, §5.3].

21. hexex: The scalar equation ∆u+ λ(u+ u3) = 0 with Dirichlet BCs on a hexagonal domain as

an example of higher order degenerate bifurcations, see [22, §3.3].

Problems on curved surfaces are treated in

22. actor: Quadratic-cubic AC equations on tori, where ∆ is replaced by the Laplace–Beltrami

operator (LBO) on a torus.

23. acS: Similar to actor, but on spheres SR; branching behavior determined by spherical harmonics

and O(3) symmetry.

24. chtor: The Cahn-Hilliard problem on a torus.

Other demo directories for scalar equations, collected under demos/misc, which in part have special

focuses such as the linear system solvers or plotting are

6

25. lss: Demos for the linear system solvers in pde2path, discussed in the tutorial [29]. This also

contains templates for treating larger scale problems.

26. plotsol: Demos for the various (solution) plot options, see [31].

27. bratu: −∆u+ 10(u− λeu) = 0 on the unit square with zero flux BCs, originally in [30, §3.1]

28. nlbc: The linear equation −∆u=0 on the unit disk with the nonlinear BCs ∂nu+λs(x, y)f(u)=0,

f(u) = u(1− u); legacy setup for c, a, b, f (sfem=0) based on the pdetoolbox. [6, §2.3]

2.2 System steady state and traveling wave demos

The next seven demos are sub-directories of demos/pftut and described in [22].

1. schnakpat: Steady patterns for the (modified) Schnakenberg model

∂tU = D∆U +N(U, λ), U =

(
u

v

)
, N(U, λ) =

(
−u+u2v

λ−u2v

)
+ σ

(
u−1

v

)2
(

1

−1

)
, (8)

with diffusion matrix D =
(

1 0
0 d

)
, originally in [30, §4.2].Treating (8) in 1D, 2D and 3D, with

a focus on snaking branches of patterns over patterns [28], and on bifurcation points of higher

multiplicity, see [22].

2. schnakS: (8) on spheres SR, with ∆ replaced by the pertinent LBO; branching behavior again

determined by spherical harmonics and O(3) symmetry, with rather high dimensional kernels at

primary bifurcation from homogeneous branch.

3. schnaktor: (8) on tori, again with ∆ replaced by the pertinent LBO.

4. schnakcone: (8) on cones, with the Laplace–Beltrami operator containing mixed derivatives

∂x(c21(x, y)∂yu) and ∂y(c12(x, y)∂xu).

5. accyl: an example how to patch together two surfaces, or, more generally, two problems defined

on two domains and coupled via a common boundary.

6. cpol: An example of bulk–surface coupling in a model for cell polarization, namely

∂tu = ε∆Γu+
1

ε
f(u,w), x ∈ Γ, (9a)

∂tw =
1

ε
∆w, x ∈ Ω, (9b)

∂nw = −f(u,w), x ∈ Γ, (9c)

where Ω ⊂ R3 models the bulk of the cell (the cytosol), and Γ = ∂Ω models the cell membrane.

7. chemtax: The quasilinear 2-component reaction-diffusion system

−

(
D∆u1 − λ∇ · (u1∇u2)

∆u2

)
−

(
ru1(1− u1)

u1
1+u1
− u2

)
= 0,

originally in [30, §4.1], see demos/outdated/chemtax and also demos/outdated/animalchem

for the old versions. Now implemented in OOPDE, with better Jacobians.

Some older demos concerning systems of equations are

8. schnakfold: Fold- and branch point continuation for (8), and comments on the various plotbra

options; see [4].

9. schnaktravel: Traveling wave continuation for the 1D Schnakenberg model; an example for

integral constraints and their derivatives in a system; see also [17].

7

10. gp: time–harmonic solutions of Gross–Pitaevskii equations in a rotating frame, solving real

systems of the form

−∆u+ (r2 − µ)u− |U |2u− ω(x∂yv − y∂xv) = 0,

−∆v + (r2 − µ)v − |U |2v − ω(y∂xu− x∂yu) = 0,

where |U |2 = u2 + v2, and generalizations to more components [30, §5.1]. Inter alia a template

for (2D) multi-component problems with x, y dependent advective terms.

11. rbconv: Rayleigh-Bénard convection in the Boussinesq approximation streamfunction form

−∆ψ + ω = 0,

−σ∆ω − σR∂xθ + ∂xψ∂zω − ∂zψ∂xω = 0,

−∆θ − ∂xψ + ∂xψ∂zθ − ∂zψ∂xθ = 0,

with various boundary conditions. Another example for advective terms, originally in [30, §5.2].

12. twofluid: The system

0 = −ν∆u1 − (∇V)⊥ · ∇u1 − (δ + s)∂x2u1 + ∂x2V/L1,

0 = −ν∆u2 − (∇V)⊥ · ∇u2 − s∂x2u2 − ∂x2V/L1,

0 = −∆V − u1 − u2

over a rectangle with periodic BC in x2 and homogeneous Dirichlet BC in x1. See [6, §2.6.3]

and [33].
13. nlb: Nonlinear Bloch waves fulfilling elliptic problems of the form

0=−

(
∆u1

∆u2

)
+ 2

(
k∗ · ∇u2

−k∗ · ∇u1

)
+ (|k∗|2−ω+V (x))

(
u1

u2

)
+ σ(u2

1 + u2
2)

(
u1

u2

)
,

on the torus T2 = R2/(2πZ2), cf. [7]. Thus, this is another example for periodic BCs, advection,

and x-dependent coefficients. See also [6, §2.6].

The following two demos are discussed in [17] as examples for systems with continuous symmetries,

requiring phase conditions (integral constraints) to remove zero eigenvalues. Thus, they are found as

subdirectories of demos/symtut. They also explains ’freezing’ to obtain traveling waves via time

integration.

14. cGL: A complex Ginzburg–Landau equation

∂tA = `2Axx + `sAx + (r + iν)A− (c3 + iµ)|A|2A− c5|A|4A+ γ,A = A(t, x) ∈ C, (10)

with real parameters `, s, γ, r, ν, c3, µ, c5 posed on the interval x ∈ (−π, π) with periodic BCs or

homogeneous Neumann BCs.

15. FHN: The FitzHugh-Nagumo type system in 1D

ut = ε2uxx + sux + u− u3 − ε(p3 + p4v + p5v
2 + p6v

3),

vt = ε2(vxx + u− v) + svx,
(11)

x ∈ (−10, 10), Neumann BCs, which for small ε > 0 has steep fronts and hence an approximate

translational invariance.

8

2.3 Hopf demos

The mathematical background of some Hopf demos, and the numerical algorithms used, are described

in [20], while [23] explains implementation details, see also [24, Chapter 7].

1. cgl: The complex Ginzburg–Landau equation, written as a real 2–component system

∂t

(
u1

u2

)
=

(
∆ + r −ν
ν ∆ + r

)(
u1

u2

)
− (u2

1 + u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1 + u2
2)2

(
u1

u2

)
. (12)

with real parameters r, ν, c3, µ, c5 and δ > 0, as a simple toy problem for Hopf bifurcation, over

1D, 2D and 3D cuboids with various BCs that break translational invariance.

2. cglpbc: (12) over 1D and 2D cuboids with periodic BCs. Hence the system O(2) symmetry

(translation and reflection), and the many HBPs are at least double. Then branches of traveling

waves (TWs) and standing waves (SWs) bifurcate, and we treat the TWs (time–periodic in the

lab-frame) as relative equilibria, i.e., steady states in the comoving frame. Secondary bifurcations

from these TWs then yield modulated TWs.

3. cgldisk: (12) over disks {(x, y) ∈ R2 : x2 + y2 < ρ2} of radius ρ with homogeneous Neumann

BCs. Again the system has O(2) symmetry, with spatial rotations taking the role of spatial

translations from cglpbc. This leads to the bifurcation of rotating waves (RWs), which again

we can continue as relative equilibria. For suitable parameters these RWs are (rotating) spirals

waves, and secondary bifurcations from these yield ’meandering spirals’.

4. cglext: Variants of (12), including non–autonomous cases. An example for computing periodic

orbits with fixed period T , and which are not generated in Hopf bifurcations.

5. gksspirals: The reaction diffusion system

∂tu = d1∆u+ (0.5 + r)u+ v − (u2 + v2)(u− αv),

∂tv = d2∆v + rv − u− (u2 + v2)(v + αu),

on the unit disk, with Robin BCs ∂nu + 10u = 0, ∂nv + 0.01v = 0, taken from [9]. Similar

to cgldisk, this yields the bifurcation of rotating spiral waves, and meandering spirals from

secondary bifurcations.

