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Numerical continuation is used to compute solution branches in a two-component reaction-diffusion model
of Leslie–Gower type. Two regimes are studied in detail. In the first, the homogeneous state loses stability
to supercritical spatially uniform oscillations, followed by a subcritical steady state bifurcation of Turing
type. The latter leads to spatially localized states embedded in an oscillating background that bifurcate from
snaking branches of localized steady states. Using two-parameter continuation we uncover a novel mechanism
whereby disconnected segments of oscillatory states zip up into a continuous snaking branch of time-periodic
localized states, some of which are stable. In the second, the homogeneous state loses stability to supercritical
Turing patterns, but steady spatially localized states embedded either in the homogeneous state or in a small
amplitude Turing state are nevertheless present. We show that such behavior is possible when sideband
Turing states are strongly subcritical and explain why this is so in the present model. In both cases the
observed behavior differs significantly from that expected on the basis of a supercritical primary bifurcation.

Coupled reaction-diffusion equations describe a
multitude of physical processes ranging from mor-
phogenesis to intracellular dynamics, catalysis
and models of vegetation cover in dryland ecosys-
tems. In two-species models a spatially uniform
state may lose stability to a time-independent
Turing pattern or a spatially uniform oscillation,
depending on parameters. We study the in-
teraction of these two instabilities when a pri-
mary supercritical oscillatory instability is fol-
lowed in close succession by a subcritical Turing
bifurcation. We show that the spatially localized
states associated with the latter inherit Hopf bi-
furcations from the uniform state leading to lo-
calized states embedded in an oscillating back-
ground and show that states of this type can be
zipped up by varying a second parameter into a
continuous snaking branch of such time-periodic
states, thereby demonstrating that these states
may exhibit behavior analogous to that of time-
independent localized states. We also compute
a snaking branch of steady localized states in a
situation where the primary Turing bifurcation is
supercritical, and explain this unexpected behav-
ior in terms of subcritical sidebands.

I. INTRODUCTION

The term homoclinic snaking (HS), coined in Ref.52,
refers to branches of steady localized solutions (LS) of a
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spatially extended pattern-forming system that oscillate
back and forth across an interval in parameter space.
These oscillations reflect the growth of the structure,
with each oscillation responsible for the addition of one
wavelength of the pattern on either side of the LS. Thus
the snaking interval corresponds to the presence of a mul-
titude of coexisting LS of different lengths. The basic
mechanism behind HS was explained by Pomeau31 and
relies on the pinning of the fronts at either end of the
LS to the pattern within it,21 a process that can be an-
alyzed by beyond-all-orders asymptotics as described in
Refs.14,17,18 and references therein. In general one finds
two intertwined snaking branches, one corresponding to
reflection-symmetric states that peak on the symmetry
axis and the other corresponding to states that dip on
the symmetry axis. As shown in Ref.8 LS may also be
organized in a stack of disconnected isolas instead of the
two continuous intertwined solution branches. Localized
states are generally only found when the primary Turing
bifurcation is subcritical, resulting in bistability between
the trivial state and the pattern state, leading to the in-
terpretation of LS as segments of the coexisting Turing
pattern embedded in the competing homogeneous back-
ground. It is expected that stable LS are only present
when the competing states are both stable. Exceptions
are known in the form of slanted snaking, for instance
in the presence of global coupling19 or a neutral large
scale mode,7,15,35 for which localized states are found
even in the supercritical case, with no bistability. See
Ref.35 for a more precise thermodynamic interpretation
of this behavior and Refs.22,43,45,51 for HS of “patterns
within patterns”, which are related to more complicated
bistabilities.

The present work concerns two fundamental questions:
(i) Do time-dependent LS exhibit similar behavior to that
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of the well-studied steady states?
(ii) Do LS exist in systems with local coupling and no
conserved quantity when the primary bifurcation is su-
percritical?

Time-dependent LS are of two basic types, traveling
pulses and localized standing oscillations. The former
are known to exhibit snake-like behavior in appropriate
parameter regimes and may be organized in a stack of
isolas consisting of 1,2,... equispaced traveling pulses as
found in natural doubly diffusive convection,25 or in a sin-
gle snaking branch as found for a three-species reaction-
diffusion (RD) system in Ref.23 For localized standing os-
cillations the situation is much less clear, although these
are expected to behave in a similar fashion as the steady
LS on account of their shared reflection symmetry. In this
work we present a simple two-species RD system which
resolves both issues. Specifically, we show that this sys-
tem contains time-periodic snaking states obtained by
“zipping up” tertiary branches of localized oscillatory
states, with the snaking structure of steady LS serving
as a template or backbone. Moreover, we show that in
a different parameter regime the same system exhibits
steady LS even when the primary Turing bifurcation is
supercritical and explain why.

The zipping up process is of particular interest. We
show that it is a consequence of the nonlinear inter-
action between a supercritical Hopf bifurcation of the
trivial state and a nearby subcritical Turing instabil-
ity, and in particular of the presence of tertiary Hopf
bifurcations on both the Turing branches and the associ-
ated LS inherited from the primary Hopf bifurcations of
the trivial state. As such this behavior appears charac-
teristic of the interaction between the Turing and Hopf
instabilities16,26,38–41 and we demonstrate its presence in
two different RD systems.

The first system we study is a Leslie-Gower prey–
predator model taking the form53,54

∂tu = D∂2
xu+f(u, v)≡D∂2

xu+u
(
a−u−bvh(u, v)

)
, (1a)

∂tv = ∂2
xv + g(u, v) ≡ ∂2

xv + δv
(
1− vh(u, v)

)
, (1b)

where u and v are the prey and predator densities, respec-
tively. The system is posed on a 1D domain Ω = (−`, `)
with large ` and Neumann boundary conditions (NBC)
∂xu|∂Ω = ∂xv|∂Ω = 0 on both components. We choose

h(u, v) = 1/
(
(αu+ 1)(βv + 1)

)
,

known as Bazykin’s functional response.6 The parame-
ters a, b, α, β and δ are all positive, and the prey diffu-
sion constant 0 < D � 1. The parameter δ plays the role
of a time scale for the predator ODE, and hence can be
used to induce Hopf instabilities, as discussed in, e.g.,33

for a modified version of Bazykin’s system.
The system (1) has four homogeneous steady states,

namely s1 = (0, 0), s2 = (0, (1− β)
−1

), s3 = (a, 0), and
the coexistence state

s4 = (u∗, v∗): u∗ ≡ a− b, v∗ ≡ αu∗ + 1

1− β − αβu∗
, (2)

present provided a > b and 1 − β > αβu∗. The steady
states of (1), in particular s4, and their instabilities have
been analyzed in detail in Ref.54, and spatio-temporal
solutions have been obtained via direct numerical simu-
lation.

