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Abstract

We describe some differential geometric bifurcation problems and their treatment in the Mat-
lab continuation and bifurcation toolbox pde2path. The continuation steps consist in solving
the PDEs for the normal displacement of an immersed surface X ⊂ R3, with bifurcation detection
and possible subsequent branch switching. The examples include minimal surfaces such as En-
neper’s surface and a Schwarz–P–family, some non–zero constant mean curvature surfaces such
as liquid bridges, and some 4th order biomembrane models. In all of these we find interesting
symmetry–breaking bifurcations. A few of these are (semi)analytically known and hence used as
benchmarks.
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1 Introduction

Numerical continuation for partial differential equations (PDEs) yields the dependence of solutions on
parameters, with special attention to bifurcation points, at which the local topological properties of
the set of solutions change. These include fold points, where a branch folds back, and branch points,
where different solution branches intersect. The list of toolboxes for numerical continuation of PDEs
includes, e.g., AUTO [DCF+97] as a prototype package and role model, which in it’s standard setup for
PDEs is mainly aimed at 1D boundary value problems, Coco [DS13], BifurcationKit.jl [Vel20],
and pde2path [Uec21, Uec23]. While all these packages in principle allow flexibility by delegating the
PDE definition/discretization to the user, to the best of our knowledge they all rather focus on PDEs
for functions u : Ω× Λ→ RN , where Ω ⊂ Rd is a fixed domain, d = 1, 2, or 3, N ∈ N, and Λ ⊂ Rp is
a parameter domain, or on PDEs for time–dependent functions u : I × Ω × Λ → RN , I ⊂ R, which
then includes the continuation and bifurcation of time periodic orbits.

However, differential geometric PDEs in parametric form may deal directly with manifolds, e.g.,
surfaces in 2D, which are not graphs over a fixed domain. There are well established numerical
methods for the discretization of such PDEs, for instance the surface FEM [DE13], but there seem to
be few algorithms or packages which combine these with continuation and bifurcation. Two notable
exceptions are the algorithm from [Bru18], and the SurfaceEvolver [Bra92], for which bifurcation
aspects are for instance discussed in [Bra96]. Here we present geometric PDE bifurcation problems
from demos for the Xcont extension of pde2path. More implementation details of Xcont and the
demos are presented in the tutorial [MU23a], while here we focus on general principles and results,
first for constant mean curvature surfaces, which are not necessarily graphs, and with, e.g., the mean
curvature, or the area or enclosed volume as the primary bifurcation parameter, and second for some
4th order PDE biomembrane problems. See Fig. 1 for a preview of the type of solutions we compute.

For X a two dimensional surface immersed in R3, we for instance want to study the parameter
dependent problem

H(X)−H0 = 0, (1a)

V (X)− V0 = 0, (1b)

possibly with boundary conditions (BCs) in (1a), where H(X) is the mean curvature at each point
of X, and V (X) is the volume enclosed by X. The system (1) is obtained for minimizing the area
A(X) under the volume constraint V (X) = V0, i.e., as the Euler–Lagrange equations for minimizing
the energy

E(X) = A(X) +H0(V (X)− V0), (2)

and V0 ∈ R typically plays the role of an “external continuation parameter”, while H0, which for
instance describes a spatially constant pressure difference for interfaces between fluids, is “free”.

Following [Bru18], our setting for (1) and generalizations is as follows. Let X0 be a surface
satisfying (1) for some V0 and H0, and define a new surface via X = X0 + uN0, u : X0 → R with
suitable boundary conditions, where N0 : X0 → S2 is (a choice of) the unit normal vector field of X0.
Then (1) reads

G(u, H̃) := H(X)− H̃ !
= 0, (with boundary conditions, if applicable) (3a)

which is a quasilinear elliptic PDE for u, coupled to the volume constraint

q(u) := V (X)− Ṽ !
= 0. (3b)
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Figure 1: Preview of solutions (solution branches) we compute. (a) Mean curvature H (negative since we

choose the outer normal N) over volume V for spherical caps, and sample solutions, §3.2. The colors indicate

u in the last continuation step, yellow>blue, and thus besides giving visual structure to X indicate the

“direction” of the continuation. (b) Enneper’s minimal surface (a bounded part, with the boundary shown in

red), §3.3. (c) A liquid bridge between two circles, with excess volume and hence after a symmetry breaking

bifurcation, §3.4. (d) A Schwarz P surface, §3.5.1. (e) A Helfrich–type biomembrane cap after a symmetry

breaking bifurcation. Samples (b)–(e) are each again from branches of solutions of the respective problems,

see Figures 5, 6, 9, and 15.

Thus,

after solving (3) for u, H̃, Ṽ we can update X0 = X0 + uN0, H0 = H̃, V0 = Ṽ , and repeat. (4)

We generally compute (approximate), e.g., the mean curvature H from a surface FEM discretiza-
tion of X, see §2.2. This can and usually must be combined with adaptive mesh refinement and
coarsening as X changes. Our methods can be applied to other geometric PDEs, also of higher order.
For instance, for fourth order biomembrane models the analog of (3a) can be rewritten as a system
of (2nd order) PDEs for a vector valued u, and the same ideas apply. Additionally, (1) and its gen-
eralizations often have to be combined with further constraints such as phase conditions to eliminate
kernels due to symmetries.

Remark 1.1 Solutions of problems of type (1) give critical points of the volume preserving mean
curvature flow (VPMCF). A time t dependent 2D manifold X(t) ⊂ R3 deforms by mean curvature
flow (MCF) if (choosing the “inner normal” for N)

Ẋ = −H(X)N. (5)

This is the L2 gradient flow for the area functional A(X), and can be considered as a quasilinear
parabolic PDE, at least on short times. For closed and compact X there always is finite time blowup
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(for convex X by shrinking to a “spherical point”), and we refer to [Man11] for an introduction to
this huge field, which inter alia heavily relies on maximum (comparison) principles.

The VPMCF reads

Ẋ = −(H(X)−H)N, H =
1

A(X)

∫
X

H dS, (6)

and for closed X conserves the enclosed volume V (X). For non–closed X one typically studies
Neumann type BCs on “support planes”, see, e.g., [Har13] and in most cases the analysis is done
near axisymmetric states such as spheres, spherical caps, and cylinders. In general, the existence and
regularity theory for (6) is less well understood than for (5) due to the lack of general maximum
principles for (6).

Our notion of stability of solutions of (1) (indicated by thick lines in bifurcation diagrams, while
branches of unstable solutions are drawn as thinner lines) refers to (6) if we have an active volume
constraint such as (3b), and to (5) if not.

We also use very basic methods to numerically integrate (5) and (6) by explicit Euler stepping.
This often has to be combined with mesh adaptation, and in this case A does not necessarily decrease
monotonously for MCF. Moreover, our VPMCF typically conserves V only up to 0.5% error. Thus,
both are not necessarily efficient or highly accurate, but can be used to generate initial guesses for
the continuation of steady states of (1). See §3.3 (MCF) and [MU23a] (VPMCF) for examples, and,
e.g., [BNP10, BGN20, BGNZ22] for much more sophisticated numerical algorithms for geometric flows
including (5) and (6), and detailed discussion. c

The plan of the paper is as follows. In §2 we review some differential geometric background,
including a discrete setting. In §3 and §4 we discuss the examples, and in §5 we give a summary, and
an outlook on ongoing and future work. Again we refer to [Uec21] for general principles of numerical
continuation and bifurcation for PDEs, and a general description of pde2path and installation and
first steps, and to [MU23a] for implementation details of Xcont and all the demos. The rather large
number of demos included in the download at [Uec23] and only partly explained here is aimed at
showing versatility, and, more importantly, is due to our own needs for extensive testing, in particular
of mesh handling strategies. See also [MU23b] for supplementary information (movies) on some of the
rather complicated bifurcation diagrams we obtain. Table 1 summarizes acronyms and notation used
throughout.

Table 1: Notations and acronyms; for given X0, quantities of X = X0 + uN0 will also be considered
as functions of u, e.g., A(u) = A(X0 + uN0).

X surface immersed in R3 N = N(X) surface unit normal vector
A=A(X)=A(u) area of X, resp. of X=X0+uN0 V = V (X) (algebraic) volume, e.g., (14)
H = H(X) mean curvature, e.g., (12) K = K(X) Gaussian curvature
G(u, λ) = 0 generic form of a PDE such as

(3a), λ as a generic parameter
ind(X) index, i.e., number of unstable

eigenvalues of linearization
L = ∂uH(u) Jacobi op. (with BCs) q(u, λ) = 0 generic constraint such as (3b)

BC boundary condition DBC/NBC Dirichlet/Neumann BC
pBC periodic BC PC phase condition
BP/FP branch/fold point CMC constant mean curvature
TPS triply periodic surface TPMS triply periodic minimal surface
MCF mean curvature flow VPMCF volume preserving MCF
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2 Background

2.1 Differential geometry, continuation and bifurcation

We briefly review background from differential geometry, and recommend [Des04, Tap16, UY17] for
further reading, among many others.

Throughout, let Σ be a connected compact orientable 2D manifold, with coordinates x, y, and
possibly with boundary ∂Σ, and for some α ∈ (0, 1) immersed by X ∈ C2,α(Σ,R3). By pulling back
the standard metric of R3 we obtain the first and second fundamental forms on Σ expressed via X as

g =

(
g11 g12
g12 g22

)
=

(
‖Xx‖2 〈Xx, Xy〉
〈Xx, Xy〉 ‖Xy‖2

)
, h =

(
h11 h12
h21 h22

)
=

(
〈Xxx, N〉 〈Xxy, N〉
〈Xxy, N〉 〈Xyy, N〉

)
, (7)

with unit normal N , which we consider as a field on Σ, or locally on X, which will be clear from the
context. The mean curvature H then is

H =
1

2

h11g22 − 2h12g12 + h22g11
g11g22 − g212

, (8)

which is the mean of the minimal and maximal normal curvatures κ1 and κ2, and

K = κ1κ2 (9)

is the Gaussian curvature. The sign of H depends on the orientation of X, i.e., on the choice of N .
A sphere has positive H iff N is the inner normal. The Gaussian curvature does not depend on N or
any isometry of Σ (Gauss’s Theorema Egregium).

A generalization of the directional derivative of a function f to vector fields or tensors is the
covariant derivative ∇Z for some vector field Z on X. For a vector field Y , the covariant derivative
in the j’th coordinate direction is defined as ∇jYi := ∂xjYi + ΓijkYk, and for a 1-form ω we have

∇jωi := ∂xjωi − Γijkωk, with the Christoffel symbols Γijk = 1
2
gil(∂xjgkl + ∂xkgjl − ∂xlgjk), where gij are

the entries of g−1 and we use Einstein’s summation convention, i.e., summation over repeated indices.
The covariant derivative is linear in the first argument, giving a general definition of ∇ZY with some
vector field Z, and if f is a function on X, then

∇Zf = 〈g∇f, Z〉R2 . (10)

Throughout we are dealing with surfaces (2D manifolds immersed into R3), hence the gradient ∇ is
the surface gradient, i.e., the usual gradient ∇Rd in R3 projected onto the tangent space,

∇f = ∇R3f − 〈∇R3f,N〉N, (11)

which later will be needed to (formulate and) implement phase conditions, and, e.g., Neumann type
BCs. This also gives the Laplace Beltrami operator via

∆f = gij∇i∇jf,

which then also applies to general tensors. The Gauss–Weingarten relation ∂xi∂xjX = Γkij∂xkX+hijN
yields

∆X = gij∇i∇jX = gij
(
∂xi∂xjX − Γijk∂xkX

)
= gijhijN = 2H(X)N = 2 ~H(X),
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where ~H(X) is called the mean curvature vector, and

H(X) =
1

2
〈∆X,N〉 . (12)

The area of X is

A(X) =

∫
X

dS, (13)

and, based on Gauss’s divergence theorem, the (algebraic) volume is

V (X) =
1

3

∫
X

〈X,N〉 dS. (14)

If X is a closed manifold bounding Ω ⊂ R3, i.e., ∂Ω = X, and N the outer normal, then V (X) = |Ω| is
the physical volume. If X is not closed, then we typically need to add a third of the flux of ~x through
the open ends to V (X) (see the examples below).