6. brussel: The Brusselator system (from [32])

∂tu = Du∆u+ f(u, v)− cu+ dw,

∂tv = Dv∆v + g(u, v),

∂tw = Dw∆w + cu− dw,

over 1D and 2D boxes with Neumann BCs. Interesting interactions of Turing branches and

Turing–Hopf branches. In 2D we use preparatory steps to guess the imaginary parts of Hopf

eigenvalues. We use HP and BP continuation to find pertinent bifurcation lines in the parameter

plane, and also compute secondary bifurcations from periodic orbits.

7. pollution: The optimal control (OC) problem (see also [3])

V (v0(·)) := max
k(·,·)

J(v0(·), k(·, ·)), J(v0(·), k(·, ·)) :=

∫ ∞
0

e−ρtJca(v(t), k(t)) dt,

where the states v fulfill a parabolic PDE ∂tv = D∆v + g1(v, k), here on an interval with

homogeneous Neumann BCs. By Pontryagin’s Maximum Principle we obtain the necessary first

9

order optimality conditions, also called canonical system,

∂tv = D∆v + g1(v, k), v|t=0 = v0,

∂tλ = ρλ+ g2(v, k)−D∆λ,

i.e., the co-states λ fulfill a backwards diffusion equation. Therefore, here we need pqzschur for

the computation of Floquet multipliers of time periodic orbits. This demo has been extended

in ocdemos/pollution where we additionally explain the computation of canonical paths to

canonical period states.

Hopf bifurcation with symmetries requires suitable modification of (3). Besides the demos cglpbc,

cgldisk and gksspirals two more examples are discussed in [23], namely mass-cons and kspbc2

and kspbc4. Two more examples with symmetries, namely modfro and breathe combine Hopf anal-

ysis with freezing and are therefore discussed in [17], and can hence be found as subdirectories of

demos/symtut.

8. mass-cons: As a toy problem for mass conservation in a reaction diffusion system we consider

∂tu1 = ∆u1 + d2∆u2 + f(u1, u2),

∂tu2 = ∆u2 − f(u1, u2), in Ω,
(13)

f(u1, u2) = αu1 − u3
1 + βu1u2, with parameters d2, α, β ∈ R, and with Neumann BCs, such that

the mass m := 1
|Ω|

∫
u + v dx is conserved under the evolution of (13). Spatially homogeneous

steady solutions of (13) may undergo Hopf bifurcations, and the mass conservation must be

appended to the pertinent Hopf equations.

9. kspbc4 (and kspbc2): We consider the Kuramoto-Sivashinsky (KS) equation

∂tu = −α∂4
xu− ∂2

xu−
1

2
∂x(u

2), (14)

with parameter α > 0, on the 1D domain x ∈ (−2, 2) with periodic BCs. Here we have

mass conservation and translational invariance, which both must be taken into account for the

continuation of steady solutions and time periodic solutions. This is also another example for

consistent set up of a 4th order equation as a 2-component 2nd order system (in kspbc2).

10. modfro: A model for autocatalysis considered in [1] is

∂tu = a∂2
xu− uf(v),

∂tv = ∂2
xv + uf(v),

(15)

f(v) = vm for v ≥ 0 and 0 otherwise, where a > 0 and m ≥ 2. are parameters. We consider

(15) on the domain Ω = (−lx, lx) with sufficiently large lx and certain Dirichlet BCs, for which

(15) has traveling fronts which may undergo Hopf bifurcations to modulated traveling fronts.

11. breathe: The FHN type equation

∂tu = ∂2
xu+ f(u, v),

∂tv = D∂2
xv + g(u, v),

(16)

with homogeneous Neumann BCs, f(u, v) = u(u − α)(β − u) − v, g(u, v) = δ(u − γv), with

α, β, γ > 0, and 0 < δ � 1, has fronts and pulses. We consider Hopf bifurcations for standing

pulses, yielding breathers, and period doubling bifurcations from the breathers [23, §6.3].

10

One more Hopf–demo can be found in demos/pftut and is described in [22, §8], namely

12. bruosc (and bruosc-tpf), dealing with the (2–component) Brusselator

∂tu1 = a− (b+ 1)u1 + u2
1u2 + α cos(2πωt) +Du∆u1, ∂tu2 = bu1 − u2

1u2 +Dv∆u2, (17)

with (optional, i.e., for α > 0) time-periodic forcing. This is related to hopfdemos/brussel,

but here we focus on oscillating Turing patterns arising from period–doubling bifurcations from

spatially homogeneous Hopf–branches. Moreover, we explain how to implement the time periodic

forcing by augmenting the ’standard implementation’ with an oscillator.

2.4 OC demos

This demo directory collects a number of optimal control related problems, including an extension of

hopfdemos/pollution explaining how to control the pollution system towards a periodic solution.

However, for this somewhat special class we refer to [3] as a detailed tutorial, see also [24, Chapter

11].

2.5 FEM–free demos

In demos/modtut there are a number of demos which are described in [26], and which do not use

the built–in FEM of pde2path, but are intended to give templates to implement general right hand

sides G. For this, we treat the AC equation (5) on networks (aka graphs) replacing the standard

Laplacian by the graph Laplacian, and on boxes via Chebychev and FFT pseudospectral methods.

Additionally, we treat the Schnakenberg problem (8) on graphs and on boxes via Chebychev methods,

the SH equation (6) (directly as a fourth order problem) via FFT methods, and the SH equation disks

by combining Chebychev (in radius) and Fourier (in angle).

The first main modification of the standard pde2path setup then requires (very simpe) imple-

mentations of an alternate plotting by a function userplot in the respective current directory, and

flagging it’s use in plotsol by setting p.plot.pstyle=-1. In particular for larger scale problems,

the dense Jacobians in Chebychev and FFT discretizations warrant “matrix–free methods”, which are

explained in modtut/sh1Dmfree and modtut/sh2Dmfree. The pros and cons of the spectral methods

compared to the default FEM are further briefly discussed in [26].

2.6 Higher order FEM demos

Under demos/hofem we provide:

� the library FSElib, collecting some (partly slightly modified) functions from [15, FSELIB.14.01]

which implement a quadratic (and in 1D also highr order) FEM;

� the library hofemlib, which contains pde2path interface functions to the FSElib (and some

extensions);

� demos, essentially treating the same problems as above (Allen–Cahn, Swift–Hohenberg, Schnaken-

berg, over various 1D,2D and 3D domains), explaining how to run higher order FEM in pde2path,

and its pros and cons.

For details we refer to [25].

11

3 Data structure overview

All data describing a given problem in pde2path is organized in a struct, which here and henceforth

we assume is named p (of course any other name is also allowed). Table 1 shows the basic organization

of p. The last four fields are supplementary in the following sense: p.pdeo is only needed/used if

the user chooses the OOPDE setup (which we do in the vast majority of examples), while p.hopf is

not needed/used for stationary problems, but initialized by hoswibra, i.e., by branch switching at

a Hopf bifurcation point, and p.trop and p.trcop are only needed/initialized if trullekrul mesh

adaptation is used. Most other fields are initialized via

p=stanparam, or, (to keep nonstandard data already present) p=stanparam(p),

to ’standard values’, and additional to the comments below, and for information in sync with the

pde2path version used, we recommend to also look up fields/names in stanparam.m, which besides

default settings also contains brief descriptions and comments. Naturally, some fields, in particular

the domain geometry and mesh, and the function handles describing the PDE must be set by the

user. For many problems also some of the default numerical constants such as tolerances should be

adapted, and in the demos we typically do this after a first initialization with p=stanparam.

To understand the organization of the struct p we recommend to consider one of the model prob-

lems, together with one of the tutorials, where [18] is the easiest place to start, and to use the following

summaries of the contents of p and of the pde2path functions as a reference card.