Of particular interest are the Hopf and Turing bifur-
cations from s4 as parameters vary, in particular the pa-
rameter b. We use the toolbox pde2path42 to numerically
continue the primary solution branches bifurcating from
s4 together with the secondary and tertiary branches that
bifurcate from them, resulting in a large multiplicity of
steady and time-periodic LS. For simplicity, our study
is restricted to two parameter ranges. In (i), present at
low b in Fig. 1, we study the interaction of LS with Hopf
instabilities of the homogeneous background s4. In (ii),
present at higher b in Fig. 1, we find a novel example of
HS where (large amplitude) LS embedded in s4 transi-
tion to LS embedded in a small amplitude background
pattern arising in a supercritical Turing bifurcation from
s4. This state is similar to those in Ref.22, where bista-
bility between small and large amplitude patterns of the
same wavelength was created artificially by considering
a cubic-quintic-septic Swift-Hohenberg equation. Simi-
lar two-scale structures have been reported in rotating
convection,7 rotating Couette flow34 and in natural bi-
nary fluid convection.37

In both our regimes, (i) and (ii), a key feature is that
it is not the primary Turing bifurcation that determines
the existence of stable localized patterns. Instead, pe-
riodic patterns which bifurcate further away from the
primary Turing bifurcation become “most stable”, and
penetrate farthest into the (subcritical) parameter range
of stable homogeneous steady states. Thus, beyond the
result that rather simple and natural two-component RD
systems can generate more complicated HS than models
such as the (quadratic or cubic) SH equation, one im-
portant lesson is that it may be necessary to go beyond
the first few Turing branches to understand the possible
multitude of stable steady states, both spatially extended
and spatially localized.

The paper is organized as follows. In Sec. 2 we summa-
rize the linear stability properties of the trivial state s4.
This is followed in Sec. 3.A by a detailed study of case
(i), and in Sec. 3.B by case (ii). In Sec. 4 we show that
analogous behavior occurs in the Gilad-Meron model of
dryland vegetation, and use this result to argue that the
zipping up mechanism uncovered here is a generic pro-
cess. Brief conclusions follow in Sec. 5.

II. LINEAR STABILITY ANALYSIS

The linear stability of s4 is described by

(u, v)Tt =
[
J |s4 +D∂2

x

]
(u, v)T , (3)

where (u, v)T denotes the perturbation of (u∗, v∗)T , J |s4
is the reaction Jacobian at s4 and D ≡ diag(D, 1) is
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the diffusion matrix. The Fourier ansatz (u, v)T =
(A,B)T eikx+λt+c.c., where c.c. denotes the complex con-
jugate of the preceding terms, leads to a dispersion re-
lation det(J − k2D − λ(k)I) = 0 connecting the growth
rate λ(k) to the assumed wave number k. Thus, s4 is
(linearly) stable if <λ(k) < 0 for all k, while <λ(k) = 0
at some critical wave number kc ∈ R indicates, subject
to transversality conditions, the onset of instability and
hence a bifurcation. These are classified as longwave
(kc = 0,=λ(0) = 0), Turing (kc 6= 0, =λ(kc) = 0), or
Hopf (kc = 0,=λ(0) 6= 0). A fourth possibility is the
so-called wave instability (kc 6= 0, =λ(kc) 6= 0), but this
cannot occur in two-component RD systems. The Turing
instability arises at δ = δT , where[
α (αβδTD−2)u∗2+

(
(2β−1)αδTD+aα−1

)
u∗

+ (β−1) δTD
]2

= 4u∗ (u∗α+1)
2
δTD

(
1−β (u∗α+1)

)
,

(4)

provided the critical wave number kT given by k2
T =

α (αβδTD−2)u∗2+
(
(2β−1)αδTD + aα−1

)
u∗+ (β−1) δTD

2 (u∗α+ 1)D
is real, while the Hopf instability arises at δ = δH , where

δH =
(a− b)

(
1 + α (a− 2 b)

)(
αβ (a− b) + β − 1

) (
α (a− b) + 1

) , (5)

independently of the diffusion coefficient D, provided the
Hopf frequency

ωH =
√
−δH(a− b)[αβ(a− b) + β − 1]

is real. Figure 1(a) shows these instability curves in the
(b, δ) parameter plane for (a, α, β,D) = (1, 2, 0.5, 0.029),
while (b) shows the eigenvalue curves k 7→ λ1,2(k) at
the two points labeled (i) and (ii), which will also be
our starting points for the numerical bifurcation analysis.
Panel (c) shows the dependence of the Turing and Hopf
curves on the parameter b for two different values of D.

Remark II.1 a) The Fourier ansatz (u, v)T =
(A,B)T eikx+λt + c.c. with wave number k ∈ R ap-
plies to infinite domains x ∈ R. For the numerics we
have to choose a finite domain x ∈ (−`, `), and we choose
homogeneous NBCs for both u and v. This restricts
the wave number k to k ∈ π

2`Z. Nevertheless, for large
`, this gives a rather dense sampling of the dispersion
relation k 7→ λ(k).

b) In the supercritical range (i.e., after crossing the
Turing or Hopf line), on the infinite line, we have a band
of unstable wave numbers, and bifurcations of 2π/k pe-
riodic patterns for k arbitrary close to kc. These “side-
band patterns” are unstable at bifurcation but stabilize
at small but finite amplitude via Eckhaus bifurcations.
This behavior is inherited for large but finite `, where
the discrete wave numbers k ∈ π

2`Z lead to a close suc-
cession of sideband Turing, resp. Hopf, bifurcations after
the primary Turing, resp. Hopf, bifurcation.