We denote the set of all immersed surfaces with the same boundary γ by

Nγ = {X : X is an immersed surface as above and ∂X = γ}. (15)

The following lemma states that all immersions Y ∈ Nγ close to X are graphs over X determined by
a function u as Y = X + uN , which justifies our numerical approach (4). The condition that Y has
the same boundary as X in general cannot be dropped, as obviously motions of ∂X tangential to X
cannot be captured in the form X + uN .

Lemma 2.1 [KPP17]. For X ∈ C2,α(Σ,R3) with boundary ∂X = γ there exists a neighborhood

U ⊂ C2,α(Σ,R3) of X such that for all Y ∈ U ∩ Nγ there exists a diffeomorphism φ : Σ → Σ and a

u ∈ C2,α(Σ) such that

Y ◦ φ = X + uN. (16)

Assume that a CMC surface X0 with boundary ∂X0=γ and volume V (X0)=V0 belongs to a family
of CMC surfaces Xt, t ∈ (−ε, ε) for some ε > 0. For example, the spherical caps St from Fig. 1(a)
with the boundary γ = {(x, y, 0) ∈ R3 : x2 + y2 = 1} are a family of CMC immersions fully described
by the height t ∈ R. By Lemma 2.1, the parameter t uniquely defines u in a small neighborhood of
X0, i.e., Xt = X0 + uN , and the system of equations for u reads

H(u)−H0 = 0, (17)

for some H0 ∈ R, where we abbreviate H(u) = H(X + uN), etc. If we consider variational vector
fields at X0 in the form ψ = ∂tXt|t=0 = uN , and additionally assume that Xt ∈ Nγ, then necessarily

u|∂X = 0, (Dirichlet boundary conditions, DBCs). (18)

Such an Xt is called an admissible variation in [Lóp13, §2.1], and we have the following results on
derivatives of A and V .

Lemma 2.2 [Lóp13, §2.1] For an admissible one parameter variation Xt of X ∈ C2,α(Σ) and vari-

ational vector fields ψ = ∂tX
∣∣
t=0

= uN the functions t 7→ A(t) = A(Xt) and t 7→ V (t) = V (Xt) are
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smooth, and

V ′(0) =

∫
X0

u dS, A′(0) = −2

∫
X0

H0u dS, A′′(0) = −
∫
X0

(∆u+ ‖S0‖2u)u dS, (19)

where ‖S0‖2 = 4H2
0 − 2K0 with the Gaussian curvature K0. Thus

d

dt
H(Xt)

∣∣∣
t=0

= −1

2
(∆u+ ‖S0‖2u), (20)

and the directional derivative (20) is given by the self-adjoint Fredholm operator L on L2(X0) with

L = ∂uH(0) = −1

2
(∆ + ‖S0‖2), with DBCs. (21)

Remark 2.3 The operator in (21) without BCs is called Jacobi operator, and a nontrivial kernel
function is called a Jacobi field on X = X0. An immersion X with a Jacobi field satisfying the BCs is
called degenerate. The Fredholm property allows the use of the Crandall-Rabinowitz bifurcation result
[CR71]: Given a C1 branch (t0−ε, t0+ε) 3 t 7→ Xt, ifXt is non–degenerate for t ∈ (t0−ε, t0)∪(t0, t0+ε),
and if at t0 a simple eigenvalue t 7→ µ0(t) crosses transversally, i.e., µ(t0) = 0, µ′0(t0) 6= 0, then a branch

X̃t bifurcates at t0.
See also [KPP17] for a formulation via Morse indices ind(Xt)=number of negative eigenvalues

of the L, counted with multiplicity, used to find bifurcation points in families of nodoids, which we
shall numerically corroborate in §3.4.2. An “equivariant version” (factoring out symmetries) can be
found in [KPS18, Theorem 5.4], applied to bifurcations of triply periodic minimal surfaces, for which
linearizations always have a trivial 5–dimensional kernel due to translations and rotations, see §3.5
for numerical illustration. See also [GS02, Hoy06, Kie12] and [Uec21, Chapters 2 and 3] for general
discussion of Crandall–Rabinowitz type results, and of Krasnoselski type results (odd multiplicity of
critical eigenvalues, based on degree theory), including equivariant versions. c

2.2 Discrete differential geometry FEM operators

We recall a few discrete differential geometry operators from [MDSB03, Jac13], and shall use imple-
mentations of them from the gptoolbox [Jac22]. Given a triangulation

X ∈ Rnp×3 (point coordinates) and tri ∈ Rnt×3 (triangle corner indices) (22)

of X, and the piecewise linear element “hat” functions φi : X → R, φi(Xj) = δij, we have∫
∇φi∇φj dS =

1

2
(cotαij + cot βij) =: Lij, (23)

where αij and βij are the angles opposite the edge eij from point Xi to point Xj. For u : X → R,
u =

∑np

i=1 uiφi, this yields the FEM stiffness matrix L such that Lu corresponds to the Laplace–
Beltrami operator −∆u weighted by the mass matrix M . In [MDSB03] it is explained that for
geometric problems, with possibly rather distorted triangles, instead of the full mass matrix Mfull

with

Mfull,ij =

∫
φiφj dS, (24)
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the Voronoi mass matrix

M = diag(A1, . . . , Anp), (25)

should be expected to give better approximations, see also Fig. 2. Here, Ai =
∑ni

j=1Am(Tj) is the area
of the Voronoi region at node i, where Tj, j = 1, . . . , ni are the adjacent triangles, and Am(T ) is a
“mixed” area: For non–obtuse T , Am(T ) is the area of the rhomb with corners in Xi, in the midpoints
of the edges adjacent to Xi, and in the circumcenter of T , while for obtuse T we let Am(T ) := |T |/2
if the angle at Xi is obtuse, and Am(T ) := |T |/4 else. Altogether, this yields the approximation

−∆u = M−1Lu, (26)

where M from (25) is diagonal, and L and M are evaluated very efficiently via cotmatrix and
massmatrix from the gptoolbox.

However, as we always consider our problems such as (3) in weak form, we let H = 1
2
〈LX,N〉, with

vertex normals N , and the weak form of, e.g., H −H0=0 then is

〈LX,N〉 − 2MH0 = 0, (27)

again with Voronoi M . Alternatively, we use [k,H,K,M]=discrete curvatures(X,tri), where K and
k = (k1, k2) are the (weighted, i.e., weak) discrete Gaussian and principal curvatures per vertex; these
are computed from a discrete version of the Gauss–Bonnet theorem.1 Namely

K(Xi) = 2π −
ni∑
j=1

θj, (and k1 = H +
√
D and k2 = H −

√
D), (28)

where the θj are the angles at Xi, and where the discriminant D = H2 −K (which is non-negative
in the continuous case) in the discrete case is set to 0 if negative. An approximations of K is then
obtained (cheaply, since M is diagonal) from

K = M−1K. (29)

There are various schemes for H and K, with different convergence behaviors, see [XX09] and
the references therein. Numerical experiments in [Xu04] show that a variety of natural schemes for
∆ in general do not converge, but that M−1L = ∆ + O(h2) with Voronoi M at valence six nodes
(six neighbors) [Xu04, Theorem 2.1], where h is a suitable triangle diameter. In Fig. 2 we give an
illustration of the error and convergence behavior of our discrete H = 1

2
M−1 〈LX,N〉 based on (26),

and of K from (29) on (coarse) discretizations of the unit sphere obtained from subdivision and
projection, with 2 (a) resp. 3 (b) subdivisions. See pde2path/demos/geomtut/spheres/convtest.m

for the Matlab source. Here N=outer normal, hence H = −1 and K = 1 are the exact values,
and the two left columns indicate the convergence for H, but also that the node valence plays a role
on these otherwise very regular meshes.2 However, the last column shows that using Mfull in this
example, i.e., Hfull = 1

2
Mfull

−1 〈LX,N〉 gives a significant error (and similarly in K), and in fact no
convergence at the valence 5 nodes.

1On a manifold X with boundary ∂X we have
∫
X
K dS+

∫
∂X

κg ds = 2πχ(X) where χ(X) is the Euler characteristic
of X, and κg is the geodesic curvature of ∂X. This will play an important role for the biomembranes in §4. The discrete
formula (28) is used at interior points of X, while at boundary points Xi it is modified to K(Xi)− π.

2Euler’s polyhedron formula yields that triangulations with all nodes of valence 6 do not exist, see, e.g., [BF67].
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(a)

(b)

Figure 2: Discrete H (and K) on (coarse) meshes of the unit sphere (plots cropped). Two left columns:

Convergence for H = −1
2M

−1 〈LX,N〉 and K = M−1K with Voronoi M . Right column: No convergence for

H (and similar for K) at valence 5 nodes when using Mfull.

3 Second order examples

Our examples are meant to illustrate different differential geometric bifurcation problems, in particular
with different BCs. We start with spherical caps as an introductory example, and then consider
classical minimal and CMC surfaces, for instance the Enneper and Schwarz–P surfaces, and so called
nodoids (including physically relevant liquid bridges). In §4 we consider 4th order problems obtained
from the Helfrich functional.

3.1 A few comments on Xcont and the demo settings

The examples are included as demos in the pde2path–download at [Uec23], and the setup of these
demos and of several more is explained in detail in [MU23a]3. Here we only give the following comments
on implementations:

� We extend the pde2path setup explained in [Uec21, Chapter 5], i.e., all data (FEM-data, solution
u and branch tangent τ , active parameter index, tolerances, switches, function handles to define
G, q, and Jacobians, . . . ) is kept in a Matlab struct p as in Problem. The main additional
data is the manifold data in p.X and p.tri, cf. (22). The most important new switch is

p.sw.Xcont =

{
0 legacy setting (no X),

1 switch on X–continuation.
(30)

There also is the option p.sw.Xcont=2 to modify some details of Newton loops, see [MU23a].
� The discretization of the geometric PDEs is based on the gptoolbox, and pde2path–interface

functions to the gptoolbox.
� The basic pde2path commands work as before, e.g.: p=cont(p,n) (continue the solution branch

– here the branch s 7→ (X(s), λ(s)) – for n steps), p=swibra(dir,pt,newdir) (attempt branch–

3which also contains additional demos, for instance regarding MCF, VPMCF, and other BCs, and further some
convergence tests

9



switching at a previously computed BP saved in dir/pt, with saving of the new branch in
newdir), plotbra (plot a branch into a bifurcation diagram), plotsol (plot a solution).

Remark 3.1 a) For surface meshes (X, tri), mesh adaptation, i.e., refinement and coarsening, seems
even more important than for standard (non–parametric) problems, because well behaved initial
triangulations (well shaped triangles of roughly equal size) may deteriorate as X changes. The case
of growing spherical caps in Fig. 1(a) is rather harmless as triangle sizes grow but shapes stay intact,
and can easily be dealt with by refinement of the largest triangles. For this, we simply order the nt
triangles of tri by decreasing size, and from these choose the first bσntc for refinement by refineX,
i.e., we generally use σ as the parameter for the fraction of triangles to refine. The refinement can be
either done as RGB, or by refining only the longest edges of the selected triangles. RGB is generally
better if triangle shapes are crucial, but may result in rather long cascades to avoid hanging nodes
(such that σ is only a lower bound for the fraction of triangles actually refined). Refine-long gives
more control as only the selected triangles are bisected (plus at most one more triangle for each one
selected), but may lead to obtuse triangles, and it seems that as for standard FEM obtuse triangles
are more dangerous than acute triangles. A short computation shows that, e.g., for a right–angled
triangle refine–long increases the mesh–distortion

δmesh := max
triangles

(h/r) (edge-length over in–radius), (31)

by 45%; however, this can often be repaired by combining refine–long with retrigX, see b). See also
[She02] for a very useful discussion of mesh quality (in the planar setting, and in 3D).