Table 1: Fields in the structure p. The distinction between nc and sw is somewhat fuzzy, as both
contain variables to control the behavior of the numerics: the rule is that nc contains numerical
constants, real or integer, while the switches in sw only take a finite number of values like 0,1,2,3.
Finally, u,np,nu,tau and branch are not grouped into a substructure as, in our experience, these are
the variables most often accessed directly by the user.

field purpose field purpose

fuha function handles, e.g., fuha.G, . . . nc numerical controls, e.g., nc.tol, . . .
sw switches such as sw.bifcheck,. . . sol values/fields calculated at runtime
eqn tensors c, a, b for the sfem=1 setup mesh mesh data (if the pdetoolbox is used)
plot switches and controls for plotting file switches etc for file output
time timing information pm pmcont switches
fsol switches for the fsolve interface nu,np # PDE unknowns, # mesh-points
u,tau solution and tangent branch branch data, see Table 24
bel controls for lssbel (bordered elimination) ilup controls for lssAMG (ilupack parameters)

usrlam vector of user set target values for the primary parameter, default usrlam=[];
mat various matrices and vectors, in particular the system matrices for the sfem = ±1 setting and

other data that by default is not saved to file, including the kernel vectors and bifurcation

directions in case of multiple bifurcation points.

pdeo OOPDE data if OOPDE is used, see §3.2 hopf Hopf data, initialized in hoswibra

trop trullekrul options trcop trullekrul coarsening options

3.1 Standard fields

In the following tables the default values of variables, where applicable, are those from the initialization
routine p=stanparam(p).

12

Table 2: Description of p.fuha. The first block pertains to p.sw.sfem=0 (full FEM assembly of the rhs, 2D,

pdetoolbox setting), for which G and bc are needed, and Gjac and bcjac are recommended. The second block

is for p.sw.sfem=±1, where sG and sGjac can be anything, but typically are composed from preassembled

FEM matrices. The defaults in the third block are set by p=stanparam(p). Functions in the fourth block

are only needed/recommended if p.nc.nq> 0, or for spectral continuation, respectively.

function purpose, remarks

[c,a,f,b]=G(p,u) compute coefficients c, a, b and f in G in the full (sfem=0) syntax
[cj,aj,bj]=Gjac(p,u) coefficients for calculating Gu in the (sfem=0) syntax
bc=bc(p,u), bcj=bcjac(p,u) boundary conditions, and their Jacobian

r=sG(p,u), Gu=sGjac(p,u) residual G(u) and Jacobian Gu(u) in the sfem 6= 0 setting using the pre-

assembled FEM matrices such as p.mat.M, p.mat.K, . . .

[p,idx]=e2rs(p,u) elements2refine selector, used for mesh-adaptation; default is stane2rs, based

on pdejmps.
[p,cstop]=ufu(p,brdat,ds) user function called after each cont. step, for instance to check λmin < λ <

λmax, and to give printout; cont. stops if ufu returns cstop>0; default is

stanufu, which also checks if λ has passed a value in p.usrlam.
headfu(p) called at start of cont, e.g. for printout; default stanheadfu
out=outfu(p,u) generate branch data additional to bradat.m; default stanbra
savefu(p,varargin) save solution data, default stansavefu; see also p.file for settings for saving
p=postmmod(p) called after mesh-modification; default stanpostmeshmod
[x,p]=lss(A,b,p) linear system solver for Ax = b; default is lss with x = A\u
[x,p]=blss(B,b,p) linear system solver for Bx = b, (extended or bordered linear system in

arclength cont.); default is lss with x = B\u
[x,p]=innerlss(A,b,p) inner linear system solver, called, e.g., in lssbel to solve the ’bulk’ system

(borders removed)

q=qf(p,u), qu=qjac(p,u) additional equation(s) q(u)=0, and Jac. function, see, e.g., demo fCH

Guuphi=spjac(p,u) ∂u(∂uGφ) for fold–or branchpoint continuation, see, e.g., demo acfold

Table 3: Main numerical controls in p.nc, with dfault values where applicable.
name & default meaning

neq, nq number N of equations in G(u), see (4); number of additional equations (3)
tol=1e-8, imax=10 desired residual; max iterations in Newton loops
del=1e-4 stepsize for numerical differentiation
ilam indices of active parameters; ilam(1) is the primary parameter
lammin,lammax=∓1e6 bounds for primary parameter during continuation
dsmin, dsmax min and max arclength stepsize, current stepsize in p.sol.ds
dsinciter=imax/2 increase ds by factor dsincfac=2 if iter < dsinciter
dlammax=1 max stepsize in primary parameter
lamdtol=0.5 control to switch between arclength and natural parametrization if p.sw.para=1;
dsminbis=1e-9 min arclength in bisection for bifurcation localization
bisecmax=10 max # of bisections in bifurcation localization
nsteps=10 # of continuation steps (multiple steps for pmcont)
ntot=10000 total maximal # of continuation steps
p.nc.mu1 for bifcheck=2, start bisection if ineg changed, and |Re(µ)| <mu1
p.nc.mu2 for bifcheck=2, check that |Re(µ)| <mu2 at end of bisection
neig=[10,. . .] neig(j)=# of eigenvalues to compute near the shift p.nc.eigref(j)
eigref=[0,. . .] vector of shifts for eigenvalue computations, eigref(1)=0 (in general)
errbound=0 used as a trigger for mesh refinement if error>errbound> 0
amod=0 mesh-adaption each amod-th step, none if amod=0
ngen=3 number of refinement steps under mesh-refinement
bddistx=bddisty=0.1 for periodic BCs: do not refine at distance< bddistx/y from respective boundary

13

Table 4: Switches in p.sw.
name & default meaning

bifcheck=1 0/1/2 for bif.detection off/via LU decomposition/via counting eigenvalues, see [20]
spcalc=1 0/1 for eigenvalue computations off/on
foldcheck=0 0/1 for fold detection off/on
jac=1 0/1 for numerical/analytical (via p.fuha.(s)jac) Jacobians for G
qjac=1 0/1 for numerical/analytical (via p.fuha.qjac) Jacobians for q
spjac=1 0/1 for numerical/analytical (via p.fuha.spjac) Jacobian for spectral point cont.
sfem=0 0/1 for full/preassembled FEM setting (-1 to flag OOPDE setting)
newt=0 0/1 for full/chord Newton method
bifloc=2 0 for tangent, 1 for secant, 2 for quadratic predictor in bif.localization
bcper=0 bcper> 0 indicates periodic BCs in one or more directions, see Table 5
spcont=0 0 for normal cont., 1 for bif. point cont., 2 for fold cont., 3 for Hopf point cont.

para=1 0: natural parametr.; 2: arclength; 1: automatic switching via λ̇ <>p.nc.lamdtol. For

Hopf continuation: 3: natural, 4: arclength
norm=’inf’ or use any number≥ 1
errcheck=0 error-estimation and handling; 0: none; 1/2: give warning/start mesh-adaption if

p.sol.err>p.nc.errbound0
inter=1,verb=1 interaction and verbosity switches ∈ {0 = little, 1 = some, 2 = much}
bprint=[] indices of user-branch data for printout

Table 5: Settings for periodic boundary conditions; dir= 0 or p.sw.pbc=0 means no periodic direction.

dim dir meaning dim dir meaning dim dir meaning
1D 1 xt 3D 1 x 3D [1 2] xy
2D 1 x 2 y [1 3] xz

2 y 3 z [2 3] yz
[1 2] xy [1 2 3] xyz

Table 6: Summary of p.mat, which contains the FEM matrices and vectors typically generated in
setfemops (sfem=0,1) or oosetfemops (sfem=-1). In the description below we assume a setup that
applies to scalar equations N = 1. Also for systems, N > 1, we sometimes let M, K be matrices
corresponding to one equation, i.e., let M−1K be the matrix corresponding to the “one component
Neumann Laplacian”, from which we compose the system stiffness and mass matrices in sG, sGjac.
In summary, the content of p.mat is highly problem dependent, and must fit with sG, sGjac. Note
that by default (i.e., in stansavefu), p.mat is not saved to disk with p.

name meaning

M mass matrix, used in spcalc, M ∈ pnu × pnu .
K stiffness matrix, typically used in the sfem=±1 setting
Q boundary condition matrix to encode q in (2)
G boundary vector for g in (2)
Kx, Ky, . . . advection matrices (if generated)
fill, drop matrices to encode periodic boundary conditions; see [6, §2.6] and [8].
Dx, Dy, . . . matrices so encode gradients, see [18, §7].
other data such as eigenvectors (generated/used by, e.g., qswibra, cswibra), or LU decompositions

of Jacobians (generated/used by, e.g., lsslu), or preconditioners (generated/used by

lssAMG).