c) The statements a) and b) hold for general Turing
and Hopf instabilities. However, a pronounced feature
of (1) is that Turing branches with nearby but differ-
ent k may behave quite differently, i.e., their direction
of branching is very sensitive to k. As a consequence,
to understand LS in (1) (as opposed to, e.g., the cubic
Swift–Hohenberg equation) it is not sufficient to deter-
mine whether the primary (k = kc) bifurcation is sub-
or supercritical, and the sidebands must be taken into
account (see Sec. 3.2). c

In Fig. 1(a) we mark a codimension-two point (green
dot), determined from weakly nonlinear theory, where
the Turing bifurcation changes from sub– to supercritical.
Moreover, we show two curves labeled “localized holes”
(blue, on the left) and two labeled “localized peaks”
(green, on the right) delimiting the regions of existence
of LS.28 The LS in the former region take the form of fi-
nite arrays of large amplitude downward spikes, while the
latter consist of upward spikes. Finally, we also show the
Belyakov-Devaney (BD) transition curve (dashed purple
line), defined by a pair of real spatial eigenvalues of the
spatial dynamics problem linearised about the homoge-
neous equilibrium, each of double multiplicity. This curve
is also given by (4) but the corresponding wave number is
now imaginary. One major significance of the BD tran-
sition is that (standard) snaking of LS typically turns
into “foliated snaking” of isolated spikes1,3,13,24,32 when
crossing the BD line; see Ref.47 for a general analysis.
Here, this region of foliated snaking (to the left of the
BD line and below the loc.holes line) is rather small and
will not be studied. In Fig. 1(c) we show the instability
curves for D = 0.01 and D = 0.07. For smaller D the
Turing curve expands, while for larger D it shrinks (in (4)
D only appears in the combination δD) while the Hopf
curve is unaffected. In both cases we lose the interaction
of the Hopf and Turing modes on the left (near (i)), mo-
tivating our choice of an intermediate value D = 0.029
as a starting point for our study.

III. TWO CASE STUDIES OF LOCALIZED PATTERNS

We use numerical continuation with pde2path42 to ex-
plore patterns near the two selected instability points
from Fig. 1. First, we consider the vicinity of the left
point (i), where the primary instability is of Hopf type.
However, subcritical Turing instabilities are nearby, lead-
ing to localized steady patterns, and we shall see that
these inherit, in some sense, the Hopf instability of the
homogeneous background. Second, we explore the neigh-
borhood of the right point (ii). Here the primary instabil-
ity is a supercritical Turing instability, but strongly sub-
critical sideband instabilities nearby lead to peculiar sta-
ble localized patterns, for which the associated snake in-
terpolates between homoclinics to the homogeneous state
and homoclinics to small amplitude periodic patterns.
For our numerical continuation we choose Ω = (−`, `)
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FIG. 1: (a) Hopf and Turing instability curves for the homogeneous solution s4 of (1) in the (b, δ) plane when
(a, α, β,D) = (1, 2, 0.5, 0.029) together with the existence regions for localized patterns. (b) Spectra λ(k) at the

locations indicated in (a). (c) Bifurcation curves for D = 0.01 (top) and D = 0.07 (bottom) showing the dependence
of the Turing instability (black curves) on the parameter D. The Hopf bifurcation (red curve) is independent of D.

with ` = 50, and plot

‖u‖2 :=

√
1

2`

∫ `

−`
|u(x)− u∗|2 dx, resp. (6)

‖u‖2:=

√
1

2T`

∫ T

0

∫ `

−`
|u(x, t)−u∗|2 dx dt (7)

for steady, resp. time-periodic states, i.e., we only use the
first component of the perturbation from s4, and normal-
ize its norm by the domain size (and the period T for
time-periodic orbits). The projection ‖u‖2 as defined is
not a norm in the (u, v) space.

A. Interaction between LS and background Hopf
instability

Figure 2(a), with ` = 50, shows that if b is increased
at fixed δ = 0.07 near location (i), then s4 loses sta-
bility to a Hopf mode with kc = 0, i.e., to a spatially
uniform oscillation (H1, see the space-time plot at loca-
tion A in panel (b)). This is followed by a Hopf bifur-
cation to a spatially nonuniform Hopf mode with wave
number π/` (H2, shown in a space-time plot at location
B). Both bifurcations are supercritical, implying that the
k = 0 branch H1 is stable at onset, while the k = π/`
oscillations H2 are unstable at onset, with Floquet index
ind = 1 (number of Floquet multipliers µ with |µ| > 1).

The next bifurcation point (BP) from s4 yields the first
Turing bifurcation (T1, bluebranch, k = π/5 ≈ 0.628,
profile G). This bifurcation is subcritical, like the next
10 Turing bifurcations, and the “most subcritical” Tur-
ing branch is the 6th (T6, dark blue branch, k = 0.534,
profile H).The branch T1 undergoes a secondary bifurca-

tion at small amplitude, i.e., close to the primary bifur-
cation, to a pair of spatially modulated states which turn
into a pair of intertwined snaking branches of localized
Turing patterns only one of which (S1, orange branch) is
shown in the figure, see profiles at successive fold points
FP1 and FP2 in panel (c); owing to NBC these profiles
may be reflected in x = −50 to generate a localized state
on a domain of length 200. As ` increases this secondary
bifurcation moves to smaller amplitude and collides with
the primary bifurcation in the limit `→∞.12

Along the orange branch S1 of steady LS the solution
adds a wavelength near every other fold until the avail-
able domain is filled and the snaking branch terminates
on T6. This is a consequence of the fact that the wave-
length within the LS is not set by kc but is instead set by
nonlinearity and hence the parameter b.9,12 Note that S1
snakes outside of the region of bistability between s4 and
T1, despite its origin in T1. Instead the relevant bista-
bility region is the region between s4 and T6. On T1
and T6 (and similarly on all other Turing branches, not
shown) there are many further BPs, leading to similar
secondary bifurcations to localized patterns and snaking
branches like the orange branch S1; for instance, the sec-
ond BP on T1 yields genuine LS on (−`, `), i.e., double
pulse homoclinic orbits on the domain of length 200.