Conversely, coarsenX can be used to coarsen previously refined triangles, again from a list gener-
ated by some criterion, e.g., the bσntc triangles of smallest area, but these have to be from the list of
previously refined triangles.

degcoarsenX works differently: It aims to remove obtuse and acute triangles by collapsing (short)
edges. This works in many cases but may result in hanging nodes such that the FEM no longer works.

Both, refineX and degcoarsenX can be told to not refine/coarsen boundary triangles, which is
crucial for the case of pBCs.

b) We also provide two small modifications of (actually interfaces to) code from [PS04]. In
retrigX.m we generate a new (Delauney) triangulation of X, keeping intact the surface structure
of X. This is in particular useful if X has been obtained from long refinement, which typically results
in nodes having 8 adjacent triangles (valence 8), while “standard” triangulations (and the output of
retrigX) have valence 5 and 6, which generally seems to result in more robust continuations. In
moveX we combine retrigX with motion of the points in X due to “truss forces” of the triangulation,
aimed at more uniform edge lengths. Due to the similarity of the triangulation truss forces and surface
tension, this works best for minimal surfaces (H=0), or otherwise for surfaces with small |H|. c

3.2 Spherical caps

We start with the continuation in volume V of spherical caps over the unit circle γ in the x–y plane,
as previewed in Fig. 1(a). It is known [ALP99],[KPP15, §2.6] that no bifurcations occur, and hence
this only serves as an introductory toy model. The BCs are ∂X = γ = {(x, y, 0) ∈ R3 : x2 + y2 = 1},
which since they hold for the initial unit disk translate into u|γ = 0. Thus, our complete problem
reads

G(u) := H(u)−H0 = 0, u|∂X = 0, q(u) := V (u)− V0 = 0, (32)

with external parameters (V0, H0). Listing 1 exemplarily shows the relatively simple implementation
of the PDE H(u)−H0 = 0, but again we refer to [MU23a] for more details also on all of the altogether
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five basic function files (initialization scinit.m, PDE-rhs sGsc.m, Jacobian scjac.m, MCF right hand
side mcf.m, branch output cmcbra.m) needed to run (32) in the script files cmds1.m, cmds2.m and
cmds3.m. Nevertheless, while we refrain from displaying further m–files, we keep the references to the
scripts as also here we recommend to run these in parallel to this document.

1 function r=sGsc(p,u) % spherical cap PDE (more generally: any CMC with DBCs)

par=u(p.nu+1:end); H0=par(1); u=u(1:p.np); % split into PDE -u and parameters

N0=getN(p,p.X); X=p.X+u.*N0; N=getN(p,X); % base normal , new X, new normal

M=getM(p,X); LB=cotmatrix(X,p.tri); % mass matrix and Laplace -Beltrami

r= -0.5*dot(LB*X,N,2)+M*(H0*ones(p.np ,1)); % rhs -PDE , i.e., -H(X)+H0=0

6 r(p.idx)=u(p.idx); % Dirichlet BCs

Listing 1: geomtut/spcap1/sGsc.m, implementing the PDE H(X)−H0 = 0, to be prepared by scinit.m.

Basic results on the continuation of the initial disk (with V = 0 and A = π) in V are already given
in Fig. 1(a). H (negative since we use the outer normal) reaches the minimum H = −1 at V ≈ π
corresponding to a hemisphere, and as V increases we need mesh refinement. We use the triangle
areas on X as selector, and first we use repeated mesh refinement every 5th step. This way we can
robustly, accurately and quickly continue to arbitrary large V , i.e., arbitrary large “cap radius” R,
where H = 1/R asymptotes to H = 0.

Remark 3.2 For the introductory problem (32) we can also use numerical Jacobians of G; these are
sufficiently fast to not play a role for the speed of the continuation, at least for np < 2000, say, because
Matlab’s numjac can efficiently exploit the known sparsity (structure) of ∂uG, given by the sparsity
structure of the Laplacian L, or equivalently, by the sparsity structure of the (full, not Voronoi) mass
matrix. On the other hand, for q (implemented in the library function qfV) we use the functional
derivative (implemented in qjacV) since ∂uq(u) ∈ R1×np is dense and and numerical derivatives for
∂uq would be a serious bottleneck. c

(a) (b) (c)

0 100 200

V

0.02

0.04

0.06

0.08

0.1

||
H

-H
(V

)|
|

2
/|
H

(V
)|

27

25

100 200

V

5.5

6

6.5

7

m
a
x
(h

/r
)

25

27

Figure 3: Results from spcap1/cmds2.m. (a) Error e(X) := ‖H −H(V )‖2/|H(V )| for refinement each 15th

step (capr1, black) (starting at step 10), when e(X) > p.nc.errtol = 0.05, using p.fuha.ufu=@refufu

(capr3, red), and when max(A) > 0.3 using p.fuha.ufu=@refufumaxA with σ = 0.3 (capr4, magenta).

At V = 200, np = 1452 on capr1, np = 1486 on capr3, and np = 636 on capr4. (b) Mesh distortion

δmesh = max(h/r) (edge-length over in–radius). (c) Illustration of meshes before/after refinement at pt25;

plots cropped at y = 0 for better visibility of the meshes, and the boundary at z = 0 marked in red.

In Fig. 3 we illustrate different options for mesh adaptation.4 The black line capr1 in (a) corre-
sponds to adaptation each 15th step, with “refinement factor” σ = 0.3 (fraction of triangles marked

4Fig. 3(a,b) shows essentially verbatim output from plotbra in cmds2.m, where the dots and numbers indicate the
continuation step, subsequently used also in the sample plots as in (c). This also holds for all subsequent plots, and the
only “manual adjustments” are the occasional repositioning of the numbers at the arrows by drag and drop.
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for refinement). Here we only bisect the longest edge of a selected triangle, and the fraction of refined
triangles is between σ and 2σ. For capr3 (red) we refine when the “error” e(X) exceeds 0.04, where
e(X) is also used for plotting and defined as follows: For given V we compute the (exact) H(V ) of the

associated (exact) spherical cap C(V ) as H(V ) = −π
1/3(3V + s− π2/3)(s− 3V )1/3

s(3V + s)1/3
, s =

√
9V 2 + π2.

We then define the “relative L2 error”

e(X) = ‖H(X)−H(V )‖L2(X)/|H(V )|, (33)

and put e(X) on the branch in the modified local copy cmcbra.m of the standard (library) cmcbra.m.
e(X) can then be plotted like any other output variable, and, moreover, can be used (without recom-
puting) in p.fuha.ufu (user function), which is called after each successful continuation step. The
default (library) setting p.fuha.ufu=@stanufu essentially only gives printout, and to switch on the
adaptive meshing we rename and modify a local copy as refufu.m, and set p.fuha.ufu=@refufu.

Another “natural” alternative is to refine when

amax = max(a1, . . . , ant) > p.maxA, (34)

i.e., when the maximum area of the nt triangles exceeds a chosen bound. This is not an error estimator
in any sense (as a plane can be discretized by arbitrary large triangles), but an ad hoc criterion, with
typically an ad hoc choice of p.maxA. In detail, if maxA>p.maxA, then refufumaxA.m bisects all
triangles with A>(1−σ)p.maxA. With p.maxA=0.3 and σ=0.2 this yields the magenta line in Fig.3(a).
In (b) we plot the mesh distortion δmesh := maxtriangles(h/r), cf. (31), which is our main measure to
assess mesh quality. As a rule of thump we find that meshes with δmesh < 10 are quite good, and that
meshes with δmesh < 50 are still reasonable.

The samples in Fig.3(c) illustrate a refinement step on the black branch, yielding a reasonable
mesh also at large V . However, this naturally depends on the choice of steps between refinements
(and on the refinement fraction sig and continuation stepsize ds). For the red line in Fig. 3(a), the
refinement when the error e(X) exceeds the chosen bound p.nc.errbound is more genuinely adaptive,
and this similarly holds for capr4 based on (34). (b) shows that the long–refinement generally yields
a (mild) increase of the mesh distortion δmesh, but overall the mesh–quality stays very good.

In cmds3.m and Fig. 4 we decrease V from V≈150 (running the branch capr1 from Fig. 3 back-
wards), and test the MCF from a spherical cap at V≈15. For both, because the shrinking of the
caps gives mesh distortions, the main issue is that we now need to alternate continuation/flow and
mesh–coarsening. For the continuation we give two options: similar to the refinement for increasing V
in Fig. 3, we either coarsen after a fixed number of steps (black branch), or when δmesh > 8 (magenta
branch). Both here work efficiently only until V ≈ 35, after which new parameters for the coarsening
should be chosen. For the MCF in (d) we similarly coarsen after a given number of time steps. With
this we can flow back to the disk, essentially reached at t = 3, but the last plot in (d) shows that along
the way we have strongly distorted meshes, which are somewhat repaired in the coarsening steps, and
the final distortion with δmesh ≈ 30 is not small but OK.

Remark 3.3 The performance of the MCF as in Fig. 4, based on simple explicit Euler stepping,
depends on the choice of flow parameters, i.e., step size dt, number nf of steps before coarsening, and
coarsening factor σ. With too weak coarsening (large nf, or small σ), triangles may degenerate. Too
aggressive coarsening (large σ) may lead to wrong identification of boundary edges. Altogether, at
this point we must recommend trial and error. c
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Figure 4: Results from spcap1/cmds3.m. (a)-(c) continuation backwards in V from V≈150 (np=1452);

coarsening each 5th step (capr1b, black, np=644 at V=40) vs coarsening when δmesh > 8 (magenta, np=650

at V=40)). (d) MCF from the spherical cap at V≈15. time series of A and V , sample plots, and time series

of δmesh (last plot). Coarsening at times t = 0.25j, altogether from np = 773 at t = 0 to np = 450 at t = 3.

3.3 Enneper’s surfaces

Plateau’s problem consists in finding soap films X spanning a (Jordan) curve (a wire) γ in R3, and
minimizing area A. Mathematically, we seek a minimal surface X, i.e., H(X) ≡ 0, with ∂X = γ. Such
problems have a long history, and already Plateau discussed non–uniqueness and bifurcation issues,
called “limits of stability” in [Pla73].

Enneper’s surface is a classical minimal surface. Bounded parts of it can be parameterized by5

XE = XE(r, ϑ) =

 r cos(ϑ)− r3

3
cos(3ϑ)

−r sin(ϑ)− r3

3
sin(3ϑ)

r2 cos(2ϑ)

 , (r, ϑ) ∈ Dα = [0, α)× [0, 2π), (35)

see Fig.5. We start with some basic facts, see [BT84] and the references therein. For α ≤ 1/
√

3, the
boundary curve

γ(ϑ;α) =
(
α cos(ϑ)− α3

3
cos(3ϑ),−α sin(ϑ)− α3

3
sin(3ϑ), α2 cos(2ϑ)

)
, ϑ ∈ [0, 2π) (36)

has a convex projection to the x–y–plane, and for 1/
√

3 < α ≤ 1 the projection is still injective.
This yields uniqueness (of the minimal surface spanning γ) for 0 < α ≤ 1, see [Ruc81]. For α > 1
uniqueness of XE fails, i.e., at α = 1 we have a (pitchfork, by symmetry) bifurcation of different
minimal surfaces spanning γα [Nit76], see also [BT84].

5see also Remark 3.9 for the Enneper–Weierstrass representation of Enneper’s surface

13



(a) (b) (c)

1 1.5 2

20

40

60

80

100

120

A

36

30

23

15

10

16

(d) (e) (f)

1 1.5 2

2

4

6

8

10

12

V

30

15

(g) (h)

0 5 10 15

t

5

10

15

20

25

30

A

V

Figure 5: Bifurcation from the Enneper surface XE , A over α (a), and V over α (d). At α = 1 (e1/pt10 in

(b)), the branch e1b (blue) with smaller A bifurcates from e1 (black), samples in (b,c) and (e,f). (g,h) MCF

from perturbation of e1/pt23 to e2/pt30, samples showing H.