14

Table 7: Summary of p.mesh. The first block only applies to the legacy setup (no OOPDE); in the
OOPDE setup the pde-object p.pdeo contains the grid. Use the function [po,tr,ed]=getpte(p) to
access the grid data. The second block pertains to both, the pdetoolbox and the OOPDE setup.

name meaning

sympoi symmetrize mesh on regular grid at startup, default=0
geo geometry matrix in pdetoolbox syntax; see pdetoolbox documentation
p, e, t point, edges and triangles in pdetoolbox syntax; see pdetoolbox documentation

nt, maxt # of triangles in mesh, and max# of triangles for refinement
bp, be, bt background–points/edges/triangles; used for coarsening before refinement in mesh adaption

Table 8: Summary of additional data in p.sol calculated at runtime. The current solution is stored
in p.u, the tangent in p.tau, and the branch data in p.branch.

name meaning name meaning

deta sign of det(A) muv vector of eigenvalues of Gu
err error estimate lamd λ̇
meth used method (nat or arc) restart 1 to restart continuation
iter # of iterations in last Newton loop xi,xiq norm weights, see [6]
ineg # of negative eigenvalues ds current stepsize

Table 9: Summary of p.file.
name & default meaning

count, b(f)count counters for regular/bif./fold points; file names for regular, bif., fold points automatically

composed as dir/ptcount.mat, dir/bptbcount.mat and dir/fptfcount.mat
dir, pnamesw=0 directory for saving; if pnamesw=1, then set to ’name of p’;
dirchecksw=0 if dirchecksw=1, then warnings given if files might be overwritten
msave=1 if msave=0, then do not save meshes with the solution data
mdir, mname directory (default “meshes”) and file-name (generated from pname) for saving/loading

meshes if p.file.msave=0;
single=0 if single=1, then save num.data in single precision (useful if low on disk-space)

Table 10: Summary of p.plot.
name & default meaning name & default meaning

pfig=1, brfig=2 fig. nr. for sol./branch plot at runtime ifig=6, spfig=4 info(mesh)/spectrum plot
brafig=3 fig. nr. for plotbra (a posteriori) pcmp=1 component# for sol. plot
fs=16 fontsize lpos=[0 0 10] light position
cm=’hot’ colormap axis=’tight’ axis type
alpha=0.1 ’alpha’ value for 3D plots lev={’blue’,’red’} colors for isosurfaces

lsw=1 labeling switch, (mostly) important for minimal syntax branch plotting plotbra(p) or

plotbraf(’dir’); see §4.6
pstyle=1 plotstyle, options are 0,1,2,3 and 4 (in 3D, cutaway-plot), or pstyle=-1, in which case

plotsol immediately call a (user–provided) function userplot (in the current directory).
bpcmp=0 component# for branch plot (relative to data in outfu; last component in bradat=‖u‖2

plotted if bpcmp=0), see Table 24
udict={} dictionary for components of u, i.e., if, e.g., u=(u1, u2) = (φ, ψ), then set

udict={\phi,\psi};
auxdict={} auxiliary variables (parameter) dictionary used for plotting, i.e., if, e.g.,

p.u(p.nu+1:p.nu+2)=(α, β), then set dict={\alpha,\beta};
ng=20 #grid-points per direction for computing isosurfaces

15

cut for pstyle=4 and cut=[x1, y1, z1, x2, y2, z2] only plot the part (and the triangulation) in

Ω ∩ ((x1, x2)× (y1, y2)× (z1, z2)).

Table 11: Summary of p.pm (controlling pmcont) and p.fsol (controlling fsolve).
name & default meaning

pm: mst=10, imax=1,

resfac=0.2, runpar=0

of parallel predictors, # of iterations in each Newton loop (adapted), factor

for desired residual improvement; see [30, §4.3]. Set runpar=0 to switch off

parfor loops (which for instance may clash with global variables)

fsol: fsol=0, tol=1e-16,

imax=5, meth, disp, opt

turn on(1)/off(0) fsol; tol and imax for fsol, and fsolve options. Note: fsolve

tolerance applies to ‖G(u)‖22.

Table 12: Summary of p.bel and p.ilup, which become relevant if lssbel, blssbel, or lssAMG are
chosen as linear system solvers, see §4.3 and [29].

name meaning

bel: bw, maxit, tol border width, max number of iterations, tolerance
ilup: maxit, droptol, maxitmax,

droptolmin, droptolS

max # of iterations (may change), drop tolerance, upper bound for

max number of GMRES iterations, minimum drop tolerance, drop-

tolS=droptol/10 (automatically)

3.2 OOPDE data

OOPDE (object oriented PDE) is a MATLAB5 FEM toolbox similar to the MATLAB (legacy) pdetoolbox,

with identical interfaces in 1D, 2D, and 3D, which makes first setting up and testing a problem

in 1D and then going to various domains in 2D or 3D a simple step. The object oriented (OO)

setup of OOPDE has advantages such as tighter control of data access by the user and natural reuse

resp. overload of methods by inheritance. Our basic strategy for using OOPDE is as follows: There

are three basic templates for creating pde–objects, namely the subclasses stanpdeo1D,stanpdeo2D,

stanpdeo3D of the OOPDE class pde. These only set up simple domains (interval, rectangle, cuboid,

respectively), the grids (intervals, triangles, tetrahedra) and the finite elements (piece-wise linear

continuous). Thus, calling, e.g., p.pdeo=stanpdeo1D(lx, 2*lx/nx), we have pdeo as a pde object

in p, i.e., the 1D domain Ω = (−lx, lx) with a mesh of width 2lx/nx, and, by default, linear Lagrange

elements associated to it.

More generally, the field p.pdeo of a pde2path struct p contains an object of the OOPDE pde class,

which itself has the fields pdeo.fem and pdeo.grid. Here we give short overviews of these classes for

reference. pdeo.grid is an object of the OOPDE gridd (super) class, which contains:

� The PTE (points–triangulation–edges) data of the grid (in pde2path conveniently retrieved via

[po,t,e]=getpte(p)), and

� various (public) methods to contruct and manipulate (refine/adapt) meshes, for plotting, and,

e.g., the method makeBoundaryMatrix(bc 1,bc 2,...,bc m) to store boundary coefficients for

assembling boundary terms, where bc j contains the BCs for the j–th boundary segment. In

our demos these are generated by bc=grid.robinBC(q,g), where q, g are the coefficients from

(2). If the BCs are the same (i.e., same q, g, which may depend on x) on all segments, then we

can use makeBoundaryMatrix(bc).

Many of these methods are implemented in the subclasses grid*D, and we in particular mention the

5much of OOPDE and hence the OOPDE setup of pde2path also run under octave

16

following:

1D Here we only have one grid constructor grid1D.interval, to be called as (omitting here and in

the following the class identifier grid*D) interval(x1,x2,hmax).

2D This class contains a variety of grid constructors, e.g., square, used in stanpdeo1D, with vari-

able arguments (with obvious meanings) such as square(xmin,xmax,ymin,ymax,hmax) and

square(xmin,xmax,ymin,ymax,nx,ny), and circles and L–shapes. A general constructor is

freeGeometry(bdX), where bdX ∈ Rnb×2 contains the user chosen coordinates of the nb bound-

ary points, where all boundary segments are assigned 1 as identifier. Similarly, pts2dom(X)

produces a mesh from the points in X, and assigns all boundary edges the identifier 1. An exten-

sion is grid2D.freeGeoPts(bdX,X,bdi), where bdX ∈ Rnb×2 as before contains the boundary

points, X ∈ Rni×2 contains user chosen inner discretization points, and bdi ∈ Nns−1 contains

the start-indizes of the boundary segments 2, . . . , ns. Additionally, grid2D contains ccsquare

for constructing criss–cross meshes over rectangles, and various specialized plotting methods.

3D This class again contains a number of standard shapes such as bar, ccbar, and unitBall,

cylinder, and ficheraCube, and the general constructor pts2dom. Additionally, there is the

option of using distmesh, [14].

From the user’s point of view, most of these methods (of initial meshing) can remain hidden as long

as the user is content with the selection of pde objects for which we provide convenience constructor

functions such as stanpdeo*D, ∗ ∈ {1, 2, 3} or diskpdedo, secpdeo, etc.

The object pdeo.fem is from the the OOPDE (super)class finiteElements, which provides:

� The method [K,M,F]=assema(grid,c,a,f), where grid is an OOPDE grid object, and c, a, f are

the diffusion tensor, the linear term, and the nonlinearity, respectively. The outputs are the

stiffness matrix K, the mass matrix M , and the right hand side F .