The above behavior is largely consistent with the stan-
dard snaking of LS observed in the Swift-Hohenberg
equation. The present system is not variational, however,
and so time-dependent LS may be expected.10 Moreover,
in the present system snaking occurs in a region of bista-
bility between steady LS and smaller amplitude uniform
oscillations on the Hopf branch H1. In this region steady
LS cannot be stable over unbounded domains since the
background state s4 is unstable to oscillations, but sta-
ble LS embedded in a time-periodic background may be
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expected. Evidently, the stability of various states on S1
indicated in Fig. 2(a) is a finite size effect.

Next we consider tertiary Hopf points (HP) on S1. The
first two are inherited from the oscillatory instability of
s4 and generate states that resemble a “superposition”
of an LS on S1 and the Hopf modes H2 and H1, see
profiles C and D, respectively. In the following we refer to
these states as mixed modes (MM). These time-periodic
states grow monotonically in amplitude as b increases,
and both are unstable. As we continue upward along the
S1 branch we find pairs of HPs that are connected by
further branches of MMs (green). In each case the lower
HP is on a stable part of the LS branch while the upper
one is on the next unstable part. Altogether we have
6 pairs of such HPs, all pairwise connected by an MM
branch. Similar states were found in Ref.33, Figs. 13(h)
and 14(b), using DNS for suitable values of the predator
time scale parameter (our δ) by starting from a localized
perturbation of the analog of our (u∗, v∗), and in the
Gilad-Meron model of dryland plant ecology, also a two-
species RD system (Ref.29, Fig. 9).

We think of these green branches as forming parts of
an unzipped “snake”, broken by segments of steady LS
(see below for zipping up). Sample solutions at locations
E and F are shown in panel (b). In all cases the green seg-
ments between the lower HP and the corresponding fold
point correspond to stable MMs. We have checked, but do
not show, that the intertwined second LS snaking branch
(with minima at x = −50) undergoes essentially identical
behavior with pairs of BPs straddling the right folds and
generating partially stable MM segments closely resem-
bling the green branches in Fig. 2(a). These states are
also embedded in a uniform background oscillation.

There are two finite domain effects responsible for the
existence of stable steady LS connected to the background
state s4 in a parameter regime in which s4 is predicted
to be unstable to oscillations: as one proceeds up the
S1 branch the LS grow in extent, thereby reducing the
domain occupied by s4. Figure 1(b), panel (i), shows
that as the allowed minimum wave number is pushed to
higher values the Hopf bifurcation is suppressed. We ex-
pect therefore that the tertiary HPs move to larger val-
ues of b, as observed. This does not explain, however,
the presence of stable narrow LS, such as those created
at FP1. In fact FP1 lies below the primary Hopf point
for s4, and s4 is therefore stable at this location. The
fact that this state extends stably past the primary Hopf
point is a consequence of the fact that once an LS is
present the stability of the background state no longer
reflects the stability of this state on an unbounded do-
main (or the equivalent problem with NBC): the smaller
oscillation scale at the location of the front between the
LS and the background s4 enhances dissipation leading
to an increase in the critical b for the onset of the Hopf
instability, cf. Refs.5,36. Thus the observed behavior is
a consequence of both a reduction in the effective do-
main size, but more importantly of the introduction of
a strongly dissipative (non-NBC) boundary at the loca-

tion of the front separating the LS and the oscillating
background. The resulting dissipation suppresses the os-
cillation amplitude in this region, as evident from the
space-time profiles E and F in Fig. 2(b). We remark that
once the LS occupies approximately half the domain the
role of the LS and the oscillating state changes: it is now
more natural to think of a uniform oscillation embedded
in a background of a steady periodic pattern.

1. Zipping up the TH snake

Figures 3 and 4 show how the (green) snake segments
reconnect or “zip up” into a full snaking branch of time-
periodic states by varying the parameter D. In Fig. 3(a),
obtained from Hopf-point continuation (HPC) of HP2,
HP3 and HP4 on the S1 branch in Fig. 2(a), we show the
Hopf point positions b and the corresponding frequencies
ω as D varies. As D increases, the location of HP2 moves
up in b while the location of HP3 moves down, resulting
in a collision at the fold FP1 of S1 when D ≈ 0.02968.
Similarly, as D decreases, the location of HP3 moves up
in b while the location of HP4 moves down, resulting in a
collision at FP2 when D ≈ 0.026. The same happens for
HPC of other pairs of Hopf points such as HP5, HP6 and
HP7, HP8, etc. Put differently, if we follow HP2 beyond
the first collision we obtain the brown curve in Fig. 3(b),
a snake of Hopf points. The folds in this curve corre-
spond to successive collisions of Hopf points, HP2 with
HP3 at FP1, HP3 with HP4 at FP2 etc. As a result the
HP snake is trapped between, say, the FPC of the fold
points FP2 (upper boundary) and FP3 (lower boundary)
of Fig. 2(a) since the right and left fold points of S1 are
almost aligned. Sample solutions corresponding to the
locations I, II and III in (b) are shown alongside. Impor-
tantly, with increasing D, the wedge containing the S1
branch becomes exponentially narrow in |D − Dc| with
Dc ≈ 0.043, cf. Refs.14,17,18, and overall the structure
leans to the right.

Figures 3(c,d) describe steps in the zipping process.
In panel (c) we recompute the orange, green and brown
curves in Fig. 2(a) for D ≈ 0.02965. We see that the
Hopf points HP2 and HP3 have moved very close to FP1,
but the branches bifurcating from HP2 (brown, going to
large b) and HP3 (green, reconnecting to HP4 on S1) are
still distinct. For D = 0.0297, however, the points HP2
and HP3 on S1 have annihilated one another, resulting
in the reconnection of the brown and green branches and
the creation of the red branch (panel (c), inset). As a
result HP2 and HP3 are absent and the MM branch now
originates from HP4 higher up the snaking S1 branch.
A further increase in D leads to a collision between HP4
and HP5 at FP3 and the process repeats, resulting in the
brown curve in Fig. 3(d) with a footpoint at HP6, just
prior to the next collision at FP5.