In the demo enneper we choose α as a continuation/bifurcation parameter for

H(X) = 0, ∂X = γα, (37)

and get the pitchfork bifurcation at α = 1. The problem (37) is “easy” in the sense that we have the
explicit parametrization (35) which we can use at any α, but it requires care with the meshing, i.e.,
careful use of refineX and degcoarsenX, see [MU23a, §3.2.3]. At α = 1 we then find a supercritical
pitchfork bifurcation from XE, branch e1 (black), to a branch e2 (blue) which breaks the (x, y, z) 7→
(−y, x,−z) symmetry of XE (rotation by π/2 around the z axis and mirroring at the z = 0 plane).
The solutions “move up” (or down) in the middle, which decreases A compared to XE, cf. (c) vs (f).
(d) illustrates that the (algebraic) volume V of XE is always zero. The numerical continuation of e1
to large α is no problem, using suitable mesh–adaption, even as γ(·;α) self–intersects for α >

√
3,

because the associated parts of XE do not “see” each other, cf. (e) for an example. The continuation
of e2 to larger α is more difficult, and fails for α > 1.5, as for instance shortly after e1b/pt30 we can
no longer automatically adapt the mesh near the top.
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However, physically the change of stability at the symmetry breaking pitchfork at α = 1 is most
interesting. Using suitable combinations of geomflow (the MCF driver), refineX, degcoarsenX and
moveX, see Remark 3.1, we can use MCF to converge for α > 1 and t → ∞ to e2, from a variety of
ICs, for instance from perturbations of e1, see Fig. 5(g,h), and enneperflow.avi in [MU23b].

3.4 Liquid bridges and nodoids

Weightless liquid bridges are CMC surfaces with prescribed boundary for instance consisting of two
parallel circles wlog centered on the z-axis at a fixed distance l and parallel to the x–y plane. Ad-
ditionally there is a volume constraint, which makes the problem different from Plateau’s problem.
See for instance [SAR97] and the references therein for physics background and results (experimental,
numerical, and semi-analytical).

We consider liquid bridges between two fixed circles C1 and C2 of

radius r = r∗ = 1, parallel to the x–y axis and centered at z = ±l = ±1/2. (38)

A trivial solution X0 is the cylinder, with H = 1/2, volume V = 2πl and area A = 4πrl (without the
top and bottom disks). Further explicit solutions are known in the class of surfaces of revolution, for
instance nodoids. We first review some theory for nodoids with DBCs, and then continue basic liquid
bridges (embedded nodoids), with bifurcations to non axial branches, see Figures 6 and 7. Nodoids
with “periodic” BCs are studied in [MP02], and numerically in §3.4.3, where we also comment on the
theory for these.

3.4.1 Nodoid theory

In [KPP17], a family of nodoidsN (r, R) is parameterized by the neck (smallest) radius r and the buckle
(largest) radius R. Let l > 0 and C1, C2 ⊂ R3 be two circles of radius r∗ centered at heights z = ±l
and parallel to the x–y plane. With the two parameters a,H ∈ R the nodoids are parameterized by
the nodary curve

(x, z) : [−t0, t0]→ R2,
(
x(t), z(t)

)
=

(
cos t+

√
cos2 t+a

2|H|
,

1

2|H|

∫ t

0

cos τ+
√

cos2 τ+a√
cos2 τ+a

cos τ dτ

)
, (39)

which is then rotated around the z axis, i.e.,

Nt0 : M → R3, (t, θ) 7→
(
x(t) cos θ, x(t) sin θ, z(t)

)
, (40)

where M = [−t0, t0] × [0, 2π). Thus, in terms of §2.1 these nodoids are immersions of cylinders.
While (39) only gives nodoids with an even number of self intersections (or none), shifting the [−t0, t0]
interval also gives odd numbers of self intersections. From the immersion Nt0 , we can determine
geometric quantities by evaluating the parametrization at the endpoints. For example the height and
the radius are given by

2l =
1

|H|

∫ t0

0

cos t+
√

cos2 t+ a√
cos2 t+ a

cos t dt, r∗ =
cos t0 +

√
cos2 t0 + a

2|H|
, (41)

and the buckle radius (at t = 0) is R =
1 +
√

1 + a

2|H|
. Implicitly, the equations in (41) define a(t0),

hence also the mean curvature H, and thus t0 parameterizes a family of nodoids t0 7→ Nt0 . Conversely,
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given r, l in (38), the implicit equation

l

2r

(
cos t0 +

√
cos2 t0 + a

)
−
(

sin t0 +

∫ t0

0

cos2 τ√
cos2 τ + a

dτ

)
= 0 (42)

yields a and t0 which satisfy the boundary condition, and we exploit this to relate our numerics to
results from [KPP17], see Remark 3.6.

In order to detect bifurcations from the family (40), we search for Jacobi fields vanishing on the
boundary, cf. (21). The unit normal vector (field) of Nt0 is

N =
(
cos t cos θ, cos t sin θ, sin t

)
, t ∈ [−t0, t0), ϑ ∈ [0, 2π),

and for every fixed vector ~x ∈ R3, the function 〈~x,N〉 is a solution to (20). So the task is to find ~x
and t0 such that the Dirichlet BCs are fulfilled. The components of N have zeros if the nodoid meets
the boundary horizontally (parallel to the x–y plane), which happens at t0 = π

2
+ kπ, or vertically,

which happens at t0 = kπ for k ∈ N. Choosing the unit basis (ei)i=1,2,3, we have in the horizontal case
that 〈ei, N〉 |∂Nt0

= 0 for i = 1, 2, and in the vertical case 〈e3, N〉 |∂Nt0
= 0.

Lemma 3.4 [KPP17, Lemma 3.4 and Proposition 3.6] Consider the one parameter family Nt0. If

for some t0 ∈ R+ the normal vector at ∂Nt0 is

1. N =
(

0, 0, ν(x)
)

, then L = ∂uH(u) has a double zero eigenvalue.

2. N =
(
ν1(x), ν2(x), 0

)
then L = ∂uH(u) has a simple zero eigenvalue.

The immersions are isolated degenerate, i.e., there exists an ε > 0 such that (Nt)t∈[t0−ε,t0+ε] has a

jump in the Morse index. In 1. this occurs for t0 = π
2

+ kπ, and in 2. for t0 = kπ, for every k ∈ N.

Now general bifurcation results (see the discussion after Lemma 2.2) yield the existence of bifur-
cation points at the horizontal and vertical cases presented in Lemma 3.4.

Theorem 3.5 [KPP17, Propositions 3.5 and 3.6] In cases 1. and 2. in Lemma 3.4 we have bifurcation

points for the continuation in H. Moreover,

1. if ψ = 〈ei, N〉 ∈ kerL for i = 1, 2, then the bifurcating branch breaks the axial symmetry;

2. if ψ = 〈e3, N〉 ∈ kerL, then the bifurcating branch breaks the z 7→ −z symmetry.

3.4.2 Numerical continuation and bifurcation of nodoids

Nodoids with DBCs at the (fixed) top and bottom circles are treated in the demo nodDBC. For solutions
without axial symmetry we additionally need to set a rotational phase condition (PC): IfX is a solution
to (3), so is RφX, where φ is the angle in the x–y plane, and

Rφ~x =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 ~x. (43)

Thus, if ∂φ(RφX)|φ=0 = 1
x2+y2

(−y∂xX + x∂yX) ∈ R3 is non–zero, then it gives a non–trivial kernel of

L, which makes continuation unreliable and bifurcation detection impossible. See, e.g., [Uec21, §3.5]
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for further discussion of such continuous symmetries. Here, to remove the kernel we use the PC

q(u) :=

∫
X

〈∂φX0, X0 + uN0〉 dS =

∫
X

〈∂φX0, N0〉u dS =:

∫
X

dφ u dS
!

= 0, (44)

where X0 is from the last continuation step, with normal N0, where φ is the angle in the x–y plane,
and hence ∂φX = −X2∇X1X + X1∇X2X, where ∇Xj

are the components of the surface gradient,
cf. (10). On the discrete level we thus obtain the linear function

q(u) = (dφ)Tu, with derivative ∂uq = (dφ)T , (45)

dφ = 〈−X2∇X1X +X1∇X2X,N〉, node–wise, i.e., ∇Xj
X is interpolated to the nodes. We then

add srotq(u) to E from (2) with Lagrange multiplier srot, and thus modify the PDE to G(u) :=

H(u) − H0 + srotdφ
!

= 0. This removes the φ–rotations of non-axisymmetric X from the kernel of
∂uG(u), and, moreover, |srot| < 10−8 for all the continuations below.

Since the (algebraic) volume V of self–intersecting nodoids is not intuitive, here we use continua-

tion in area A and H. Thus, we start with the constraint q(u) = A(X)−A0
!

= 0, implemented in the
pde2path library function qfA, with (action of the) derivative q′(u)v = −2

∫
X
H0v dS, implemented in

qjacA. For non–axisymmetric branches we set up qfArot and its derivative, where we put (44) as a sec-
ond component of qfA, and similarly for the derivatives, and when we bifurcate to a non-axisymmetric
branch, we set p.nc.nq=2 (2 constraints, area and rotational phase) and p.fuha.qf=@qfArot.

Figure 6 shows results from cmds1.m (see also the movie nodDBCs.avi from [MU23b] to go step by
step through the bifurcation diagram). We start at the cylinder and first continue to larger A (black
branch N). The first BP at (A,H) ≈ (12.24, 1.29) is double with angular wave number m = 1. We
simply select one of the kernel vectors to bifurcate, and do two steps without PC, and then switch on
the rotational PC and continue further (blue branch N1). As predicted, BP1 occurs when X meets the
lower and upper boundary circles horizontally, and the stability changes from N to N1.6 The second
BP yields the m = 2 branch N2 (red). These results fully agree with those from [Bru18]. The branch
Nb (grey, with pt3) is the continuation of N to smaller A (and V ), where the cylinder curves inward.

The third BP on N is simple with z 7→ −z symmetry breaking, yielding branch N3 (brown). On
N3 there are secondary bifurcations, and following the first we obtain N3-1 (magenta). The 4th BP
on N again has m = 2 but is different from the 2nd BP on N as the nodoid has already “curved in”
at the boundary circles, which is inherited by the bifurcating branch N4 (orange). The 5th BP on N

yields a skewed m = 2 nodoid N5 (green).7 After the fold, the mesh in N becomes bad at the necks,
see N/pt52 in Fig. 7. Thus, for accurate continuation we use (40) to remesh, see Nr1/pt2 and Remark
3.6(a) and Fig. 7(a–c), yielding the branch Nr1 (grey) in Fig. 6(a). Nr1/pt12 in Fig. 7 shows that after
a number of the mesh at the neck deteriorates again, and so we remesh again to Nr2 (light grey). The
nodoid then self–intersects at (A,H) ≈ (22.9, 1.05), and at Nr2/pt10 we do the next restart to Nr3.
Using such remeshing we can continue the branch N (as Nr1, Nr2, Nr3, ...) to many loops and
self–intersections, with many further BPs as predicted in Lemma 3.4. In any case, although by branch
switching from Nr1/bpt1 instead of from N/bpt6 we use a somewhat adapted mesh to compute branch
N6 (red), we only compute a rather short segment of N6 because on N6 we quickly run into bad meshes
again. See also [MU23a] for further comments/experiments on the meshing of nodoids. In Fig. 7(d)
we illustrate the correspondence of our numerical results for the continuation in A to Theorem 3.5,
see Remark 3.6(b).

6 N up to BP1, Nb, and N1 are the only stable (in the sense of VPMCF) branches in Fig. 6, and hence physically most
relevant; the further branches we compute are all unstable, and hence of rather mathematical than physical interest.

7BP5 is an example of a BP qualitatively predicted in [KPP17, Prop.3.9] at large t0.
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Figure 6: Bifurcation diagram of (mostly) embedded nodoids (a), with samples in (b,c) cut open at the x–z
plane (y = 0). Branches N (black), Nb (grey), N1 (blue), N2 (red), N4 (orange), N5 (green), N6 (light blue),
N3-1 (magenta), and Nr1, Nr2 and Nr3 (“restarts” of N, grey). See text for details, and Fig. 7 for plots of
N/pt52, Nr1/pt2, and Nr2/pt12.