� The analogous method B=convection(grid,b), where b is a convection tensor.

� Methods for error estimation.

Partly, these methods are defined in the subclasses finiteElements*D, where ∗ = 1, 2 or 3, and

which further split into subclasses lagrange0*D, lagrange1*D, and bilinear3D. These subclasses

also implement

� the method [Q,G]=assemb(grid) for the boundary terms, where the coefficients q, g are stored

via makeBoundaryMatrix from the gridd class, see above.

Again, from the user’s perspective, most of this can remain hidden by choosing one of the convenience

pdeo constructors, which in all cases choose lagrange1*D as the finite element class. In most of our

demos, the only direct interaction with the fem and grid classes consists in calls to fem.assema,

fem.assemb and grid.robinBC, grid.makeBoundaryMatrix. Examples of dealing somewhat more

directly with the PTE structure of pdeo.grid are given in, e.g., the demos acS, accyl, and cpol.

Remark 3.1. The method [K,M,F]=fem.assema(grid,c,a,f) is essentially an interface to the

method fem.createMatrixEntries(grid,a,c,f). This is dimension *–dependent and hence im-

plemented in subclass finiteElements*D, and calls grid.aCoefficientsMpt(c,a,f), which is imple-

mented in grid*D. The possible syntax for c,a and f is hence best checked by inspecting

grid.aCoefficientsMpt(c,a,f) from the respective grid*D class, and here we mainly point out

the possibilities for c, which naturally strongly depend on the space dimension.

In 1D, where c in ∂x(c(x)∂xu) is either a (scalar) constant or a scalar function, c as argument of

assema can be

� the number c (the obvious and simplest case);

� a function handle c=@cfu (or inline function @(x) expression), where c=cfu(x) is a scalar

function;

17

� a vector c ∈ Rnt of interval midpoint values, or a vector c ∈ Rnp of nodal values (which is then

interpolated to interval midpoints).

The last option allows the most flexibility as here c = [c1, . . . , cn] is prepared outside of assema and

can for instance also depend on parameters and/or u itself.

In 2D, there are two possibilities: c can be a number (or scalar function) and is then identified

with the (diagonal) tensor
(
c(x) 0

0 c(x)

)
, or c : Ω → R2×2 (possibly constant) can be a genuine tensor.

In the first case, c is passed as in 1D, namely

� If c = c is a number, then K*u simply corresponds to −c∆u;

� If c = c(x, y) is a function, then c can be passed as a function handle (with signature c=cfu(x,y)),

or a nodal or element vector, and K correponds to −∂x(c(x, y)∂xu)− ∂y(c(x, y)∂yu.

If c ∈ R2×2 is a constant matrix, then the corresponding c can be passed in standard MATLAB syntax.

If c = (c1 c2c3 c4) : Ω→ R2×2 is a function, then

� c can be passed as a 2 × 2 cell array of function handles (with signatures c1=cfu1(x,y),

c2=cfu2(x,y), ..., c4=cfu4(x,y)),

� or as a 2× (2np) or 2× (2nt) matrix of nodal or element values, i.e.

c = [c1(~x1), . . . , c1(~xn), c2(~x1), . . . , c2(~xn);

c3(~x1), . . . , c3(~xn, c4(~x1), . . . , c4(~xn)],

(18)

where n = np or n = nt. This (with n = np) is for instance the form we use in LBcone for the

Laplace–Beltrami operator on a cone.

The 3D case works analogously; if c is a scalar, then it is identified with c = diag(c, c, c), where

function handles must now have the signature c=cfu(x,y,z). For a matrix c=
(c1 c2 c3
c4 c5 c6
c7 c8 c9

)
, c must be

the corresponding 3× 3 MATLAB matrix, or a 3× 3 cell array of function handles, or analogous to (18),

a 3× (3np) or 3× (3nt) matrix.

Finally, similar remarks apply to assembling first order operators such as associated to (in 2D)

C = b1∂x + b2∂y. See grid*D.convCoefficients for details. c

3.3 The Hopf data

The field p.hopf contains the data pertaining to time-periodic orbits [20, 23]; it is typically initialized

by calling p=hoswibra(..). Our Hopf setup does not need any user setup additional to the functions

such as p.fuha.sG, p.fuha.sGjac (or p.fuha.G, p.fuha.Gjac) already needed to describe station-

ary problems. The only changes of the core p2p library concern some queries whether we consider a

Hopf problem, in which case basic routines such as cont call a Hopf version, i.e., hocont.

Table 13: Entries in p.hopf.
field purpose

y for p.sw.para=4: unknowns in the form (u = (u1, . . . , um) = (u(t1), u(t2), . . . , u(tm)),

(m time slices, y=nu ×m matrix);
for p.sw.para=3: y augmented by ỹ and T, λ ((2nu+2)×m matrix), see [20].

y0d for p.sw.para=4: u̇0 for the phase condition [20, (19)], (nu ×m matrix);
for p.sw.para=3: u̇0(0) for the phase condition [20, (36)], (2nu+2 vector).

y0dsw switch determining the computation of u̇0, default 2 (2nd order FD), see [23] for more

details.

18

tau tangent, see [20, (24)]
ysec secant between two solutions (y0, T0, λ0), (y1, T1, λ1) for p.sw.para=3; (2nu+2)×m matrix
t, T, lam time discretization vector, current period and param.value
xi,wT weights for the norm
x0i index for plotting t 7→ u(~x(x0i);
plot aux. vars to control hoplot during hocont; see the description of hoplot; default plot=[]
wn struct containing the winding number related settings for initeig
tom struct containing TOM settings, including the mass matrix M
jac switch to control assembly of ∂uG. jac=0: numerically (only recommended for testing);

jac=1: via hosjac. Note that for p.sw.jac=0 the local matrices ∂uG(u(tj)) are obtained

via numjac, but this is still much faster than using p.hopf.jac=0.
flcheck 0 to switch off multiplier-computation during continuation, 1 to use floq, 2 to use floqps

nfloq # of multipl. (of largest modulus) to compute (if flcheck=1)
fltol tolerance for multiplier γ1 (give warning if |γ1 − 1| >p.hopf.fltol)
muv1,muv2 vectors of stable and unstable multipliers, respectively

3.4 Global variables

We generally avoid global variables and “put everything into p”. However, if avoiding globals seems

too inconvenient, we recommend to put these as subfields of global p2pglob, which for instance we

do for Sherman–Morrison formulas for global coupling, see [22, §3.4].

4 Function overview

The pde2path functions are currently organized into 13 subdirectories as listed in Table 14. The main

purpose of this classification is to more easily get an overview of the available functions, even though

it is naturally somewhat fuzzy, e.g., hoplot could be assigned to the hopf library as well as to the

plot library. For using pde2path it makes no difference in which of the subdirectories a function is,

but the classification is also reflected in the pde2path root help menu, see Fig.1(b).

Table 14: Subdirectories of pde2path/libs.
subdir contents

p2p main steady state continuation and bifurcation (simple BPs) related routines
plot, file, misc plotting, file-handling, and miscellaneous helper/convenience functions
pdeo, fem, linalg pde object constructors, mesh handling and linear algebra
hopf, tom functions related to continuation of time periodic orbits and to BVPs in time
meshada functions for mesh adaption
deflation functions for deflation, i.e., modified rhs to exclude known solutions
mbif functions for bifurcation at multiple BPs
oclib functions related to optimal control (canonical paths)

In the following we list and in part explain a number of the most important pde2path functions,

but not all of them. In particular we omit those which are unlikely to be called directly or modified

by non-expert users, and those from the optimal control library oclib, which pertain are documented

in [3].

19

4.1 The stan* functions

Typically, most of the switches (p.sw), numerical constants (p.nc) and functions (p.fuha) that control
the algorithms of pde2path can be set to standard values and functions via p=stanparam(p). Table
15 lists the other stan* functions.