In Fig. 4, computed for D = 0.033, only the (former)
HP12 remains, and consequently all the green branches
have zipped up and the large b MM branch (brown) now
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FIG. 2: (a) Bifurcation diagram for ` = 50 with (δ, α, β, a,D) = (0.07, 2, 0.5, 1, 0.029) showing ‖u‖2 defined in (6)
and (7) as a function the parameter b starting from b = 0.78. (b) Sample time-periodic solutions (u component only)

shown in a space-time plot over one temporal period corresponding to the locations labeled in (a). (c) Sample
steady solutions (u component only). In (a) Hopf bifurcation points (HPs) are marked by �, steady state BPs by ◦,

and fold points (FPs) by ×. Not all HPs, BPs and FPs are shown. For steady states, thick (thin) lines indicate
stable (unstable) solution branches. The trivial state s4 corresponds to u = 0. Hopf branches H1 and H2 from this
state are shown in brown and yellow, with sample solutions A and B. The primary Turing branch T1 is shown in

blue; the 6th Turing branch (T6, dark blue) reaches farthest to the left. A snaking branch of LS (S1, orange)
bifurcates from the first BP on T1 and reconnects to T6, sample solutions in (c). Additional HPs on S1 lead to

branches with sample solutions (C-F).

connects to a footpoint at B. Figure 4 also shows the
other branches at D = 0.033, with the same colors as
in Fig. 2(a) where applicable. The orange LS snake now
reconnects to the 4th Turing branch (dark blue, profile
F); a third Hopf branch from s4 is now present and is
shown in violet (profile E). The details of the switching
of the termination point of S1 from T6 to T4 are expected
to proceed via T5 and to resemble the process described
in Ref.9 for the Swift-Hohenberg equation but have not
been studied in detail in the present case.

The MM segments on the other LS snake intertwined
with the S1 snake zip up via a very similar process (not
shown). As a result in Fig. 4 there are in fact two in-
tertwined snaking branches of time-periodic MM states,
only one of which is shown.

We refer to the brown branch from Fig. 4 as a Turing-

Hopf (TH) snake. The space-time profiles show that the
TH snake recapitulates the behavior of the S1 snake, al-
beit in a larger and shifted parameter interval. In par-
ticular, as one proceeds up the TH snake, the (almost)
stationary core of the solution adds a new wavelength
during every back and forth oscillation of the branch,
restricting the oscillating background to an ever smaller
part of the spatial domain. The progressive nature of the
zipping up process is a consequence of this fact which re-
sults in HP collisions that are staggered in D (Fig. 3(b)).
This follows from the fact that as the central LS structure
of the oscillations expands it becomes harder to excite os-
cillations in the rest of the available domain. In larger
domains, therefore, the zipping process may be faster.
The process itself has one major consequence: it pro-
gressively erases the stability of the steady LS states and
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FIG. 3: Zipping up the Turing-Hopf segments from Fig. 2 into a Turing-Hopf snake on increasing D. (a) HPC of HP2

(brown), HP3 (dark green) and HP4 (light green) from Fig. 2 showing the HP location in the (D, b) plane, together with the

corresponding Hopf frequency ω. (b) HPC of HP2 (brown), and FPC of FP2 and FP3 (orange) together with sample

solutions I-III used to initialize continuation in b in panels (c) and (d). (c) Bifurcation diagram for D = 0.02965

corresponding to point I in panel (b); the inset shows the LS branch (orange) near the first fold, shortly before HP2 and HP3

annihilate (at D = D1 ≈ 0.02968) together with the disconnected MM branches (brown and green). The red branch (inset)

shows the MM branches at D = 0.0297, i.e., after reconnection. As a result the large b MM branch now connects to the point

HP4 on S1. To generate the red branch we take point A from the green branch at D = 0.02965, set D = 0.0297, and continue

in b. (d) Bifurcation diagram for D ≈ 0.03 corresponding to point II in panel (b). Stability on S1 is indicated by thick lines;

stability on the other branches is not indicated (see text).

“replaces” these states by coexisting stable segments of
time-periodic states that extend over a wider parameter
interval. These states resemble the steady LS in their
center but are embedded in an oscillating background.
The light red branch that bifurcates from HP1 on S1
(solutions C in Fig. 3(d) and D in Fig. 4) is qualitatively
unaffected by the small changes in D required to zip the
TH snake.

Remark III.1 a) The collision of HP2 with HP3 on S1
(Figs. 3(a,c)) occurs when their two frequencies and re-

spective eigenfunctions become identical. The resulting
double Hopf bifurcation with 1:1 resonance corresponds
to a nilpotent bifurcation, described by a normal form
derived and studied in Ref.46. However, resonant bi-
furcations of this type are codimension–3 bifurcations,
and are therefore not expected when only two parame-
ters such as b and D are varied. This is because two
parameters are required to generate a double Hopf bifur-
cation in the first place, and a third parameter is required
to tune their frequencies into resonance. No reconnection
takes place when the frequencies are incommensurate –
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x

0.1

0.15

0.2

0.25

F

FIG. 4: As for Figs. 3(c,d) but for D = 0.033,

corresponding to point III in Fig. 3(b): the whole

Turing-Hopf snake has zipped up, generating a snaking

branch of time-periodic states terminating near the top of

S1 (solutions A-C). Stability is not indicated. The only

other HP left on S1 is the one at the bottom leading to the

(red, unstable) MM branch with a nonuniform background

oscillation (solution D here and solution C in Fig. 3(d)).

The figure also shows other branches at D = 0.033, namely

H1 (brown), H2 (yellow), H3 (violet, with sample solution

E), as well as T1 (blue) and T4 (4th Turing branch from s4,

dark blue with sample solution F), the termination of S1 for

this value of D.

the bifurcations pass through one another. The required
resonance forces the resonant double Hopf bifurcation to
occur at the fold FP1, and similarly for all the subsequent
collisions and associated reconnections. Nominally, a 1:1
double Hopf bifurcation at FP1 is a codimension–4 event
but the fact that this forces dω1/dD = dω2/dD = ∞
(Fig. 3(a)), in addition to ω1 = ω2, makes the prob-

(a)

(b)

(c)

(d)

FIG. 5: DNS from marked points (+small perturbation) in

Fig. 3(a). (a) Starting from C with fast convergence to H1.