Remark 3.6 a) For axi– and Z2 symmetric nodoids, we can easily extract a=(2HR−1)2 − 1 from
our numerical data, with R the radius on the z=0 plane. We can then numerically solve the second

equation in (41), i.e., 1 = r∗ =
cos t0 +

√
cos2 t0 + a

2|H|
for t0, and use this for restarts with a new mesh,

for instance from N/pt52 to Nr1/pt1 in Fig. 7.
b) Similarly, given r∗=1 and l=0.5, we can solve (42) for a and t0 in a continuation process. Then

computing A=A(a, t0) gives the black curve in Fig. 7(d), and intersecting the A values of our numerical
BPs gives the t0 values for BP1, BP3 and BP6 as predicted, and explains the folds FP1 and FP2. In
summary, the BPs on N, their multiplicities, and their relation to Theorem 3.5 (if applicable) are

BP number BP1 BP2 BP3 BP4 BP5 BP6

multiplicity 2 2 1 2 2 2

Theorem 3.5 1. NA 2. NA NA 1.

t0 π/2 1.995 π 3.377 3.622 3π/2

(46)

18



where NA means not applicable, and where for BP1, BP3 and BP6 we give the exact values, with as
indicated in Fig. 6(c) very good agreement of the numerics.8 c
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Figure 7: Continuation of Fig.6; (a–c) (1/8th of) solutions on N before and after remeshing. (d) Comparison
to analytical results, see Rem. 3.6(b).

3.4.3 Nodoids with periodic BCs in z

In [MP02], bifurcations of axisymmetric to non–axisymmetric nodoids are studied with the period (the
“height”) along the axis of revolution (wlog the z–axis) as the continuation/bifurcation parameter.
For fixed H = 1, [MP02] proves that there is a r0 > 0 such that for neck radii r > r0 (r < r0)
there are (are not) bifurcations from nodoids, and gives detailed asymptotics of bifurcation points in
a regime (τ → −∞ in [MP02]) which corresponds to (R − r)/R→ 0 with outer radius R, see below.
In particular, the 2nd variation of the area functional around a given nodoid Nτ is analyzed with
z ∈ R, i.e., for the full non–compact nodoid, not just for one period cell. This proceeds by Bloch
wave analysis, and first establishes the band structure of the spectrum. Using a parametrization
similar to (39), a detailed analysis of the second variation of the area functional, and ultimately two
different numerical methods, [Ros05] shows that r0 = 1/2, and the first bifurcation (at r0) leads to
non–axisymmetric nodoids with angular wave number m = 2 and same periodicity in z, i.e., Bloch
wave number α = 0 in [MP02].

Here we also consider periodic (in z) nodoids with fixed H = 1 using the height δ as continua-
tion/bifurcation parameter. We recover the primary bifurcation at r = r0 = 1/2 from [Ros05], and
find further bifurcations. Numerically, to set up “periodic boundary conditions in z”, we proceed

8This also holds for further BPs and folds, but we refrain from plotting these in the already cluttered BD in Fig. 6.

19



similar to the pde2path setup for periodic boundary conditions on fixed domains, see [Uec21, §4.3].
The basic idea is to identify points on ∂X at z = ±δ. Thus, before the main step X0 7→ X0 + uN0

for all our computations, we transfer the values of u from {X3 = −δ/2} to {X3 = δ/2} via a suitable
“fill” matrix p.mat.fill, which has to be generated at initialization and regenerated after mesh–
adaptation. Similar to §3.4.2 we need a rotational PC for non–axisymmetric branches, but here for
all computations we additionally need translational PCs in x, y and z directions, i.e. Ti~x = ~x + δei.
These translations act infinitesimally in the tangent bundle as TiX0 = ∇iX0, and hence the pertinent
PCs are

qi(u) := 〈∇iX0, X0 + uN0〉 = 〈∇iX0, N0〉u
!

= 0, i = 1, 2, 3, (47)

with derivatives ∂uqi(u) = 〈∇iX0, N0〉. Like (45), they are implemented node–wise, and their deriva-
tives are added to G with Lagrange multipliers sx, sy, sz.
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Figure 8: (a) Bifurcation diagram of nodoids parametrized by height δ, fixed H = 1. The axisymmetric
branch bN (black) starts near δ = 0.88 via (40), and in direction of decreasing δ shows a sequence of BPs to
nodoids with broken S1 symmetry, here bN1 (blue, m = 2) and bN2 (red, m = 3). Samples in (b–f), with
bN1r and bN2r after some refinement.

Fig. 8 shows some results from nodpBC/cmds1.m. For robustness (essentially due to the strong
contractions at the inner loops later in the branches) it turns out to be useful to initialize with a
rather coarse mesh and after 1 or 2 steps refine by area. As we then decrease δ from the initial
δ ≈ 0.88, we find the first BP at δ ≈ 0.82 and with r = 0.5, corroborating [Ros05], to the angular
wave number m = 2 branch bN1. Using suitable mesh refinement along the way we can continue bN1

to small δ, where in particular we have multiple self–intersections; first, the inner loops extend the
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“height” δ for δ < δ0 ≈ 0.78, and second the inner loops intersect in the plane z = 0 for δ < δ1 ≈ 0.43
(not shown), making the inner radius r = 0 (or rather undefined). The branch bN2 from the next BP
at δ ≈ 0.54 has m = 3, and otherwise behaves like the m = 2 branch. All these branches are rather
strongly unstable, with ind(X) > 4, and Footnote 6 again applies.

Remark 3.7 The branching behavior of the periodic nodoids very much depends on which period
cell in z we prescribe, with Fig. 8 corresponding to one cell. Naturally, all 1–periodic solutions are
n–periodic for any n ∈ N. With respect to bifurcations, the 1–cell computations then correspond to
Bloch wave numbers α = 0 in [MP02]. For n ≥ 2 periods cells we obtain further discrete Bloch wave
numbers, e.g., additionally α = π for n = 2. This then allows bifurcations which simultaneously break
the S1 and the Z2 symmetry of the symmetric nodoid, and this is illustrated in [MU23a, Fig.14], giving
a basic impression of the extremely rich bifurcation picture to be expected when the computational
cell is expanded further in z. c

3.5 Triply periodic surfaces

Triply periodic surfaces (TPS) are CMC surfaces in R3 which are periodic wrt three independent
directions. Triply periodic minimal surfaces (TPMS) (this implicitly also means embedded, sometimes
abbreviated as TPEMS) have been studied since H.A. Schwarz in the 19th century, and have found
renewed interest partly due to the discovery of new TPMS by A. Schoen in the 1970ies, and due to
important (partly speculative) applications of TPMS (and their non–zero H TPS companions) in
crystallography, mechanics and biology. See for instance [AHLL88] and [STFH06], and [Bra23] for a
long list of TPMS.

From the PDE point of view, TPS solve (3) with periodic BCs on a bounding box. Some families
of TPMS were studied analytically as bifurcation problems in [KPS18], using a cell length (period)
in one direction as continuation/bifurcation parameter, and combined with numerical results from
[ES18]. Much of the theory of TPMS is based on Enneper–Weierstrass representations. See Remark
3.9, where we relate some of our numerical results for the Schwarz P surface family to results from
[KPS18] obtained via Enneper–Weierstrass representations. A way to approximate TPS is as zeros of
Fourier expansions of the form

F (~x) =
∑

k∈Z3,|k|≤N

F (k) cos(2πk · ~x− α(~x)).

A simple first order approximation of the Schwarz P surface (cf. Fig.1(d)) is

Schwarz P ≈ {(x, y, z) ∈ R3 : cos(x) + cos(y) + cos(z) = 0}, (48)

Better approximations with some higher order terms are known, also for many other “standard” TPS,
see, e.g., [GBMK01] for a quantitative evaluation of such approximations.9

3.5.1 The Schwarz P minimal surface (family)

In TPS/cmds1.m we study continuation (and bifurcation) of the Schwarz P surface in the period δ in
z–direction, focusing on one period cell, i.e., the box

Bδ := [−π, π)2 × [−δ/2, δ/2). (49)

9The approximation (48), and higher order corrections, also arise from solving the amplitude equations for a Turing
bifurcation on a simple cubic (SC) lattice, where hence the Schwarz P surface, or, depending on volume fractions a
CMC companion of Schwarz P, occurs as the phase separator between “hot” and “cold” phases. See, e.g., [CK97] and
[Uec21, §8.1,8.2], and similarly [WBD97] for the occurrence of Scherk’s surface in 3D Turing patterns.
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To get an initial (approximate) X on B2π, we use (48) and the mesh generator distmesh [PS04], on
one eighth of B2π, which we then mirror to B2π. The continuation in δ proceeds similar to §3.4.3, by
first scaling X = Sδp.X to period δ in z and then setting X = X + uN and solving for (u, δ). As in
§3.4.3 we have translational invariance in x, y and z, and hence exactly the same PCs.

Somewhat differently from §3.4.3 we now also “fill” X by taking the ∂X values from the left/bot-
tom/front of the box to the right/top/back of the box. While u is stilled filled via u = p.mat.fill∗u,
for filling X we compute matrices p.Xfillx, p.Xfilly, p.Xfillz similar to p.mat.fill, but with
−1 (instead of 1) where we want to transfer X values from one side of the box to the opposite side
(assuming symmetry wrt the origin). Finally, it turns out that the continuation is slightly more robust
if we correct N at the boundaries to lie in the boundaries of Bδ, see Remark 3.8.

Figure 9 shows some results from TPS/cmdsP.m. Decreasing δ from 2π (P/pt1 in (b) at δ = 6.2732),
X gets squashed in z direction, and at δ = δ1 ≈ 5.9146 we find a D4 symmetry breaking pitchfork
bifurcation (with the two directions corresponding to interchanging the x and y axis wrt shrinking
and expansion) to a branch P1, which then extends to large δ. On the other hand, increasing δ from
2π (branch pB, grey), we find a fold on the P branch at δ = δf ≈ 6.408. Both δ values agree well with
results from [KPS18] based on the Enneper–Weierstrass representation, summarized in Fig. 9(h), see
Remark 3.9.
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Figure 9: (a) Bifurcations in the Schwarz P family, black (P) and grey (Pb) branch; bifurcating magenta
branch (P1) breaks D4 symmetry. Samples in (b–g). Comparison with [KPS18] in (h), cf. Remark 3.9.

Remark 3.8 a) The results from Fig. 9 can also be obtained by choosing “Neumann” BCs on ∂Bδ.
However, for other TPMS we need the pBCs. For instance, we can also continue the H surface family
on a suitable (almost minimal) rectangular box, where solutions fulfill pBCs but not Neumann BCs.
Due to the necessary larger period cell, and due to branch points of higher multiplicity, the numerics
for the H family are more elaborate, and these results will be presented elsewhere.

b) In fact, in the local copy TPS/getN.m we apply a trick and zero out N1 at x=±π, N2 at y=±π
and N3 at z= ± δ/2. Thus, N is forced to always lie in the cube’s faces, yielding a “combination of
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NBCs and pBCs” in the sense that the trick forces X to meet the cube’s faces orthogonally, while the
pBCs keep X on opposite faces together. However, the trick is for convenience as without it we get the
same branches but in a less robust way, i.e., requiring finer discretizations and smaller continuation
stepsizes. c

Remark 3.9 The Enneper–Weierstrass representation of a minimal surface is

(
x, y, z

)
= Re

[
eiϑ
∫ p

p0

(1− z2, i(1 + z2), 2z)R(z) dz

]
, (50)

p0, p ∈ M with M a Riemannian surface, where ϑ is called Bonnet angle, and R :M→ C is called
Weierstrass function. The Enneper surface E from §3.3 is given by the data M = Dα (disk of radius
α) and R(z) ≡ 1. For TPMS, R is a meromorphic function, and M consists of sheets connected at
branch points given by poles of R. See, e.g., [Oss14, §8] for a very readable introduction to Weierstrass
data and the connection of minimal surfaces and holomorphic functions, [Hof90] for a basic discussion
of the Weierstrass data of TPMS, [Ros92] for identifying the Riemannian surfaceM for the Schwarz P
surface with S2×S2 by stereographic projection, where S2 is the unit sphere, and [FW14] for further
examples for construction of TPMS from Weierstrass data.