Table 15: pde2path ’standard’ settings for p.fuha, as set by p=stanparam(p); note that not all of
these are always necessary, e.g., p.fuha.postmmod is only relevant if mesh adaption is used, and
p.fuha.innerlss is only relevant if p.fuha.lss=@lssbel or p.fuha.blss=@blssbel.

function used as standard

setting for

purpose,remarks

out=stanbra(p,u) p.fuha.outfu output: out=[par;max(u1);min(u1)]; determines the data

to be saved on p.branch. Adapt this to a given problem

if other data is needed. Note: ‖u1‖L2 is already put on

branch via bradat.m;
stanheadfu(p) p.fuha.headfu on the fly printout during continuation
[p,stop]=stanufu(p,out,ds) p.fuha.ufu user action (usually screen printout, but also stopping cri-

teria), called after each continuation step
stansavefu(p) p.fuha.savefu save p to disk as determined via data in p.file
[p,idx]=stane2rs(p,u) p.fuha.e2rs idx=list of elements to refine, based on pdejmps
p=stanpostmeshmod(p) p.fuha.postmmod user action after mesh refinement
[x,p]=lss(A,b,p) p.fuha.lss,

p.fuha.blss,

p.fuha.innerlss

linear system solver, here just an interface to \, i.e., x =

A\b; main alternatives are lssbel (bordered elimination)

and lssAMG (iterative solver)
eta=stanetafu(p,np) p.trop.etafu standard threshold function for trullekrul, see [21]

4.2 Main functions for steady state problems

Table 16: Main pde2path functions for user calls for steady state continuation and bifurcation; some
of these take auxiliary parameters, and in general the behavior is controlled by the settings in p.nc

and p.sw; . . . indicates additional arguments. The plotting functions are explained in §4.6, and the
OOPDE versions of, e.g., rec and stanmesh are explained in Table 17.

function purpose,remarks

p=stanparam(p) sets many parameters to “standard” values; typically called during initial-

ization; also serves as documentation of the meaning of parameters
p=cont(p), p=pmcont(p) continuation of problem p, and parallel multi-predictor version
p=swibra(dir,bptnr,varargin) branch–switching at simple bifurcation point dir/nr, varargin for new dir

and ds
p=qswibra(dir,nr,varargin)

p=cswibra(dir,nr,varargin)

branch–switching at multiple bifurcation point dir/nr via quadratic/cubic

bifurcation equations, varargin for various arguments for fine tuning
plotbra(varargin) plot branch in struct p or from file; see also p.plot for settings for plotting
plotsol(p,wnr,cmp,style) plot solution, see also plotsolu, plotsolf, and plotEvec
p=loadp(dir,pname,varargin) load p-data at the point pname from directory dir; varargin for new dir
p=swipar(p,var) switch parametrization, see also swiparf
p=setlam(p,lam) set active cont. parameter, see also getlam(p) and par=getpar(p,varargin)
geo=rec(lx,ly) encode rectangular domain in pdetoolbox syntax
p=stanmesh(p,..) generate mesh (2D, pdetoolbox setting)
bc=gnbc(neq,vararg) generate pdetoolbox–style boundary conditions, see also the convenience

functions [geo,bc]=recnbc*(lx,ly) and [geo,bc]=recdbc*(lx,ly), *=1,2

20

p=findbif(p,varargin) bifurcation detection via change of stability index; alternative to bifurca-

tion detection in cont or pmcont; can be run with larger ds, as multiple

eigenvalues crossing the imaginary axis are less of a problem
p=bploc(p) localize branch-point via extended system
p=ulamcheck(p) check if the active continuation parameter crossed a value from p.usrlam;

if yes, then compute and postprocess (plot, save) solution at that value.
p=spcontini(varargin) initialization for ”spectral continuation”, in particular fold continuation
p=spcontexit(varargin) exit spectral continuation
p=b(h)pcontini(varargin) initialization for branch point or Hopf point continuation
p=b(h)pcontexit(varargin) exit branch or Hopf point continuation
p=box2per(p) transform to periodic BCs by setting p.mat.drop, p.mat.fill;
[u,. . .]=nloop(p,u) Newton–loop for (G(u), q(u)) = 0
[u,. . .]=nloopext(p,u) Newton–loop for the extended system (G(u), q(u), p(u)) = 0
[u,p]=deflsol(p,u1) solution of deflated systems, set up via deflinit

p=meshref(p,varargin) adaptively refine mesh, compute solution on and interpolate tangent to

new mesh
p=meshadac(p,varargin) mesh adaptation via interpolation to the (coarse) background mesh and

then adaptive refinement;
p=setfn(p,name) set output directory to name (or p, if name omitted)
screenlayout(p) position figures for solution-plot, branch-plot and information
[Gua, Gun]=jaccheck(p) compare Jacobian p.fuha.Gjac (resp. p.fuha.sGjac) with finite differences
[Gua, Gun]=spjaccheck(p) compare Jacobian p.fuha.spjac with finite differences
p=setfemops(p) generate and store FEM operators, i.e., at least the mass matrix M (if

sfem=0), but also K,Q,G if sfem=1; if sfem=-1, then oosetfemops in the

user directory is called.

Table 17: OOPDE constructor functions, creating the domain and mesh, equipped with piecewise linear
Lagrange elements.

function purpose

pde=stanpdeo1D(lx,h) 1D PDE-object constructor, i.e., interval Ω=(−lx, lx), mesh size h
pde=stanpdeo2D(lx,ly,h) Ω = (−lx, lx)× (−ly, ly) with mesh size h
pde=stanpdeo2D(lx,ly,nx,ny) Ω = (−lx, lx)× (−ly, ly) with mesh of nx × ny gridpoints
pde=stanpdeo2D(lx,ly,h,sw) analogous to stanpdeo2D(lx,ly,h), where the struct sw, containing

sw.sym, can be used to prescribe the symmetry of the generated mesh.

sym=0: standard, sym=1: ’pseudo criss-cross’ mesh, sym=2: criss–cross
pde=stanpdeo3D(lx,ly,lz,h) Ω = (−lx, lx)× (−ly, ly)× (−lz, lz) with mesh size h; alternatively

pde=stanpdeo3D(lx,ly,lz,nx,ny,nz), pde=stanpdeo3D(lx,ly,lz,h,sw), and

pde=stanpdeo3D(lx,ly,lz,nx,ny,nz,sw),

diskpdeo, freegeompdeo, . . . various further PDE Object constructor functions, see /libs/pdeo.

4.3 linalg and fem

Table 18: Main functions in linalg and fem other than already explained in, e.g., Tables 16, 17
function purpose

[x,p]=lssbel(A,b,p) A bordered elimination linear system solver with post-iterations; see

[29], and Table 12 for controls in p.bel

[x,p]=blssbel(A,b,p) increases p.bel.bw temporarily by 1 and calls lssbel

[x,p]=lssAMG(A,b,p) ilupack linear system solver; see [29]
[x,p]=lsslu(A,b,p) check for LU in p.LU, and use that if up to date, otherwise update

21

[x,p]=gclss(A,b,p) customized lss for global coupling
[x,p]=gclsseigs(A,b,p) eigs version of gclss
p=setbel(p,bw,. . .) set bel parameters, see Table 12
p=setilup(p,dtol,maxit) set (some) ilupack parameters, see also p=setbelilup(p,. . .)
[ineg,muv,V]=spcalc(Gu,p,. . .) compute eigenvalues and eigenvectors of Gu
[ineg,muv,V]=vspcalc(Gu,p,. . .) compute eigenvalues and eigenvectors of Gu near shifts

[po,tr,ed]=getpte(p) get points, triangles (elements), edges from p
M=getM(p) mass matrix
[fill,drop,nu]=getPerOp(p) get fill, drop for periodic BCs
p=setbmesh(p) set background mesh for mesh-adaption
g=polygong(varargin) create polygonal domain geometry
Kx=assemadv(po,tr,b) assemble advection matrix (pdetoolbox setting), see also

p.pdeo.convection(...) (OOPDE setting)
Dx=makeDx(p) make (finite difference like) 1D differentiation matrix Dx such that

∂xu = Dx ∗ u, in contrast to ∂xu = M−1Kx ∗ u using Kx. See also

[Dx,Dy]=p.pdeo.fem.gradientMatrices(p.pdeo.grid) (2D) and

[Dx,Dy,Dz]=p.pdeo.fem.gradientMatrices(p.pdeo.grid) (3D)

(OOPDE setting)