(b) Starting from B with slow convergence to H1. (c)

Starting from B but setting b = b+ 0.015 (right of the TH

snake), yielding (stick–slip) convergence to T4. (d) Starting

from B but setting b = b+ 0.007, yielding convergence to a

stable MM in the TH snake.

lem codimension–2, as documented in Fig. 3(b). Simply
put, reconnection cannot occur generically unless it takes
place via the fold points FP on S1.

b) In Fig. 5 we briefly look at DNS from selected points
in and near the TH snake from Fig. 3(c) obtained from
initial conditions corresponding to these points but in-
creasing the parameter b by a small amount. Panel (a)
shows a space-time representation of a solution starting
from point C; the solution evolves into a stable H1 oscilla-
tion. Panel (b) starts from point B and also evolves into
H1 albeit much more slowly. Panel (c) also starts from
point B but with b increased by ∆b = 0.015; this time
the state evolves into a stable spatially periodic state on
the T4 branch. Finally, panel (d) starts from point B
but with ∆b = 0.007; the solution converges to a sta-
ble MM state on a green MM branch right above that
shown in the figure. Each of these four panels shows an
advancing or retreating front between two states (steady
or oscillating) that exhibits stick-slip motion, much as in
the Swift-Hohenberg equation.11 Evidently in this region,
both before and after the zipping up process, the system
exhibits extreme multistability that increases with the
domain size `.

c) Hopf instabilities of LS can also appear in a form
other than as “background oscillations” in Fig. 2, namely
in the form of “breathing peaks”, where the background
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remains at rest but the localized state oscillates. See,
e.g., Refs.1,2. However, such breathing peaks have not
been found in (1).

d) For background Hopf wave number kH 6= 0 the
background oscillations can organize either into traveling
or standing waves depending on parameters.20 However,
since the onset of the kH 6= 0 oscillations is preceded by
the kH = 0 onset, both of these states are expected to be
unstable. In a related problem arising in binary fluid con-
vection driven by the Marangoni effect4 the background
is unstable with respect to kH 6= 0 oscillations and fills
with standing waves, with the constituent left-traveling
waves dominant to the right of the LS and right-traveling
waves dominant to the left – a consequence of the effec-
tive boundary conditions at the location of the front(s)
separating the oscillations from the nearly steady LS. c

2. Continuation of Hopf and fold points in δ

Figure 6(a) shows continuation results of bifurcation
points from Fig. 2 as functions of the parameter δ when
(α, β, a,D) = (2, 0.5, 1, 0.029). In this case the HPC
never reaches the left folds and therefore no zipping up
takes place. Panel (b) shows the continuation in b from
point A, δ ≈ 0.056. There are two main differences com-
pared to Fig. 2(a): there are now three primary Hopf
branches that bifurcate from s4 at “low” b, i.e., in the
b range of the S1 snake, with the branch H3 (violet) of
spatially dependent background oscillations with wave
number k = 2π/100 (solution D in panel (c) or solution
E in Fig. 4) “moving in” to lower b. As a consequence, at
the bottom of the S1 snake there is a new HP giving rise
to the pink branch of mixed mode oscillations in the form
of a superposition of the LS from S1 and the k = 2π/100
background oscillation. At the same time two new HPs
with background wave number k = π/100 appear on the
S1 snake, inherited from H2 (yellow branch) and strad-
dling FP2, yielding a second connecting segment (purple)
of oscillations, this time with the background wave num-
ber k = π/100. These MM states, like those in green,
extend far outside the S1 snaking range. On larger do-
mains, we find additional pairs of HPs near the right
folds of the S1 snake, but here only one is present since
the growth of the LS along S1 suppresses the k = π/100
oscillations in the background. Moreover, on larger do-
mains the k 6= 0 segments again zip up when D is varied
(not shown). We anticipate that for other parameter
values (and/or larger domains) the solution structure of
mixed modes will incorporate states with yet more com-
plex background oscillations. However, these new mixed
mode oscillations are all expected to be unstable owing
to the instability of the k 6= 0 background oscillations
with respect to k = 0 oscillations.

B. Supercritical Turing instability and localized patterns

Spatially localized patterns are usually associated with
subcritical instabilities, such as the subcritical Turing in-
stability; see, e.g., Refs.24,27. However, as discussed be-
low, LS may be found even when the Turing bifurcation is
supercritical. In Fig. 7 we illustrate the behavior of (1) on
the right of the Turing region in Fig. 1, more specifically
near location (ii). This is far from the Hopf instability of
s4, and indeed Hopf instabilities no longer play a role in
Fig. 7. Moreover, this region is located to the right of the
green point in Fig. 1, in a region where the primary Tur-
ing bifurcation is supercritical. In general snaking is not
expected in the supercritical regime, owing to the absence
of bistability. An exception is provided by systems with a
conservation law such as the conserved Swift-Hohenberg
equation35 where a secondary, strongly subcritical insta-
bility may destabilize a supercritical Turing state at small
amplitude, generating LS exhibiting (slanted) snaking in
a parameter regime with no bistability. Similar small
amplitude secondary instabilities have also been found
in other conserved systems such a rotating convection
between free-slip boundaries.7

Even without a conservation law, Eq. (1) supports LS
in the supercritical region (ii) but for a different reason.
Figure 7 shows that the primary Turing branch (T1, blue)
loses stability shortly after bifurcation to a (nonslanted)
branch (S1, orange) of snaking localized patterns. Near
the right folds of this structure the LS are embedded in
the stable s4 state (solution FP5). However, the snake ex-
tends across the primary bifurcation to T1 and solutions
in this region are instead embedded in a small amplitude
periodic Turing pattern (solution A) as shown by solu-
tion FP4. The transition between these two situation is
smooth, with no change in stability. Similar states were
found inrotating plane Couette flow34 and in natural bi-
nary fluid convection37, and were studied in Ref.22 in
a model problem, the 3-5-7 Swift-Hohenberg equation;
here we find that they arise in a natural way in the RD
system (1).