Following [KPS18], we consider M a double cover of C, and, for a ∈ (2,∞), let

R(z) = 1/
√
z8 + az4 + 1, (51)

where the Schwarz P surface with period cell [−π, π)3 is obtained for ϑ = 0 and a = 14.10 See also
[GK00] for the explicit computation of a fundamental patch of Schwarz P based on (50) and (51) with
a = 14 and a small planar preimage ⊂ C.

In [KPS18], a is taken as a bifurcation parameter along the Schwarz P family with the periods for
Schwarz P given by [KPS18, §7.3]

E = 2

∫ 1

0

1− t2√
t8 + at4 + 1

dt+ 4

∫ 1

0

dt√
16t4 − 16t2 + 2 + a

(periods in x and y), (52)

F = 8

∫ 1

0

t√
t8 + at4 + 1

dt (period in z), (53)

up to homotheties (uniform scaling in all directions). We have δ = 2πF/E for our δ, and evaluating
E,F numerically (or as elliptic integrals) and plotting δ(a) := 2πF/E as a function of a we get the
blue curve in Fig. 9(h), which corresponds to [KPS18, Fig.13]. In particular, δ(a) has a maximum
at a = a2 ≈ 28.778, and δ(a2) = δf completely agrees with our fold position in Fig. 9(a). On the
other hand, with suitable mesh adaptation the branch P1 continues to at least δ = 10. Next, [KPS18]
based on [ES18] gives a bifurcation from the P family at a = a1 ≈ 7.4028, and again we find excellent
agreement δ(a1) = δ1 with our BP at δ1. c

Remark 3.10 a) The fact that the Schwarz P family does not extend to “large” δ (but folds back)
has also been explained geometrically in [Hof90], without computation of the fold position.

b) The stability of Schwarz P (and hence also Schwarz D) on a minimal period cell and wrt volume
preserving variations is shown in [Ros92]. However, “larger pieces” of P, e.g., P on [−π, π)2× [−2π, 2π)
are always unstable, even wrt volume preserving variations. See also [Bra96, §8] for a useful discussion,
and illustrations. Numerically, in Fig. 9 we find: ind(X) = 2 except on the segment S of P (and Pb)

10For ϑ = π/2 we obtain the Schwarz D family, and for ϑ ≈ 0.9073 Schoen’s gyroid, as two further TPMS. Moreover,
since these have the same Jacobians as Schwarz P, all bifurcation results from Schwarz P carry over to Schwarz D and
the gyroid, but these appear to be much more difficult to treat in our numerical setting.
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between the fold and the BP at δ1, where ind(X) = 1. However, the most (and on S only) unstable
eigenvector has a sign (see [MU23a] for plots), and hence the solutions on S are stable wrt volume
preserving variations. c

3.5.2 CMC companions of Schwarz P

In Fig.10 we show some CMC companions of Schwarz P. Continuing first to smaller H (black branch
PH), X (the volume enclosed by X and the boundaries of the cube) “shrinks” and we find a BP at
H ≈ −0.1. In the other direction (grey branch PHb), X (the volume enclosed by X) “expands”,
with a BP at H ≈ 0.1. The continuation of both these branches fails at H ≈ −0.3 and H ≈ 0.3
(respectively), though they can be continued slightly further with careful mesh adaptation.
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Figure 10: Results from TPS/cmds2.m. Continuation of Schwarz P in H at fixed δ=2π. BD in (a): PH

(black), PHb (grey), za (dark green) and zb (lighter green), and za2 and zb2 (orange), which altogether are
only two different branches. BP1 on PH and approximate kernel vectors in (b,c), and further samples in (d).

Our main purpose here is to show how symmetry considerations and some tricks can help to avoid
numerical pitfalls. By symmetry, the BP PH/bpt1 (and similarly PHb/bpt1) must be double, although
the smallest (in modulus) eigenvalues reported at PH/bpt1 are µ1 ≈ 0.005 and µ2 = 0.02.11 See
Fig.10(b) for PH/bpt1, and (c) for the (approximate) kernel vectors φ1, φ2. In fact, the plot in (b)
(stronger correction along the z–axis) shows that at least the last step in the localization of PH/bpt1

11Additionally, there is a simple negative eigenvalue µ0 ≈ −0.7, and the next two eigenvalues are µ3,4 ≈ 0.5, i.e., µ1,2

are well separated from the rest of the spectrum.
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violated the S4 symmetry of the (now fixed) cube, which explains the rather significant splitting of
the in principle double eigenvalue µ1 = 0. Clearly, we expect φ1,2 to approximate two bifurcation
directions, with D4 symmetry along the x axis (φ1) and y axis (φ2). By symmetry we then must have
at least one more bifurcating branch, with D4 symmetry along the z axis. To find this bifurcation
direction, we can use qswibra with numerical derivation and solution of the algebraic bifurcation
equation (ABE) [Uec21, §3.2.2]. However, this is expensive and not always reliable. Here, the three
bifurcation directions (oriented along x, along y, and along z) are returned, but we have to relax the
tolerance isotol for identifying solutions of the ABE as isolated. Alternatively, we can just compute
and plot the (approximate) kernel vectors φ1, φ2, which lets us guess to approximate the third direction
as φ3 = 0.2φ1 + φ2. This turns out to be sufficiently accurate and gives the transcritical branch(es)
za (dark green) and zb (other direction, lighter green).

On za, the continuation fails after pt6. zb/pt6 is at H = 0 and corresponds to Pb/pt7 from
Fig. 9. Subsequently, zb continues to PHb/bpt1, and is indeed identical to the branch(es) za2 (and
zb2), transcritically bifurcating there. In particular, PHb/bpt1 is again double, and we can compute
the three branches oriented along x, y or z as above (see cmds2.m). zb2 (light orange) then continues
back to PH/bpt1, while zb2 fails after pt6 (last sample in (d)). The continuation failures of za and
za2 after pt6 are due to poor meshes as the different boundaries of X come close to each other, like
after PH/pt16 and PHb/pt15, and it seems difficult to automatically adapt these meshes.

4 Fourth order biomembranes

The (dimensionless) Helfrich (or spontaneous curvature (SC)) functional [Hel73] is

E =

∫
X

(H − c0)2 + bK dS, (54)

where c0∈R is called spontaneous curvature, and b∈R is called saddle–splay modulus. The motivation
of (54) are the shapes of closed vesicles with a lipid bilayer membrane, for instance red blood cells
(RBCs), for which E is to be minimized under the constraints of fixed area A(X)−A0 = 0 and enclosed
volume V (X) − V0 = 0. This motivated much work, e.g., [SBL90, Sei97, NT03, VDM08, OYT14],
aiming to understand the various shapes of RBCs12, mostly in the axisymmetric case. Applying
our algorithms to closed vesicles (without a priori enforcing any symmetry) we recover many of the
results from the above references. See also [LWM08, KIPM+20] for further biological and mechanical
background, [JQJZC98] for non–axisymmetric shapes (under different constraints), and [FVKG22] for
the related problem of 1D radial wrinkling of arteries, with an additional restoring force due to the
surrounding tissue, and a very rich bifurcation structure.

For closed X, the term b
∫
X
K dS in (54) can be dropped due to the Gauß–Bonnet theorem,

cf. Footnote 1, as
∫
X
K dS = 2πχ(X) is a topological constant, such that the Lagrangian is

L =

∫
X

(H − c0)2 dS + λ1(A− A0) + λ2(V − V0), (55)

where λ1 (corresponding to a surface tension) and λ2 (corresponding to a pressure difference between
outside and inside) are Lagrange multipliers for area and volume constraints. The Euler-Lagrange

12or, more down to earth, lipid bilayer membrane vesicles which develop upon injection of lipids into water, and
which for instance can also organize into tubes; see also [SL95, §8] for a discussion of additional structures (networks
of spectrin tetramers) on the membrane of RBCs
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equation is

∆H + 2H(H2 −K) + 2c0K − 2c20H − 2λ1H − λ2 = 0. (56)

If X is not closed, then often one or both of the constraints A − A0 = 0 and V − V0 = 0 is (are)
dropped, and the associated Lagrange multipliers λ1,2 are treated as external parameters, often with
λ2 = 0. If in the Gauss–Bonnet formula∫

X

K dS = 2πχ(X)−
∫
∂X

κg ds (57)

we assume γ = ∂X to be parameterized by arclength, then the geodesic curvature κg is the projection
of the curvature vector γ′′(~x) onto the tangent plane T~x(X), see, e.g., [Tap16, §4.3]. If as before we
restrict to normal variations ψ = uN , which moreover fix the boundary, i.e.,

u|∂X = 0, (58)

then

∂ψE =

∫
X

(∆H + 2H(H2 −K) + 2c0K − 2Hc20 − 2λ1H)u dS +

∫
∂X

(H − c0 + bκn)∂nu ds,

where κn = 〈γ′′, N〉 is the normal curvature of γ = ∂X, i.e., the projection of the curvature vector
onto the normal plane, see, e.g., [PP22] and the references therein. Thus we again obtain (56) (with
λ2 = 0), and additionally to (58) we can consider either of

∂nu = 0 on ∂X (clamped BCs, or Neumann BCs), (59)

H − c0 + bκn = 0 on ∂X (stress free BCs). (60)

In case (59) we have
∫
∂X
κg ds = 0 in (57), and hence

∫
bK dS again becomes constant and can be

dropped from (54).
In §4.1 we focus on closed vesicles, and in §4.2 on “Helfrich caps”, i.e., disk type solutions of (56)

with BCs (58) and (60). In [MU23a, §3.6] we also consider “Helfrich cylinders”, i.e., a cylindrical
topology with BCs (58) and (59).

Remark 4.1 a) With N the inner normal, the stability for (56) refers to the Helfrich flow (see, e.g.,

[KN06] for the existence theory near spheres)
〈
Ẋ,N

〉
= −(∆H+2H(H2−K)+2c0K−2c20H−2λ1H),

with BCs (58) and (59) or (60) for non–closed vesicles.
b) Biological vesicles can undergo topological transitions which are important for their biological

function, e.g., fission of a small bud from the vesicle, or fusion of two vesicles. We cannot capture
such transitions in our setup of steady state continuation. Some examples of splitting in DNS for a
phase field model are given in [DLW06]; see also [BGBC22] and the references therein for a state of
the art discussion phase field modeling of vesicles.

c) In a certain continuum limit, and with different interpretations of the Lagrange multipliers λ1,2,
(56) can also be derived as the shape equations for carbon nanostructures, see [MDHV13].

d) Besides the Helfrich functional (54), a number of related models exist, for instance the so–called
bilayer–coupling (BiC) model [SZ89],

E =

∫
X

H2 dS, L = E + µ1(A− A0) + µ2(V − V0) + µ3(M −M0), (61)
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where M =
∫
X
H dS is the integrated mean curvature, M0 is an external parameter, µ1,2 are the

Lagrange multipliers for the area and volume constraints, and µ3 is the Lagrange multiplier for the
constraint of fixed area difference between the outer and inner lipid monolayer, expressed via Taylor

expansion around a virtual middle layer as q := M−M0
!

= 0. By identifying µ1 = λ+c20, µ2 = λ2, and
µ3 = −c0, this yields the same shape equation (56) as (55), but the additional constraint M −M0 = 0
drastically changes the phase diagram of minimizers for (61) compared to those for (54). In particular,
for (61) closed non–axisymmetric minimizers are known to exist, but not for (54).

Another model is the so called area difference elasticity (ADE) model, where the area difference
is not a hard constraint but added as an energy penalization, i.e.,

E =

∫
X

H2 dS +
α

2
(M −M0)

2, L = E + µ1(A− A0) + µ2(V − V0), (62)

α > 0. This again allows stable non–axisymmetric minimizers which moreover compare well to some
experimental results; see [WDS96] and [DEK+97], including a discussion of the relations between the
SC, BiC and ADE models.