4.4 Hopf

Table 19: Overview of main functions related to Hopf bifurcations and periodic orbits
name purpose, remarks

hoswibra branch switching at Hopf bifurcation point, see comments below
twswibra branch switching at Hopf bifurcation point to Traveling Wave branch (which is

continued as a rel.equilibrium)
poswibra branch switching from Hopf orbits
hoswipar change the active continuation parameter, see also swiparf
hoplot plot the data contained in hopf.y. Space-time plot in 1D; in 2D and 3D: snapshots

at (roughly) t = 0, t = T/4, t = T/2 and t = 3T/4; see also hoplotf;
initeig find guess for ω1; see also initwn
floq compute p.hopf.nfloq multipliers during continuation (p.hopf.flcheck=1)
floqps use periodic Schur to compute (all) multipliers during continuation (flcheck=2)
floqap, floqpsap a posteriori versions of floq and floqps, respectively
hobra standard–setting for p.fuha.outfu (data on branch), template for adaption to a

given problem
hostanufu standard setting for screen printout, see also hostanheadfu
plotfloq plot previously computed multipliers
hotintxs time integrate (1) from the data contained in p.hopf and u0, with output of ‖u(t)−

u0‖∞, and saving u(t) to disk at specified values
tintplot*d plot output of hotintxs; x−t–plots for *=1, else snapshots at specified times

initwn init vectors for computation of initial guess for spectral shifts ωj
hogetnf compute initial guesses for dlam, al from the normal form coefficients of bifurcating

Hopf branches
hocont main continuation routine; called by cont if p.sol.ptype>2
hostanparam set standard parameters
hostanopt, hoMini standard options for, and initialization of hopf.tom
hoinistep perform 2 initial steps and compute secant, used if p.sw.para=3
honloopext,honloop the arclength Newton loop, and the Newton loop with fixed λ
tomsol use TOM to compute periodic orbit in p.sw.para=3 setting.

22

tomassemG use TOM to assemble G; see also tomassem, tomassempbc

gethoA put together the extended Jacobian A for Hopf problems
hopc the phase condition φ for Hopf problems, and ∂uφ
arc2tom, tom2arc convert arclength data to tomsol data, e.g., to call tomsol for mesh adaptation.

tom2arc to go back.
ulamcheckho check for and compute solutions at user specified values in p.usrlam

hosrhs,hosrhsjac interfaces to p.fuha.G and p.fuha.Gjac at fixed t, internal functions called by

tomassempbc, together with hodummybc
horhs,hojac similar to hosrhs, horhsjac, for p.sw.para=3, see also hobc and hobcjac

Besides cont, for Hopf problems the functions initeig, hoswibra, twswibra, poswibra, hoplot,

floqap, floqpsap, floqplot, hotintxs, and tintplot*d are most likely to be called directly by the

user, and hobra and hostanufu are likely to be adapted by the user.

4.5 Time integration

Time integration of (1) is not a key feature of pde2path. However, since it can be useful to obtain

starting points for continuation of steady states (e.g., demo twofluid) , and, e.g., to study instabilities

of steady states and Hopf orbits we provide a few simple time integration routines. For a given problem

we essentially recommend to consider the functions in Table 20 as templates for prroblem adapted

time integration.

Table 20: Templates for time integration.
function purpose

p=tint(p,dt,nt,pmod) time integration, semi–implicit (Euler)steps, full FEM assembling; see also

tintx for comprehensive output of time–series.
p=tints(p,dt,nt,pmod,nffu) time integration based on the semilinear p.sw.sfem=1 setting. If applica-

ble, much faster than tint; again, see also tintxs

p=loadp2(dir,name,name0) load u-data from name in directory dir, other p-data from name0

4.6 Plotting

Table 21 lists the main plotting routines. Since pde2path aims to give versatile plotting, these routines

allow rather complicated argument lists. Thus, below we describe these in some detail, but otherwise

refer to the demos and tutorials for examples.

Table 21: Plotting commands.
name purpose

plotbra(varargin) plot branch; varargin can take several forms, see below;
plotbradat(p,w,xc,yc) plot p.branch(yc,:) vs p.branch(xc,:) to figure w
plotsol(varargin) plot solution; varargin can take several forms, see below;
plotsolu(p,u,w,c,st) plot component c of u in style st to figure w

faceplot(p,u) plot u on faces of 3D domain
isoplot(p,u) isosurface plot of u; controlled via values in p.plot
slplot(o,ng,u,fs) slice plot (3D), o=pde-object, ng=#grid points for interp., u=sol, fs=fontsize

hoplot(p,w,c,varargin) basic plotting routine for Hopf; varargin can take several forms; see below
xtplot(p,sol,w,c,view,title) plot 1+1 dim soln, mainly used in Hopf and OC problems
twplot plotting of traveling waves in lab–frame; see also rwplot, lframeplot
fouplot, plotfloq Fourier plots, and (a posteriori) plots of Floquet multipliers

23

Branch plotting. Essentially, plotbra(arg1,varargin) plots the data in arg1, where arg1 can either

be a struct p, or a directory dir, in which case, plotbra(dir,varargin) first loads a point from disk.

The behavior of plotbra is controlled by the data in p.plot and by varargin. The following calling

syntaxes are typical, where dir, pt are strings that for plotbra give the directory and file name of the

point to be plotted:

1. plotbra(dir): convenience call; uses the branch data from the last (regular) point in dir scans

dir for all available (regular, fold and bifurcation) points, and plots the branch with markers

and labels on all or only some of these points, depending on p.plot.lsw, see Table 23. In

particular, the figure-number and branch-plot component are also taken from p.plot. A useful

variant thus is plotbra(dir,’lsw’,lsw) where lsw overrules p.plot.lsw.

2. plotbra(dir,pt,w,cmp,varargin): long syntax, where pt is the chosen point, e.g., pt=’pt5’

(5th computed point), or pt=’bpt2’ (2nd branch point), w is the figure number, cmp is the

desired component on branch, starting with cmp=1 for the first entry of out=p.fuha.outfu(p,u),

and varargin consists of ’string’,value pairs according to Table 22.

For instance, plotbra(dir,pt,w,cmp,’cl’,’r’,’lab’,[5,10],’fancy’,2) plots the branch

in red and puts labels at points 5 and 10, where the ’fancy’ switch controls the annotation style.

3. There are mixed forms of 1 and 2. For instance, plotbra(dir,w,cmp,varargin) uses the

last point of dir and puts labels as in 1, but varargin can be used to overrule this, e.g.,

plotbra(dir,w,cmp,’lab’,10) labels only regular point 10, and branch and fold again de-

pending on p.plot.lsw.

4. A variant of plotbra is plotbraf(dir,varargin) (partly due to legacy reasons), where the

first argument is always a directory. The only difference between plotbra and plotbraf is that

the latter behaves like setting lsw=31 in plotbra. Thus, plotbraf(dir) can be used to get the

full information contained in directory dir (which typically is way too much).

Table 22: Selection of string,value combinations in varargin for fine tuning the behavior of plotbra.
See [4, Tab. 4] for a full list.

name example meaning name example meaning

fp 3 first point (on branch) to plot ms 5 markersize (branch/hopf)
lp 7 last point to plot fms 0 markersize (fold)
lab [10, 13] list of labels lms 3 markersize (labeled)
labi 5 label each labith (regular) point lwst 4 stable soln line width
labu 1 1 & lsw=1+x: usrlam labels lwun 2 unstable soln line width
lsw 1 labeling switch, see Table (23) tyst ’-’ stable soln line type
bplab [2, 3] list of branch point labels tyun ’--’ unstable soln line type
fplab 1 list of fold point labels fs 16 font size
hplab 1 list of Hopf point labels lfs 0 label font size
fancy 0 fanciness of plotbra cl ’r’ color

Solution plotting. Similarly to plotbra, there are many options how to call the main function

plotsol for solution plotting. The easiest call is plotsol(p), which plots the data contained in

p.u with settings from p.plot, e.g., p.plot.cmp for the desired component of u. Alternatively, for

instance

� plotsol(dir), where dir is a directory, loads the last point in dir and proceeds as plotsol(p);

� plotsol(p,w,cmp,st) plots component cmp of p.u to window w, in style st;

� plotsol(dir,pt,w,cmp,st), loads p from dir/pt and then proceeds as plotsol(p,w,cmp,st).