To understand the behavior shown in Fig. 7 we com-
puted the Landau coefficients c1 and c3 that describe the
small amplitude behavior of the Turing branches. The
Landau approximation for the branch Tj with wave num-
ber kj bifurcating at b = bTj

=: bj is given by

(u, v)(t, x)− (u, v)∗(bj) = εA(T )eikjxφ(kj)

+ ε2

[
1

2
A0(T ) +A2(T )e2ikjx

]
+ c.c.+ h.o.t.,

(8a)

where φj ≡ φ(kj) ∈ R2 is a kernel vector of J |(u,v)∗(bj) −
k2
jD (in the following normalized to φj,1 = 1), 0 < ε� 1

is a formal perturbation parameter, and h.o.t. denotes
higher order terms. In general the complex amplitude
function A depends on the slow time scale T = ε2t while
A0(T ) ∈ R2 and A2(T ) ∈ C2 are the modes excited at
second order. Substituting (8) into Eq. (1), all terms
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FIG. 6: As for Fig. 2 but showing the dependence on the parameter δ instead of D. (a) The (δ, b) plane, with FPC of FP1
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with k = 0 background oscillation.
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FIG. 7: Bifurcation behavior in region (ii): (δ, α, β, a,D) = (0.16, 2, 0.5, 1, 0.029) with ` = 12π/kc and b as the primary

bifurcation parameter. The onset wave number is kc = 0.4505 (T1, blue branch). (a) Bifurcation diagram showing branches

T1–T9 (see Table I for colors) together with the S1 snake (orange). (b) Dependence of the Landau coefficients on the wave

number k together with a comparison between the solution branches determined from numerical continuation (panel (a)) and

the Landau approximation to selected branches. (c) Sample solution profiles (u component only) at locations labeled in (a).

at O(ε) vanish, while at O(ε2) we obtain equations for
A0 and A2. At O(ε3) a solvability condition required to
avoid secular growth of A gives the equation

AT = c1(b− bj)A+ c3|A|2A, (9)

where we replaced ε by
√
|b− bj |, and c1 ≡ ∂bλ1(bj , kj)

and c3 are the Landau coefficients. The (analytical) com-
putation of c1 and c3 is in principle straightforward but
can be rather cumbersome, and we restrict the discus-
sion that follows to their numerical evaluation using the
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ampsys tool of pde2path44, and list their values in Table
I. To approximate the Turing branches we may look for
steady (and without loss of generality real) solutions of
(9), given by A = 0 and

A =
√
−c1(b− bj)/c3, (10)

with b > bj if c1/c3 < 0 (the subcritical regime in
our case) and b < bj if c1/c3 > 0 (the supercriti-
cal regime). For illustration, in Fig. 7(c) we compare
|u1 − u∗(b)| obtained from numerical continuation of the
Turing branches (panel (a)) with their first order Lan-
dau approximations, i.e., with A from (10); this means
a comparison with u∗(bj) + 2A cos(kjx) − u∗(b), and
since supx cos(kx) = 1, the dotted branches are given
by 2A− (b− bj).

The key reason for the unexpected snaking revealed
in panel (a) is the strong sensitivity of c3 to k and the
sign change of k 7→ c3(k) near k ≈ 0.42 (see the green
branches T5 and T8 in panel (b)), together with the non-
monotonic order of the primary BPs, with branches of
smaller wave number (solution B in (a)) interspersed with
branches of higher wave number (solution A in (a)). This
effectively yields bistability in the present system despite
the fact that the primary branch T1 is supercritical. Fig-
ure 7(a) shows that the low wave number branches T5
and T8 are strongly subcritical and hence extend substan-
tially past the primary T1 Turing bifurcation. Of these
the T8 branch (green) extends to the largest values of the
parameter b and yields the widest interval of bistability
with stable s4 and this is indeed the branch on which the
orange snaking branch terminates.

IV. ZIPPING UP A TH SNAKE IN THE
GILAD–MERON MODEL

In this section we demonstrate that the zipping pro-
cess in Figs. 2-4 also occurs in another RD system and
can thus be considered generic. We consider the so-called
simplified Gilad-Meron (sGM) model for vegetation pat-
terns in drylands with sandy soil where surface water flow
is not a major factor. The model considers the biomass
of the above-ground vegetation, denoted by b(x, t), and
the soil-water content, represented by w(x, t), and in di-
mensionless form reads49

∂tb = bw (1 + ηb)
2

(1− b)− b+D2∂2
xb, (11a)

∂tw = p− nw

1 + ρb
− αbw (1 + ηb)

2
+ ∂2

xw, (11b)

where η is the root-to-shoot ratio of the plants, p is the
precipitation rate, α is the water uptake efficiency, n is
the evaporation rate, and ρ describes the reduction of
evaporation resulting from the presence of biomass. A
linear and nonlinear stability analysis for (11) is avail-
able in Ref.29, together with bifurcation diagrams show-
ing various LS branches and the secondary Hopf bifur-
cations from LS leading to short segments of mixed TH
states (Ref.29, Fig. 9) as in Fig. 2 for the system (1).

Figure 8 shows that we can zip up these segments into
a TH snake, exactly as in Figs. 2-4 for the system (1).
Panel (a) displays the starting situation on a domain
slightly smaller (` = 60) than that in Ref.29, Fig. 9. For
the “norm” ‖b‖2 we again use (6),(7), where the steady
state b∗ of uniform vegetation is computed numerically at
the given parameter values. The first three bifurcations
from the black branch (at ‖b‖2 = 0) are of Hopf type,
and at p = pT ≈ 0.2499 we find the first Turing branch
(T1, blue), with a secondary bifurcation to an LS snaking
branch at small amplitude (S1, orange). The first two
HPs on this branch are associated to k 6= 0 Hopf bifurca-
tions of the background while the third belongs to a k = 0
Hopf bifurcation of the background and the associated
brown branch extends down to p < 0.2499. The remain-
ing HPs on the LS snake S1 are pairwise connected by
short segments, two of which are shown in green. Panel
(b), similar to Fig. 3(b), illustrates the HPC (brown) of
HP4 in the parameter D together with the FPC of FP5
and FP6. The HP moves through folds given by the FPC,
i.e., at these folds two HPs collide and annihilate, and the
brown branch shows the HP crossing from one HP in (a)
to the next. In panel (c), HP4 and HP5 have annihilated,
and the brown branch now starts at the (former) HP6,
positioned farther up the orange snake. In panel (d),
all the former short green segments (except for the top-
most) have reconnected into a long snaking TH branch.
In contrast to Fig. 4, however, this time both the green
MM segments, and the zipped up TH branch (brown)
span the same p range as the LS snake (orange).