Additionally, there are mechanochemical models which couple bending energies E=
∫
X

(H−c0)2 dS
with a scalar morphogen on the surface which aggregates in regions of high mean curvature and which
in turn increases c0 [MMCRH13], or with for instance Brusselator type reaction–diffusion systems on
the surface, where at least one species again increases c0 [TN20]. Most of these models are not vari-
ational and somewhat phenomenological, but easily lead to stable non–axisymmetric vesicle shapes,
and also to persistent wave–like behavior. However, to the best of our knowledge the (numerical)
study of these models so far was restricted to DNS. See also [ES13, BGN15] and the references therein
for FEM discretizations of the dynamics of a variety of models, including the SC, the BiC and the
ADE models, and, moreover considering the dynamics of vesicles in a fluid. c

From the variety of models related to (54), here we opt for the ’classical’ Helfrich SC model, while
results including non–axisymmetric minimizers for the BiC model, and some bifurcation study for
[MMCRH13] type models will be presented elsewhere.

4.1 Vesicles

Following [NT03] we set λ1 = −λ̃1/2 where λ̃1 is the Lagrange multiplier for the area constraint, and
write the shape equations (56) as

∆H + 2H(H2 −K) + 2c0K − 2c20H + λ1H − λ2 = 0, (63a)

together with the volume and area constraints

q1(X) = V (X)− V0 = 0 and q2(X) = A(X)− A0 = 0. (63b)

The bending energy E =
∫
X

(H−c0)2 dS is scalingX 7→ γX invariant, and hence a useful dimensionless
quantity to characterize solutions of (63) is the reduced volume

v = V/V0, (64)

where for given A = 4πR2
0 (hence R0 =

√
A/4π), V0 = 4πR0/3 is the volume of the equivalent sphere.

At v = 1, the sphere is the only solution, and for decreasing v we may expect more and more solutions
of various shapes.
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The (wlog unit) sphere is a solution of (63) if (for N the inner normal and hence H ≡ 1),

λ1 = −2c0 + 2c20 + λ2. (65)

By [NT03, Thm3.1], bifurcations from the sphere occur at

λ1 = n(n+ 1)− 4c0 + 2c20, λ2 = n(n+ 1)− 2c0, (66)

n ≥ 2, with kernels of dimension 2n + 1 spanned by the spherical harmonics Ynm, m = −n, . . . , n.
Already from [Pet83] it is known that branches originating from spherical harmonics with l ≥ 3 are
never stable, at least near v = 1, while some of the branches bifurcating at the first BP with n = 2
contain stable solutions, again see also [NT03]. The bifurcation (unique branch modulo symmetry,
see below) is transcritical, with one direction yielding oblates (oblate ellipsoids, turning into biconcave
RBC shapes, see below for sample plots and more specific classifications), and the other direction
yielding prolates (prolate ellipsoids). In particular, these are axisymmetric shapes.

An extensive largely numerical study of axisymmetric vesicles is given in [SBL90], including phase
and energy diagrams. In a nutshell, the results are [SBL90, Fig.8,10, 11,13,17]:

� In the v–c0 phase diagram [SBL90, Fig.10], there is a curve (0, 1] 3 v 7→ c0(v) decreasing in v and
with c0(1) = −5/6 such that near v = 1, either oblates (for spontaneous curvature c0 < c0(v))
or prolates (c0 > c0(v)) have minimal E.

� For decreasing v, the prolates lose stability to pears, and the oblates lose stability to stoma-
tocytes. These transitions are discontinuous, i.e., occur via subcritical bifurcations, where the
bifurcating branches (pears from prolates, stomatocytes from oblates) gain stability after one
(or more) fold(s).

� Some regions in the phase diagram at small v remain unstudied, but in particular for v > 0.5,
say, there is strong evidence that all local minimizers of E are axially symmetric.

Given the above results, here we mostly also focus on the first BP (n = 2 in (66)) and axisymmetric
solutions, and only compute a few secondary bifurcations from the axisymmetric branches and some
bifurcations from the sphere with n = 3. In this, we fix three values of c0, namely c0 = 0, c0 = −1,
and c0 = 1.4, then first continue in λ1 along the spherical branch to prepare branch switching at the
respective BPs from (66), and after branch–switching to non–spherical solutions continue in v, see
Remark 4.2. The BDs are then plotted as E over v, and agree with [SBL90, Fig.8, 11, 13, 17] for the
axisymmetric branches in the v–ranges we can reach. Additionally, our stability information is wrt
general normal variations, not just axisymmetric ones.

Before we embark on this program we briefly comment on the numerical challenges and solutions
to these, see [MU23a] for more (implementation) details. The basic setup again consists in setting
X = X0 +uN0 (with here N the inner normal), and then writing (56) as a system of two second order
equations for (u1, u2) = (u,H), namely

G(u) :=

(
Lu2 +Mf(u1, u2)

Mu2 −H

)
!

=

(
0

0

)
. (67)

As before, L is the cotangent Laplacian, M the (Voronoi) mass matrix, and

f(u1, u2) = 2u2(u
2
2 −K)− 2λ1u2 + 2c0K − 2c20u2.

The mean curvature H=H(u1) is computed as H=1
2
〈LX,N〉, and the Gaussian curvature K=K(u1)

is obtained from discrete curvatures, cf. (28). The reason for the reformulation of (63a) as two
second order equations (67) is that this way we can easily implement the two BCs (58) and (59) or
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(60) when required.
For closed vesicles, i.e., without any BCs, we always need the three linear translational PCs

qi(X) :=

∫
X0

〈u,Ni〉 dX
!

= 0, i = 1, 2, 3, (68)

cf. (47), where Ni is the ith component of the (here inner) normal N of X0. For (non–spherical)
surfaces of revolution (axisymmetric branches), we need two rotational PCs (omitting the axis of

revolution). For this, let ~l1 = (l1, l2, l3)
T with ‖~l1‖ = 1 be the rotational axis, which we find as

~l1 = Xi0/‖Xi0‖ (69)

with either i0 = argmaxi‖Xi‖ (prolates) or i0 = argmini‖Xi‖ (oblates), and take ~l1,~l2,~l3 with

l̃2 =

−l2l1
0

+

 0

−l3
l2

+

−l30

l1

 , ~l2 =
l̃2

‖l̃2‖
, and ~l3 = ~l1 ×~l2,

as an orthonormal basis of R3. Then the normal variations of rotations around ~l2 and ~l3 are spanned

by {
〈
~l2 ×X,N

〉
,
〈
~l3 ×X,N

〉
}, and the natural rotational PCs are

q3+i(u) :=

∫
X

〈
~li+1 ×X,N

〉
u dS

!
= 0, i = 1, 2. (70)

For non–axisymmetric X we additionally use the third rotational PC q6(u):=
∫
X

〈
~l1×X,N

〉
u dS

!
= 0,

and we add ηi∂uqi(u) to the first component of G from (67), with Lagrange multipliers ηi. See Table
2 for a summary. Technically, after branch–switching from the sphere we first do two steps without
rotational PCs. For axisymmetric solution branches we then detect the rotational axis via (69) and

switch on the two rotational PCs around ~l2,~l3. After a secondary bifurcation to a non–axisymmetric
branch, or for primary bifurcations to non–axisymmetric branches from the trivial branch (n ≥ 3 in
(66)) we switch on the third rotational PC.

Table 2: Constraints and active parameters for different branch types; the parameters s∗ and r∗ are the La-

grange multipliers for the translational and rotational constraints, and stay O(10−6) during all continuations.

type active parameters constraints

trivial (sphere) λ1, λ2, sx, sy, sz area A and volume V , 3 translational PCs

axisymmetric v, λ1, λ2, sx, sy, sz, r1, r2 A and V , 3 translational and 2 rotational PCs

non–axisymmetric v, λ1, λ2, sx, sy, sz, r1, r2, r3 A and V , 3 translational and 3 rotational PCs

Remark 4.2 The eigenvalues for the linearization around a steady state are computed from the
extended system (

Md 0

0 Mq

)
∂tV = −

(
Gu(U) Gw(U)

qu(U) qw(U)

)
V, (71)

where U = (u,w) is the steady state including the active parameters w but without the primary active
(genuine continuation) parameter, where V = (v, z) is the perturbation, and where Md ∈ RN×N and
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Mq ∈ Rnq×nq are the pertinent dynamical mass matrices. For (67) we have N = 2 and Md =

(
1 0

0 0

)
from the rewriting as a 2nd order system, and Mq = 0 ∈ R6×6 (axisym. case) or Mq = 0 ∈ R7×7

(non–axisym. case). Importantly, to obtain the correct stability information we cannot use one of the
Lagrange multipliers as primary active parameter, because the Lagrange multipliers are in general
not fixed for the flow, and hence we use the reduced volume for the continuation of the nontrivial
branches. c

The initial discretization of the sphere is obtained by standard subdivision and projection (like
in Fig.2) with np = 2562 nodes and nt = 5120 triangles. Many of the interesting solutions show
narrow necks, and hence adaptive mesh–refinement and coarsening will play a vital role. We set
p.fuha.ufu=@refufu, where refufu.m augments stanufu.m by mesh refinement based on areas (for
parts of the vesicles bulging out), and by mesh refinement and coarsening based on mesh quality. All
three steps are controlled by switches and tolerances, see [MU23a] for more details, and suitable choices
do allow the resolution and robust continuation of rather challenging solutions. Nevertheless, here we
restrict to np ≤ nmax = 6000 nodes in the mesh, and remark that of course for axisymmetric solutions
a 1D setting as in [SBL90] is more efficient and allows yet finer meshes and hence the resolution of
narrower necks.
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Figure 11: c0 = 0. (a) BDs, E over v, with zoom, and E over λ1; prolates (orange), oblates (red), and two

secondary branches o-1 (green), and o-2 (stomatocytes, violet). (b) samples of one prolate and one oblate.

(c) samples along secondary branches bifurcating from oblates.
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• c0 = 0. Fig.11(a) shows a basic BD for c0 = 0. As already said, we always start with the unit
sphere at some λ1 < 6− 4c0 + 2c20, cf. (66), and initially continue to larger λ1 to obtain the BPs from
the sphere, although we know them explicitly from (66). This gives the black trivial branch in the
3rd plot in Fig. 11(a). However, for the nontrivial branches we use v as the primary parameter (see
Remark 4.2), and get the BD in the first plot in (a), with a zoom in the second.

For the BPs in (66) we have λ1 = 6 for n = 2 and λ1 = 12 for n = 3; at the first BP λ1 = 6 we
have a 5 dimensional kernel of spherical harmonics, but modulo rotations the only bifurcating branch
we find bifurcates transcritically in λ1 and consists of prolates (orange, stable) in one direction (in λ1)
and oblates (red, initially unstable) in the other direction, see the samples in (b), with the oblate of
the typical RBC shape. The oblates gain stability at v ≈ 0.76 where the green (non–axisymmetric)
branch bifurcates, on which solutions first look like elongated RBCs (pt15) and then become similar to
prolates (pt42). The oblates (RBCs) lose stability at v ≈ 0.51 (and shorty after become non–physical
due to self intersections) to a subcritical branch of stomatocytes, which stabilizes in a fold at v ≈ 0.66,
after which solutions at low v take the shape of two spheres, the inner one called an inverted sphere,
connected by a narrow neck [SBL90]. See the last sample in (c), after which we cannot continue the
branch further without refining to more than nmax = 6000 nodes. Importantly, the stomatocytes have
lower E than the oblates for v ≤ vos ≈ 0.57, and this corresponds to the discontinuous transition from
oblates to stomatocytes in [SBL90, Fig.10].

• c0 = −1. For c0 = −1 < −5/6 the first BP is at λ1 = 12, and the stabilities of prolates and oblates
near v = 1 flips, i.e., the oblates are now stable near v = 1, and the prolates unstable, and remain
so for all v ∈ (0, 1). See Fig. 12, corresponding to [SBL90, Fig.17]. Near v = vs ≈ 0.7 stomatocytes
bifurcate subcritically from the oblates. According to [SBL90, Fig.17] these stomatocytes stabilize
in a fold near v = 0.95, but in our numerics we can only reach v ≈ 0.92. The red oblates become
unphysical near v = 0.55 due to self intersections, but the branch folds back near v = 0.5 and turns
into discocytes with two invaginations, see o/pt70. This stabilizes in a fold near v ≈ 0.85, but again
we cannot continue this branch sufficiently far.