Additionally, there is plotsolu(p,u,w,cmp,st), which plots the data from u instead of p.u. The

different styles are listed in Table 25, and the behavior of plotting is further controlled by the data in

24

Table 23: Settings for p.plot.lsw and ’lsw’,lsw argument of plotbra, for regular point labels=’off’.
For regular point labels=’on’, add 16 to lsw.

lsw 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

userlam 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

branch 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

hopf 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

fold 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 24: Data on p.branch as generated by bradat (fixed) and p.fuha.outfu=@stanbra (customiz-
able by user). The number cmp refers to the desired branch component when plotting with plotbra.

nr cmp data
1 -5 counter
2 -4 pointtype
3 -3 ineg (if p.sw.spcalc=1, otherwise -1)
4 -2 λ (value of active cont. param)
5 -1 err (if p.sw.errcheck> 0, otherwise 0)
6 0 ‖u1‖L2

a

7, . . . , 7 + naux 1, . . . , naux auxiliary variables, typically parameters
7 + naux + 1 naux + 1 min |u1|
7 + naux + 2 naux + 2 max |u1|

p.plot. Nevertheless, plotsol is a somewhat generic routine, which sometimes needs some adaption

by the user to produce publication quality results. If p.plot.pstyle=-1, then plotsol immediately

calls userplot, to be user provided in the current directory. See also [31].

Table 25: Settings for pstyle.
dim pstyle meaning comment dim pstyle meaning comment

1 1 line plot (only setting in 1D) 3 1 slice-plot
2 0 only plot the FEM mesh 2 iso-surface plot

1 mesh-plot 3 surface-plot
2 density-plot 4 cut-away-plot
3 surface-plot * -1 to call (user provided) userplot

Hopf plotting. hoplot(p,wnr,cnr,varargin), where wnr and cnr are the window number and

component number, is the basic plotting routine for periodic orbits, contained in p.hopf.y. The aux-

iliary argument aux=varargin can contain a number of fields used to control its behavior. Examples

are (with default values as indicated)

� aux.lay=[2 2]: sets the subplot-layout for the snapshots (in 2D and 3D)

� aux.pind=[]; set the indices, i.e., the times T*p.hopf.t(aux.pind), to be used for plotting; if

pind=[], then the four indices 1, tl/4, tl/2, 3*tl/4 are used.

� aux.xtics=[]; set xtics, similar for ytics and ztics; see also aux.cb. (colorbar on/off)

This provides some flexibility for plotting snapshots of periodic orbits in 2D and 3D. However, often

the user will adapt hoplot to the given problem; see [23] for examples, also dealing with movies.

25

4.7 Convenience functions

pde2path comes with a number of convenience functions, mostly collected in libs/misc; a brief
overview is given in Table 26.

Table 26: Selected convenience functions.
name purpose

keep(varargin) keep varargin, clear the rest; at startup of demos used as keep pphome;
printaux(p) print auxiliary variable index and value
printbradat(dir,pt) print data from branch from dir/pt.mat; if pt is omitted use last pt
printdirdat(dir) print data from points in directory dir
pcopy(olddir,newdir) copy p2p data-directory and change file name variables, see also pmove
p2phelp open pde2path help system
un=p2interp(xn,yn,u,x,y) interpolate u from mesh x,y to un on mesh xn, yn
un=p3interp(xn,yn,zn,u,x,y,z) interpolate u from mesh x,y,z to un on mesh xn, yn,zn

4.8 OC functions

The optimal control related functions from libs/oclib are a special class and are reviewed in [3].

References

[1] N. J. Balmforth, R. V. Craster, and S. J. A. Malham. Unsteady fronts in an autocatalytic system. Proc.
R. Soc. Lond., Ser. A, 455(1984):1401–1433, 1999.

[2] M. Bollhöfer. ILUPACK V2.4, www.icm.tu-bs.de/~bolle/ilupack/, 2011.

[3] H. de Wit and H. Uecker. Infinite time–horizon spatially distributed optimal control problems with
pde2path – algorithms and tutorial examples, arxiv:1912.11135, 2019.

[4] H. de Witt. Fold continuation in systems – a pde2path tutorial, 2017.

[5] A. Doelman, G. Hayrapetyan, K. Promislow, and B. Wetton. Meander and pearling of single-curvature
bilayer interfaces in the functionalized Cahn-Hilliard equation. SIAM J. Math. Anal., 46(6):3640–3677,
2014.

[6] T. Dohnal, J.D.M. Rademacher, H. Uecker, and D. Wetzel. pde2path 2.0. In H. Ecker, A. Steindl, and
S. Jakubek, editors, ENOC 2014 - Proceedings of 8th European Nonlinear Dynamics Conference, ISBN:
978-3-200-03433-4, 2014.

[7] T. Dohnal and H. Uecker. Bifurcation of Nonlinear Bloch waves from the spectrum in the nonlinear
Gross-Pitaevskii equation. J. Nonlinear Sci., 26(3):581–618, 2016.

[8] T. Dohnal and H. Uecker. Periodic boundary conditions in pde2path, 2017.

[9] M. Golubitsky, E. Knobloch, and I. Stewart. Target patterns and spirals in planar reaction-diffusion
systems. J. Nonlinear Sci., 10(3):333–354, 2000.

[10] K.E. Jensen. A matlab script for solving 2d/3d miminum compliance problems using anisotropic mesh
adaptation. 26th international meshing roundtable, 203:102–114, 2017.

[11] K.E. Jensen and G. Gorman. Details of tetrahedral anisotropic mesh adaptation. Computer Physics
Communications, 201:135–143, 2016.

[12] D. Kressner. An efficient and reliable implementation of the periodic qz algorithm. In IFAC Workshop
on Periodic Control Systems. 2001.

26

www.icm.tu-bs.de/~bolle/ilupack/

[13] F. Mazzia and D. Trigiante. A hybrid mesh selection strategy based on conditioning for boundary value
ODE problems. Numerical Algorithms, 36(2):169–187, 2004.

[14] P. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46(2):329–345, 2004.

[15] C. Pozrikidis. Introduction to finite and spectral element methods using MATLABr. CRC Press, Boca
Raton, FL, second edition, 2014.

[16] U. Prüfert. OOPDE, https://tu-freiberg.de/fakult1/nmo/pruefert, 2021.

[17] J.D.M. Rademacher and H. Uecker. Symmetries, freezing, and Hopf bifurcations of modulated traveling
waves in pde2path, 2017.

[18] J.D.M. Rademacher and H. Uecker. The OOPDE setting of pde2path – a tutorial via some Allen-Cahn
models, 2019.

[19] L.N. Trefethen. Spectral methods in Matlab. SIAM, 2002.

[20] H. Uecker. Hopf bifurcation and time periodic orbits with pde2path – algorithms and applications.
Comm. in Comp. Phys, 25(3):812–852, 2019.

[21] H. Uecker. Using trullekrul in pde2path – anisotropic mesh–adaptation for some Allen–Cahn models
in 2D and 3D, Preprint, arXiv 1912.11130 , 2019.

[22] H. Uecker. Pattern formation with pde2path – a tutorial, 2020.

[23] H. Uecker. User guide on Hopf bifurcation and time periodic orbits with pde2path, 2020.

[24] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, 2021.

[25] H. Uecker. pde2path with higher order finite elements, 2021.

[26] H. Uecker. pde2path without finite elements, 2021. Tutorial on eqns on graphs, and spectral discretiza-
tions.

[27] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2021.

[28] H. Uecker and D. Wetzel. Numerical results for snaking of patterns over patterns in some 2D Selkov-
Schnakenberg Reaction-Diffusion systems. SIAM J. Appl. Dyn. Syst., 13(1):94–128, 2014.

[29] H. Uecker and D. Wetzel. The pde2path linear system solvers – a tutorial, 2017.

[30] H. Uecker, D. Wetzel, and J.D.M. Rademacher. pde2path – a Matlab package for continuation and
bifurcation in 2D elliptic systems. NMTMA, 7:58–106, 2014.

[31] D. Wetzel. A pde2path plotsol tutorial, 2017.

[32] L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein. Pattern formation arising from interactions
between Turing and wave instabilities. J. Chem. Phys., 117(15):7259–7265, 2002.

[33] D. Zhelyazov, D. Han-Kwan, and J. D. M. Rademacher. Global stability and local bifurcations in a
two-fluid model for tokamak plasma. SIAM J. Appl. Dyn. Syst., 14(2):730–763, 2015.

27

https://tu-freiberg.de/fakult1/nmo/pruefert
www.staff.uni-oldenburg.de/hannes.uecker/pde2path

	Introduction
	Demo overview
	Scalar steady state and traveling wave demos
	System steady state and traveling wave demos
	Hopf demos
	OC demos
	FEM–free demos
	Higher order FEM demos

	Data structure overview
	Standard fields
	OOPDE data
	The Hopf data
	Global variables

	Function overview
	The stan* functions
	Main functions for steady state problems
	linalg and fem
	Hopf
	Time integration
	Plotting
	Convenience functions
	OC functions