V. DISCUSSION

We have revisited the Hopf-Turing interaction that
arises in a number of two-species reaction-diffusion
systems.16,26,39,41 In particular, in Ref.16 the authors con-
sidered the Brusselator model with supercritical Hopf
and Turing branches in a regime with bistability between
the two, finding a large multiplicity of stable Turing
states embedded in an oscillating background obtained
via DNS. Since no continuation was performed the ob-
served states were not linked to homoclinic snaking, a no-
tion that was developed only subsequently.52 The present
work differs in that we consider a case in which the Tur-
ing bifurcation is subcritical. This case, already con-
sidered in Ref.41, is more interesting since it admits a
variety of steady LS embedded in a homogeneous back-
ground. When the Turing bifurcation is preceded by a
(supercritical) Hopf bifurcation, the homogeneous back-
ground is no longer time-independent but begins to os-
cillate. States of this type were computed in Ref.41 but
their bifurcation behavior was not studied in any detail.
The present work seeks to develop further understand-
ing of these time-periodic LS, focusing on the model (1).
This model, like the Brusselator model studied in Ref.16,
also leads to bistability between the Hopf and Turing
states, but this time there is more: the Turing bifurca-
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Name T1 T2 T3 T4 T5 T6 T7 T8 T9
color blue red mag blue green mag blue green mag
b|BP 0.9846 0.98452 0.98451 0.98431 0.98414 0.98399 0.98358 0.98337 0.9831
n 12 12.5 11.5 13 11 13.5 14 10.5 14.5
k kc 0.46927 0.43172 0.48804 0.41295 0.50681 0.52558 0.39418 0.54435
c1 -1.0078 -1.0040 -1.0124 -1.0006 -1.0181 -0.9973 -0.9946 -1.02534 -0.9917
c3 -4.1310 -5.8033 -1.7144 -6.9483 1.8053 -7.7145 -8.2141 7.2065 -8.5241

TABLE I: Data for the first 9 Turing branches from Fig. 7 for (δ, α, β, a,D)=(0.16, 2, 0.5, 1, 0.029), kc=0.4505, showing the

branching points b|BP for solutions with wave numbers k = kcn/12, where n is the number of wavelengths on a domain of

length ` = 24π/kc together with the corresponding Landau coefficients c1 and c3.
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FIG. 8: Zipping up the TH snake for the sGM model (11) with `=60 and (n, η, ρ, α)=(0.3579, 3.5, 0.6, 1, 0.5). (a)
Bifurcation diagram for D = 0.6 as a function of the parameter p showing the primary Turing branch (blue), a

steady LS snake (orange), and two short TH segments (green). (b) HPC of HP4 (brown), and FPC of FP5 and FP6
(orange) in the (D, p) plane for comparison with Fig. 3(b). (c) Bifurcation diagram at location (c) in (b), D = 0.608;
(the former) HP4 and HP5 have anniliated, and the brown TH branch now starts at HP6. (d) Bifurcation diagram

at location (d) in (b), D = 0.6188.

tion is associated with a snaking branch of steady LS
embedded in a trivial state, as also found in Ref.41. We
have seen that in the bistability region these LS undergo
a series of Hopf bifurcations inherited from the primary
Hopf bifurcation that lead to LS embedded in an oscillat-
ing background. We found that for some parameter val-
ues these oscillatory states extend between pairs of Hopf
bifurcations on the snaking LS branch, one on either side
of every right fold. Remarkably, we found that by vary-
ing a second parameter we could progressively move a
secondary Hopf bifurcation to a small amplitude mixed
mode up the LS branch, leading to repeated reconnection
between the mixed mode and the disconnected oscillatory
states on the LS branch. We described the net effect of
these reconnections as zipping up of these disconnected
branches into a snaking branch of oscillatory states and
demonstrated that similar zipping up occurs in other RD
systems such as the simplified Gilad-Meron model. We

believe our study presents perhaps the best example of
this behavior in a two-species RD system, and the most
compelling example of snaking of spatially localized time-
periodic states. Similar zipping transitions arise in forced
snaking32 and are studied in detail in Ref.30, albeit for
steady LS only. See also Refs.37,48.

Surprisingly, we also found homoclinic snaking in the
regime where the Turing bifurcation of the trivial state
comes in first and is supercritical, a consequence of a
strongly subcritical secondary bifurcation to spatially
modulated states that extend well into the regime of sta-
ble trivial states. The resulting LS are then embedded
in the trivial state but when this state becomes Turing-
unstable they connect to a small amplitude Turing state
in the background. These LS were found to snake (and
hence acquire stability) owing to bistability with strongly
subcritical sideband Turing states. We traced this behav-
ior to the nonmonotonic order of the primary bifurcation
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points with respect to the wave number k together with
the fact that the key Landau coefficient c3 depends sen-
sitively on k and changes sign near kc. It must be em-
phasized, however, that whenever the LS are embedded
in a periodic background the imposed domain size plays
a significant role. This is in addition to its role in de-
termining the order of the primary BPs to the various
sidebranches associated with the Turing instability.

There is a natural extension of the present work, and
that is to three-species RD systems. These systems may
exhibit, in appropriate parameter regimes, a wave insta-
bility, i.e., a Hopf bifurcation with a finite wave num-
ber. This instability may develop into standing or trav-
eling waves, depending on parameters.20 We anticipate
therefore that in such systems we may be able to com-
pute LS embedded in a background of standing or trav-
eling waves, depending on parameters, as already found
for Marangoni driven convection.4 In two-species systems
such a bifurcation is never the first instability for which
kH = 0 but we have seen that kH 6= 0 states can set in in
subsequent primary Hopf bifurcations, and that this bi-
furcation can likewise be inherited by the secondary LS,
resulting in spatially localized time-periodic structures.
It is of interest to determine whether these states also
snake. We mention that numerically stable steady LS
are found even when the background trivial state is un-
stable to traveling waves, provided it is only convectively
unstable.5,50 Thus the three-species case is expected to
be considerably richer than the system (1) studied here.
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