Instead, in Fig.12 we additionally show two branches bifurcating from the 2nd BP at λ1 = 20, and
a number of non-axisymmetric branches. The branch c (magenta) from BP2 is axisymmetric with
a roughly conical shape near v = 1, which elongates for smaller v, with several 2ndary bifurcations.
Another branch d from BP2 has tetrahedral symmetry, with four invaginations, and again with 2ndary
bifurcations. Moreover, we show the green branch which bifurcates from the first BP on the orange
prolates branch. This also folds back, and connects to d at v ≈ 0.55, see panel (c). While all branches
shown in (a) are unstable, except the oblates for v > vs, we believe that our selection gives a useful
first impression of the extremely rich bifurcation structure, in particular showing that and how 2ndary
bifurcations from the n = 2 primary branches may connect to n ≥ 3 branches.

• c0 = 1.4. According to [SBL90, Fig.10], for c0 > cp ≈ 1 and decreasing v, oblates lose stability to
pears. This is illustrated in Fig.13 for c0 = 1.4, together with some secondary bifurcations from the
oblates to D3 and D4 “starfish vesicles” o-1 and o-2, and a tertiary bifurcation to o-1-1, which can be
thought of as an analogue of pears.

In detail, at v = vp ≈ 0.73 the green pear branch bifurcates subcritically from the prolates, gains
stability in a fold near v = 0.88, and shows lower E than the oblates for v < vpp ≈ 0.8, which hence
gives the discontinuous transition from prolates to pears in [SBL90, Fig.10]. Again we remark that
the Dk branches with samples in (b) only contain unstable solutions for the SC model. However,
some solutions of this type are in fact stable in the BiC model (61), which yields the same Euler–
Lagrange equation (56) as (54), but with a different energy E and different constraints, which change
the stability properties. Therefore we find it useful to show the branches o-1 and o-2 and associated
sample solutions in Fig.13, but a detailed bifurcation analysis of the BiC model will be given elsewhere.
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Figure 12: c0 = −1; oblates (red) which turn into discocytes with two stomas; stomatocytes o-1 (violet);

cone branch c (magenta) bifurcating from BP2; prolates (orange), and secondary branch p-1 (green) which

connects to (rotation of) diamond d (blue) from BP2; the last sample shows the 4 stomas on d.

4.2 Biocaps

In the demo biocaps we fix the boundary circle ∂X={x2 + y2=α2} in the x–y plane. Thus,

∆H + 2H(H2 −K) + 2c0K − 2c20H − 2λ1H = 0 on X, and (72a)

u = 0 and H − c0 + bκn = 0 on ∂X. (72b)

In our experiments we fix α = 1 and λ1 = 1/4, and first c0 = 1/2 and vary b, and want to start with
the upper unit hemisphere. Then H = K = 1 (choosing the inner normal for the hemisphere) and
κn = 1 and hence (72b) requires b = −1/2.

Remark 4.3 a) For X not closed it is an open problem for what parameters, and boundaries and
BCs, the minimization of L from (55) is a well–posed problem. In [Nit93], the following conditions on
c0, b and λ1 are posed for L with λ2 = 0 to be definite in the sense that L ≥ C0 for some C0 > −∞
for all connected orientable surfaces X of regularity C2 with or without boundary:

(i) λ1 ≥ 0, (ii) − 1 ≤ b ≤ 0, and (iii) − bc20 ≤ λ1(1 + b). (73)

This proceeds as in [Nit91] by scaling properties of L for various surfaces composed of planes (of
area A), cylinders (of lengths l and radius rc), and (hemi)spheres (of radius rS), and considering the
asymptotics of L as A, l → ∞ and/or rc, rs → 0. For instance, the condition (73)(i) arises most
naturally by considering X to contain a plane with A→∞, which for λ1 < 0 gives L→ −∞.

On the other hand, in the physics literature no restrictions on c0, b ∈ R are given, and in a given

32



(a) (b)

0.6 0.7 0.8 0.9 1

v

0.05

0.1

0.15

E

c
0

=1.4

20

40

40

20

50

20

(c)

Figure 13: c0 = 1.4. (a) BD, oblates (red), with secondary bifurcations to D3 (o-1, violet) and D4 (o-2,

brown), and tertiary bifurcation (o-1-1, blue); prolates (p, orange), with pears (p-1, green). (b) samples from

2ndary bifurcations from oblates. (c) samples of prolate and pears.

problem a fixed ∂X and the BCs (59) or (60) may make L definite for much larger ranges than given
in (73). In our experiments below we do take parameters to rather extreme values, e.g., b = −4 in
Fig. 15, where we find interesting solutions, which can then again be continued to moderate parameter
regimes.

b) For ∂X 6=∅, and in particular for the cases of caps, we are not aware of analytic bifurcation
results, except [PP22] which presents some results for caps in a different setting. c

Fig.14(a) shows the continuation of the initial hemisphere in b. This is mainly intended for subse-
quent continuation in c0 at negative b, and (b) shows the case of b ≈ −1.66. The problem is symmetric
under (c0, X3) 7→ −(c0, X3), and in particular at c0 = 0 we have the flat disk as an exact solution
(for any b). See c00b/pt11 for a nearby solution with c0 ≈ −0.07, which lies between two folds with
exchange of stability. This unstable part will feature interesting bifurcations to non–axisymmetric
branches at more negative b, see Fig. 15, while the remainder(s) of the axisymmetric branches are all
stable, with the samples c00b/pt34 and c00/pt14 in 14(b) showing the typical behavior at strongly
negative or positive c0, respectively.

Remark 4.4 The main numerical challenges and used tricks for (72) are:
a) For the initial hemisphere we again use a subdivision and projection algorithm, followed by

one mesh–refinement at the boundary, as a good resolution near ∂X turns out helpful later. The
initial mesh then has np=2245 nodes, which later is refined to np > 6000. The mesh quality in all our
solutions stays quite good, i.e., δmesh < 20 for all solutions, and mostly δmesh < 10.
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Figure 14: Initial results for (56),(60) from biocaps/cmds1.m. In (a) we continue in b starting at b/pt1 from

the unit hemisphere with (α, λ1, c0, b) = (1, 1/4, 1/2,−1/2), to increasing b (branch b, black) and decreasing

b (branch bb, grey). On b we go to the flat disk (last sample), while on bb the hemisphere bulges out. This

is mainly intended for later continuation in c0, and in (b) we do so starting from bb/pt9 at b ≈ −1.66. This

gives the double well shape for E, with a short unstable segment between the two folds at c0 ≈ ±0.33. See

Fig. 15 for the cases of b ≈ −3.4 (bb/pt20) and b ≈ −4.

b) The boundary γ = ∂X is parameterized by arclength as γ(φ) = α(cos(φ/α), sin(φ/α), 0). Then

κ = γ′′ = −γ/α and the normal curvature on ∂X reads κn = − 1

α
〈N,X〉, which is used to implement

the BCs (72b).
c) The “integral” sum(K) over the discrete Gaussian curvature K always evaluates to 2πχ(X),

cf. Footnote 1. Thus we once more use Gauss-Bonnet

∫
X

K dS = 2πχ(X)−
∫
∂X

κg ds to compute the

energy E, where κg = sign(N3)
1
α
‖N × γ‖, and where we evaluate

∫
∂X

κg ds by a trapezoidal rule. c

In Fig. 15 we repeat the continuation in c0 from Fig. 14(b) at more negative b, namely b≈− 3.4 in
(a,b) and b≈−4 in (c). For lower b, the unstable part of the c0 continuation expands, and we find two
(or more, for even lower b) BPs between the left fold and c0=0, with azimuthal wave numbers m = 1
and m = 2. As before, these bifurcations are double by S1 symmetry, and to continue the bifurcating
branches we set the usual rotational PC after two steps. The blue m = 1 branch then behaves similarly
in (a) and (b), i.e., it becomes stable after a fold at c0 ≈ −0.2 (b = −3.4) resp. c0 ≈ −0.27 (b = −4).
However, the m = 2 branch behaves differently: For b = −3.4 it connects to the symmetric BP at
c0 > 0. For b = −4, the red branch c02b-2q first shows a secondary BP to a branch (c02b-2q-1,
green) with broken Z2 symmetry, and then shows a fold at c0 ≈ −0.21 where it becomes stable. The
branch c02b-2q-1 also shows a fold, at c0 ≈ −0.11, after which however one unstable eigenvalue
remains, i.e., ind(X) = 1 at, e.g., c02b-2q-1/pt20 (last sample in (c)).

Thus we have found stable non–axisymmetric solutions, but at rather large |b|. In cmds2.m, see
also [MU23a, Fig.28], we aim to continue the solutions from Fig. 15 to more moderate |b|, which
however fails due to branches folding back or loosing stability around b = −3, and thus the biological
significance of the non–axisymmetric solutions from Fig. 15 remains to be discussed.
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Figure 15: Continuation of Fig. 14. (a,b) Continuation in c0 from bb/pt20, (α, λ1, b) = (1, 0.25,−3.4),

starting from c0 = 0.5, branches c01b (black, to decreasing c0) and c01 (grey, to increasing c0). There are
two BPs on the unstable part of c01b for c0 < 0, and the symmetric BPs for c0 > 0. The blue branch
c01b-1q has azimuthal wave number m = 1 and is stable after its fold. The red branch c01b-2q

has m = 2 and connects to the symmetric BP at c0 > 0. The 2nd plot in (a) shows where the part
b
∫
K dS of E becomes dominant, taking into account the rather large |b|. (c) Similarly starting at

bb/pt24 with b ≈ −4; zoom of BD near upper left fold of the branch c02b (black) similar to c01b from
(a). The blue branch is qualitatively as in (a), but now the m = 2 branch c02b-2q (red) also folds
back giving stable solutions, and there is a secondary BP on it, giving the green branch c02b-2q-1.

5 Summary and outlook

We gave a number of examples for using the pde2path extension library Xcont for continuation of
2D submanifolds X (surfaces) of R3. These were partly introductory (the spherical caps in §3.2) and
mostly classical, i.e., Enneper’s minimal surface in §3.3, the nodoids in §3.4.2, the triply periodic
surfaces in §3.5, and the closed vesicles in §4.1, and partly rather specific, i.e., the nodoids with pBCs
in §3.4.3, and the biocaps in §4.2. Besides [Bru18], and to some extent [Bra96], there seem to be few
numerical continuation and bifurcation experiments for such geometric problems for 2D surfaces, i.e.,
without imposing some axial symmetry, and we are not aware of a general software for such tasks.

The basic setup for all our problems (except those of 4th order) is similar: We consider CMC
surfaces, which mainly differ wrt constraints and/or boundary conditions. Along the way we explained
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a number of techniques/tricks which we expect to be crucial in many applications. A major problem
for continuation over wider parameter regimes is the mesh handling as X changes, and hence the mesh
(strongly) distorts. We explained how this often can be abated via moving of mesh points (moveX),
refinement (refineX which sometimes should be combined with re–triangulation by retrigX) and
coarsening (coarsenX), and coarsening of degenerate triangles (degcoarsenX), although the choice
of the parameters controlling these functions often requires some trial and error. In any case, X
bulging out (increasing area) is usually harmless and can be treated by refinement, but bulging in
(the development of necks) requires coarsening and is more challenging.

This is a first step. With the demos we hope to give a pool of applications which users can use
as templates for their own problems, and we are curious what other applications users will consider,
and of course are happy to help if problems occur. As indicated above, our own further research, to
be presented elsewhere, includes:

� Further classical minimal surfaces (and CMC companions) such as Schwarz H and Scherk surfaces
(surface families).

� Alternate models for closed vesicles, which in contrast to the SC model from §4.1 show non–
axisymmetric minimizers.

� Coupling of membrane curvature and morphogen dynamics or reaction–diffusion equations as
in, e.g., [MMCRH13, TN20].
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